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Abstract: Gantry-type dual-axis platforms can be used to move heavy loads or perform precision
CNC work. Such gantry systems drive a single axis with two linear motors, and under heavy
loads, a high driving force is required. This can generate a pulling force between the drive shafts
in the coupling mechanism. In these situations, when a synchronization error becomes too large,
mechanisms can become deformed or damaged, leading to damaged equipment, or in industrial
settings, an additional power consumption. Effectively and accurately acquiring the synchronized
movement of the platform is important to reduce energy consumption and optimize the system.
In this study, a fractional-order fuzzy PID controller (FOFPID) using Oustaloup’s recursive filter
is used to control a synchronous X–Y gantry-type platform. The optimized controller parameters
are obtained by the measurement of control errors in a simulated environment. Four optimization
methods are tested and compared: particle swarm optimization, invasive weed optimization, a gray
wolf optimizer, and biogeography-based optimization. The systems were tested and compared in
order to optimize the control parameters. Each of the four algorithms is simulated on four contour
shapes: a circle, bow, heart, and star. The simulations and control scheme of the experiments are
implemented using MATLAB, and the reference paths were planned using non-uniform rational
B-splines (NURBS). After running the simulations to determine the optimal control parameters, each
set of acquired control parameters is also tested and compared in the experiments and the results
are recorded. Both the simulations and experiments show good results, and the tracking of the
X–Y platform showed improved performance. Two performance indices are used to determine and
validate the relative performance of the models and results.

Keywords: synchronized gantry stage; PMLSM; fractional-order PID controller; fuzzy PID controller;
particle swarm optimization (PSO); invasive weed optimization (IWO); grey wolf optimizer (GWO);
biogeography-based optimization (BBO); non-uniform rational B-splines (NURBS); contour tracking

1. Introduction

Biaxial gantry systems are often found in industrial settings because of their high-
speed and high-precision planar motions. Applications include CNC machines, automotive
assembly lines, material handling, surface chip mounters, and positioning stages. To
provide accurate Cartesian movement information to a multiple-axis configuration, the
control stage must be managed in a synchronous manner, especially when carrying heavy
loads. Conventional control methods use independent axis control, regardless of the
other axes. Synchronous errors cannot be reduced effectively through independent axis
control, and this leads to decreased precision in use. Design of a servo control system
with synchronous motion techniques [1–4] is critical for high-precision gantry systems,
especially where heavy loads could lead to process safety issues or damage to equipment.

Parallel synchronous control schemes are often driven by two linear motors. Without
any mechanical transmission, such as lead screws or gears, the payload can be directly
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driven. The design in this paper uses a permanent magnet linear synchronous motor
(PMLSM) [5] for its compact structure, rapid response, and high force density. Several other
approaches to the multi-axis de-synchronization problem have been proposed, such as a
master–slave motion control arrangement and cross-coupled controls. In [6], the authors
applied a nonlinear feedback control scheme to control the PMLSM position, and overcome
inherent nonlinear functions and parametric uncertainties. In [7], a synchronous control
was developed on a platform with only one axis, which is actuated by servo motors and
dual parallel ball screws. In addition, an identification method was proposed to build
a coupled system model. The cross-coupled synchronous control method [8,9] reduced
the contouring error in the gantry system. An optimized cross-coupled synchronizing
control [8] was proposed to improve synchronization accuracy in dual-feed drives. The
performance index includes the synchronous error, which is to be minimized. A cross-
coupled synchronous control system was also combined with a complementary sliding
mode control [9], to simultaneously converge position tracking and synchronous errors
for the gantry position stages with uncertainties. In this study, the authors designed a PID
control scheme for an X–Y-type gantry. Since a conventional PID control cannot overcome
problems associated with speed changes, load disturbances, and steady-state errors, a
fractional-order fuzzy PID (FOFPID) is incorporated for more flexible parameter tuning
than that of integer order.

In recent years, fractional order differentiation and integration have become more
commonly used in control design [10–13]. Since the calculus orders are not necessarily to
be integers, the dynamic models can be described more adequately. Also, a controller with
fractional orders is often more suitable than one using integer orders. A parameter tuning
approach for fractional order PD controllers was proposed [14] for a class of second-order
systems. This method can increase the robustness by fulfilling the given gain phase margin
and crossover frequency. A temperature control with a digital fractional order controller has
been demonstrated [15]. Furthermore, the practical application and improvement of PID
controllers using fractional order have also been shown [16–18]. Another fractional-order
fuzzy PID controller design [19] considered tuning the orders in the fuzzy controller, and
then used a genetic algorithm to optimize the controller by minimizing error indices.

Although fractional order differ-integrations make the controller adapt to the plant
more adequately, tuning the parameters becomes difficult. To improve the effectiveness of
the controller design, several optimization algorithms have been used to adjust the parame-
ters, such as particle swarm optimization (PSO) [20], invasive weed optimization (IWO) [21],
gray wolf optimization (GWO) [22], biogeography-based optimization (BBO) [23], and
genetic algorithms (GAs). In [13,24], the PSO algorithm was used for the adjustment of the
fractional order PID controller parameters. The results showed the parameters given by the
PSO led to a precise and strong anti-disturbance control. Another work used a modified
firefly algorithm (MFA)–PSO-based fractional order PID controller [25] for an effective
torque and speed regulation strategy for a BLDC motor. Other optimization algorithms,
such as the IWO [26] and GWO [27], were also applied to fractional order controllers to
improve their performance.

In this research, the fractional order fuzzy controller is implemented in a synchronized
gantry-type X–Y platform. Several optimization algorithms, namely PSO, IWO, BBO, and
GWO, are integrated with the FOFPID for precision trajectory tracking control, and their
relative performances are compared. The integral of the time-weighted absolute error
(ITAE) is an index for the optimization of the controller parameters. Two PMLSMs set up
in parallel on the Y-axis rails move a beam simultaneously, while another PMLSM moves
the head set up on the beam along the X-axis. A MATLAB system ID toolbox is used to
find the parameters of the PMLSM transfer functions. The simulation and experimental
results for the different reference contours are demonstrated to reveal the effectiveness of
the proposed controller, with improved tracking performance.

This paper is organized as follows: Section 2 presents the system dynamics and model
identification. Section 3 describes the fractional-order fuzzy PID controller. The PSO
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optimization algorithm used in this work is introduced in Section 4. The simulation and
experimental results are demonstrated in Section 5, and Section 6 presents the conclusions
drawn from the results.

2. System Model and Identification
2.1. PMLSM Model

The PMLSMs are used as the actuators in the gantry system and the mathematical model
is derived below. The dynamic model [2] in the d–q reference frame is represented by

vd = Rid + Ld
did
dt − π

τ vPLdiq

vq = Riq + Lq
diq
dt + π

τ vPLqid +
√

2
3

π
τ λmaxvP

(1)

where vd and vq denote the d-axis and q-axis voltages, Ld and Lq are the d-axis and q-axis
inductances, iq and id are the q-axis and d-axis currents, respectively, τ is the pole pitch,
vP and R are the velocity and resistance of the mover, and λmax denotes the maximum of
sinusoidal flux linkage. By (1), the derivative of these currents can be obtained as

[
did
dt
diq
dt

]
=

[
− R

Ld
−π

τ vP
Lq
Ld

−π
τ vP

Ld
Lq

− R
Lq

][
id
iq

]
+

 vd
Ld

1
Lq

(
vq −

√
2
3

π
τ λmaxvP

) (2)

The dynamic equation of the mechanical part is expressed as

Fe = M
.
vP + BvP + FL = M

..
x + B

.
x + FL (3)

where M, B, and x are the mass, viscous friction coefficient, and displacement of the stage,
respectively, FL denotes the external loading, and Fe represents the electromagnetic force,
which is given by

Fe =
3π

2τ

[(
Ld − Lq

)
idiq + λmaxiq

]
(4)

Since the PMLSM exhibits a uniform air gap on the stator surface, the condition
Ld = Lq = L can be assumed and reduces (4) to

Fe =
3π

2τ
λmaxiq = ktiq (5)

where kt = 3π
2τ λmax is the force constant. Let vdr and vqr be the d- and q-axis voltage

commands and remove the coupled terms, then the derivative of the currents shown in (2)
can be rewritten: [

did
dt
diq
dt

]
= −R

L

[
id
iq

]
+

1
L

[
vdr
vqr

]
(6)

From (5), the q-axis current iq produces the motor driving force Fe. Integrating (3), (5),
and (6), and then applying a Laplace transform, provides the transfer function from the
voltage command V(s) to the displacement X(s):

X(s)
V(s)

=
Kt

MLs3 + (MR + BL)s2 + BRs
(7)

Figure 1 shows the model block diagram of the PMLSM system.
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Figure 1. The PMLSM equivalent model.

2.2. Mechanical Coupling Model and System Identification

A linear motor is set up on the X-axis of the gantry platform, while the Y-axis consists of
two parallel linear motors. Thus, mechanical coupling is inevitable. The displacements on
the X- and Y-axis are feedbacked by optical encoders. Figure 2 shows the experimental setup
of the gantry system, and the block diagram of the gantry platform is shown in Figure 3.
To address the coupling effect, here we adopt the coupled parallel linear servo scheme [9]
to build the Y-axis model. The transfer function TX(s) represents the X-axis PMLSM, while
TM_M(s), TS_S(s), TM_S(s), and TS_M(s) model the Y-axis structure. TM_M(s) and TS_S(s)
are the respective master and slave PMLSM models, and TM_S(s) and TS_M(s) describe the
models of the coupling effects YS/VM and YM/VS.

To identify the Y-axis coupling, first, a unit step voltage input VM is given to the master
axis linear motor to drive the coupling system, while the slave axis retains its movement
freely. Therefore, the slave axis is moved passively by the master axis, revealing the effect
of coupling. From the measured displacements of the slides YM and YS, it is possible to
build approximations of the transfer functions TM_M(s) and TM_S(s), which are composed
of the form shown in (7). The same process can be used to identify TS_S(s) and TS_M(s) by
giving a unit step input VS to the slave motor and measuring both the position outputs of
the slides YM and YS. Since the responses are presumed to be third-degree models, as in (7),
from the collection of the output position and input voltage data, the model coefficients can
be identified by using the MATLAB Toolbox. The third-order transfer functions describe
the gantry platform with coupling on the Y-axis, and are described by

TX(s) =
1.41 × 107

s3 + 76.1s2 + 144.73s
(8)

TM_M(s) =
1.032 × 109

s3 + 676.71s2 + 1.0681 × 105s
(9)

TM_S(s) =
5.541 × 109

s3 + 1565.4s2 + 5.6787 × 105s
(10)

TS_S(s) =
1.804 × 109

s3 + 862.93s2 + 1.862 × 105s
(11)

TS_M(s) =
6.957 × 109

s3 + 1735.1s2 + 7.156 × 105s
(12)

where TX(s) is the X-axis dynamic model, and TM_M(s), TM_S(s), TS_S(s), and TS_M(s)
represent the model for the Y-axis.
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3. Control Design
3.1. Fractional Order Fuzzy PID Controller

The control scheme of the FOFPID shown in Figure 4 is a combination of fuzzy
PI, and fuzzy PD controllers [19,28], taking Ke and Kde as the input scaling factors, and
α and β as output factors. In addition, the differentiation and integration for D and I
control can be of fractional orders, such that the control system can be tailored to fulfill the
performance requirements.
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The parameters Ke, Kde, α, and β are the PID controller gains, while µ and λ are the
orders of differentiation and integration, respectively. The two inputs of the fuzzy logic
controller are from the PD control in the front part of this scheme. One is the gain Ke
multiplied by the control error e(t), and the other is Kde, multiplied by the derivative dµe

dtµ .
The fuzzy controller output c(t) is subsequently input to the PI control in the rear part.
Then the control of the FOFPID can be obtained by

u(t) = α·c(t) + β·
∫ t

0
c(τ)dτλ (13)

where u(t) is the control output. The controller parameters Ke, Kde, α, β, µ, and λ need
tuning for precise tracking. However, it is hard to tune these gains, especially when
using fractional order values. The parameter tuning in this study utilizes an evolutionary
computation algorithm, discussed in the next chapter.

In the fuzzy inference system [19], the input and output signals are transformed into
fuzzy linguistic variables: PVB (Positive Very Big), NVB (Negative Very Big), PB (Positive
Big), NB (Negative Big), PM (Positive Medium), NM (Negative Medium), PS (Positive
Small), NS (Negative Small), and Z (Zero), respectively. The membership functions and rule
base are shown in Figure 5 and Table 1. The triangular-shaped membership functions are
chosen for the input variables, and singleton functions for the output. The two-dimensional
linear rule base shown in Table 1 is used in the fuzzy controller. The inference mechanism
is based on the Mamdani algorithm [19] and the rules are expressed by

IF e(t) is Ai AND
dµe
dtµ is Bi, THEN c(t) is Ci (14)

where Ai, Bi, and Ci are the linguistic labels of these linguistic variables e(t), dµe
dtµ and c(t),

and are characterized by membership functions for each variable. Here the max–min
composition is used, and a fuzzy set u(F) can be inferred from the following relation:

u(Fi) =
K
∪

i=1

(
ui(A) ∩ ui(B)

)
(15)

where K denotes the number of fuzzy output sets, and ui(A) and ui(B) are the MFs of
the fuzzy sets A and B, respectively. ∩ and ∪ denote the min function (T-norm) and max
function (T-conorm), respectively. Fi represents the value of the i-th output MF, and u(Fi) is
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its membership value at the i-th quantization level. The center-average defuzzification is
utilized here to obtain the output c(t), as follows:

c(t) =
∑K

i=1 Fiu(Fi)

∑K
i=1 u(Fi)

(16)
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Oustaloup’s recursive filter [29] is utilized here to implement the fractional-order
elements sλ (λ ∈ [−1, 1] ⊆ ℜ). The filter is given by

G f (s) = sλ = K
N

∏
k=−N

s + ω′
k

s + ωk
(17)

where the poles and zeros can be recursively evaluated by

ωk′ = ωb

(
ωh
ωb

) k+N+ 1
2 (1−λ)

2N+1
, ωk = ωb

(
ωh
ωb

) k+N+ 1
2 (1+λ)

2N+1
, K = ωλ

h (18)

The output of this filter is an approximation of a fractionally diff-integrated signal. λ
is the order of the differ-integration, [ωb, ωh] is the preset frequency range (rad/s), and N
is the order of the approximate integer-order transfer function. The selected parameters for
Oustaloup’s recursive filter used in this work are ωb = 0.001, ωh = 100, N = 3.

3.2. The Objective Function

Figure 6 shows the FOFPID control scheme. It consists of two subsystems: one is the
X-axis control loop, and the other is the Y-axis control loop, which possesses a mechanical
coupling effect. The design of this control scheme is to reduce X- and Y-axis tracking
errors, and also reduce the synchronous error in the Y-axis. To achieve this purpose with an
optimization algorithm, a fitness function containing these error terms should be minimized.
The ITAE performance criterion [30] is used to be the fitness function and is expressed as

ITAE =
∫ T

0
t|e(t)|dt (19)

where e(t) denotes the tracking error at instant t.
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In the control design, compared to the IAE (integral of the absolute error) and ISE
(integral square error) indices, the ITAE performance index has smaller oscillations and
overshoots. There are eighteen tuning parameters in the control scheme: (1) Ke, Kde, α, β, µ,
and λ for the X-axis, (2) Ke1, Kde1, α1, β1, µ1, and λ1 for the master Y-axis, and (3) Ke2, Kde2,
α2, β2, µ2, and λ2 for the slave Y-axis. To find appropriate parameters for the controller
scheme, optimization algorithms can be used. For the gantry system described in Figure 4,
the optimization problem is to minimize the system ITAE index. The ITAE of the whole
system should consider the tracking errors for X-axis eX(t), master Y-axis eYM(t), and slave
Y-axis eYS(t), and the synchronous error, which is the difference of two Y-axes eYM(t). Thus,
the ITAE is given as

ITAE =
1
4
(

4

∑
r=1

ITAEr) (20)

with ITAE1 =
∫ T

0 t|eX(t)|dt, ITAE2 =
∫ T

0 t|eYM(t)|dt, ITAE3 =
∫ T

0 t|eYS(t)|dt,
ITAE4 =

∫ T
0 t|eYMS(t)|dt.

4. Optimization Algorithms

To choose the controller parameters, four evolutionary computations are tested and
compared: particle swarm optimization (PSO), invasive weed optimization (IWO), a gray
wolf optimizer (GWO), and biogeography-based optimization (BBO). The objective func-
tions for the optimal algorithms can be formulated with the aim of minimizing the ITAE
index. The time multiplication term in the ITAE index helps to reduce the settling time, for
the penalty increases with time.

4.1. Grey Wolf Optimizer (GWO) Algorithm

A grey wolf optimizer [22] is an intelligent group optimization algorithm proposed
by Mirjalili et al. of Griffith University, Australia, in 2014. The algorithm is an optimized
search method inspired by the behavior of gray wolves when they hunt prey. The levels of
the gray wolf social hierarchy are separated into α, β, δ, and ω from top to bottom. Wolf
α represents the fittest solution, whereas the second and third best solutions are β and δ,
respectively. The remaining wolves, ω, are candidate solutions. The GWO procedure has
three steps: encircling, hunting, and attacking. The encircling behavior is modeled by the
following equations:

→
D =

∣∣∣∣→C ·
→
Xp(t)−

→
X(t)

∣∣∣∣ (21)

→
X(t + 1) =

→
Xp(t)−

→
A·

→
D (22)

where t denotes the current iterations,
→
X is the position vector of a grey wolf,

→
Xp is the

position vector of the prey, and
→
A and

→
C are coefficient vectors calculated by

→
A = 2

→
a ·→r1 −

→
a (23)

→
C = 2·→r2 (24)

where
→
a is the convergence factor, decreasing linearly from 2 to 0 in the iterative process,

and
→
r1 and

→
r2 are random vectors on the range [0, 1]. The outcome of these equations is that

the random vectors
→
r1 and

→
r2 allow wolves to reach any position around the prey.

In the hunting stage, the first three best solutions obtained so far are saved, and other
wolves are forced to update their positions according to the best agent. The position update
equations are as follows:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, →

Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣, →

Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (25)
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→
X1 =

→
Xα −

→
A1·

( →
Dα

)
,

→
X2 =

→
Xβ −

→
A2·

( →
Dβ

)
,

→
X3 =

→
Xδ −

→
A3·

( →
Dδ

)
(26)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(27)

The final stage of hunting is to “attack the prey” (obtain the optimal solution). As
iterations progress, the value of

→
a decreases from 2 to 0, pushing the wolves to approach

the prey. Note that the range of
→
A is related to the value of

→
a . When |A| < 1, the wolves

are forced to attack toward the prey.
With the GWO algorithm, the optimal control parameters of the proposed FOFPID

controller can be found. The procedure is described as follows:

(1) Initialize the wolf group (α, β, δ, ω) and select the GWO algorithm parameters.
(2) Design the appropriate parameters (Ke, Kde, α, β, µ, λ, Ke1, Kde1, α1, β1, µ1, λ1, Ke2,

Kde2, α2, β2, µ2, λ2), and let the initial populations be feasible candidate solutions.
(3) Conduct the tracking process for all contours on the X–Y gantry system, calculate the

ITAE, and then calculate the fitness function with (20).
(4) Set the iteration counter as one and the initial wolf group (α) as the best solution.
(5) Update the positions for the wolf group by (25)–(27) to obtain the new estimated

prey position.
(6) Again, perform all contour tracking for the X–Y gantry system, compute the ITAE,

and calculate the fitness value according to the new wolf group (α) position.
(7) Check whether the new fitness value is smaller than the best one. If the new fitness

value is smaller, then replace the new position with it.
(8) Update the wolf group position and the corresponding fitness values.
(9) If the iteration limit is not reached, increase the iteration counter and return to Step (5).

These steps can also be represented as a flow chart as shown in Figure 7.

4.2. Other Optimization Algorithms

To investigate the effects of different optimization algorithms on the proposed FOFPID
controller, three other optimization algorithms are tested for comparison: IWO, PSO, and
BBO. In the experimental results, the comparisons of the four algorithms are demonstrated.

IWO is an effective global optimization algorithm proposed by A. Mehrabian and C.
Lucas [21] in 2006. It is a numerical stochastic optimization algorithm evolved from the
principle of the rapid reproduction and growth of weeds in nature. The IWO process first
initializes the growth and reproduction of weeds, then updates the best fitness of weeds
with a distribution equation, and finally runs a number of iterations.

The PSO algorithm is a modem heuristic algorithm developed by Kennedy and
Eberhart in 1995 [20]. It formulates the optimization problems as bird flocking behavior. In
the PSO algorithm, each particle in the search space stands for a solution to the optimization
problem. Each particle possesses a fitness value and velocity to determine the distance
and direction of its movement. Then the particles follow the particle with the best fitness
values to search in the solution space. To implement this method, initialize a population of
particles, then update the particle locations, and iterate to produce an optimal solution.

The BBO approach was published by Dan Simon [23] in 2008. It uses the distribution
of species between neighboring islands to construct a mathematical model for species
extinction and migration. The process of optimization is as follows: initialize a habitat,
update that optimal habitat’s suitability using given migration and mutation rates, and
then iterate and update the process to obtain a solution.
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5. Experimental Results

The setup of the gantry-type platform is shown in Figure 2. The PMLSMs are CPC-
CLS-PM4 from Chieftek Precision Co., Ltd. and are actuated by the COR-5/230, which is a
PWM digital servo driver manufactured by Elmo Motion Control. The peak and continuous
force of the PMLSM are 74 N and 18.5 N. Its magnetic pole pitch and continuous current
are 15 mm and 5 A, respectively. The platform consists of two parallel motors on the Y-axis
and another one on the X-axis. A mechanical coupling happens on the Y-axis for these
two motors. Optical encoder sensors provide the measurement of the displacement on
each axis. The signals are transferred with an encoder card for position feedback while a
D/A converter card charges for control. The optical encoders are set up to measure the
displacements with the resolution of 1 µm. The sampling rate of the practical controller is
1 KHz. Both the X- and Y-axes possess a stroke of 225 mm.

5.1. Contour Planning

The contours in the simulations and experiments are planned by the non-uniform
rational B-spline (NURBS), which is a parametric curve composed of parameters such as
control point, knot vector, degree of curve, and weight [31–33]. The NURBS curves can be
modified by adjusting the weights and control points, or by changing the basis function
generated by the recursive calculation through different spacing of the elements in the node
vector. This means a NURBS-generated curve can be divided into a string of multi-interval
fitted splines. The equation for defining a NURBS curve is

C(u) =
∑n

i=0 Bi,d(u)WiPi

∑n
i=0 Bi,d(u)Wi

=
n

∑
i=0

Ri,d(u)Pi (28)

where Pi denotes the control point, Ri,d(u) is the rational basis function, Bi,d(u) is the basis
function, Wi is the weight, and d and u are the degree and parameter of the NURBS curve,
respectively. Table 2 shows the NURBS parameters of each contour. As shown in Figure 8a,
the star NURBS can be designed with 12 control points. Figure 8b–d shows the NURBS
control points for a circle, a bow, and a heart, respectively.

Table 2. NURBS parameters for the four contours.

Trajectory Type NURBS Parameters

Circle d = 2, P = [(0,0),(0, 25,000), (−50,000, 25,000),(−50,000, 0), (−50,000, −25,000), (0, −25,000), (0, 0)], k = [0, 0, 0,
0.25, 0.5, 0.5, 0.75, 1, 1, 1], w = [1, 0.5, 0.5, 1, 0.5, 0.5, 1]

Heart d = 2, P = [(0,0), (−30,000, 20,000), (−20,000, 50,000), (0, 36,000), (20,000, 50,000), (30,000, 10,000), (0,0)], k = [0, 0,
0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1], w = [1, 1, 1, 1, 1, 1, 1]

Bow d = 2, P = [(0, 0), (−15,000, −15,000), (−15,000, 1.5), (0, 0), (15,000, −15,000), (15,000, 150,000), (0, 0)], k = [0, 0, 0,
0.25, 0.5, 0.5, 0.75, 1, 1, 1], w = [1, 2.5, 2.5, 1, 2.5, 2.5, 1]

Star
d = 2, P = [(0, 30,000), (−2500, −30,000), (−7500, 20,000), (−20,000, 20,000), (−1000, 10,000), (−12,500, 0), (0,
7500),(12,500, 0),(10,000, 10,000), (20,000, 20,000), (7500, 20,000),(2500, 30,000),(0, 30,000)], k = [0, 0, 0, 0.1, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 1, 1, 1], w = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

5.2. Optimization and Performance Indices

MATLAB and Simulink are used to complete the simulations. Simulations are con-
ducted based on the identified dynamic model (8)–(12), which represents the gantry plat-
form. All four optimization methods are tested: (1) PSO, (2) IWO, (3) GWO, and (4) BBO.
These optimization algorithms are employed to tune the parameters in the FOFPID con-
troller based on the ITAE criterion. To evaluate the ITAE for the four contour types, the
average is calculated by

ITAE =
ITAEC + ITAEB + ITAES + ITAEH

4
(29)
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where the subscripts of ITAEX denote the contour types circle, bow, star, and heart, re-
spectively. The number of iterations for each scheme is limited to 200. Table 3 shows the
parameters used in the optimization process.
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Table 3. Parameters of the optimization algorithms.

Optimization Algorithm Parameters

PSO

population size: N = 30
leaning parameters: c1 = 1.2, c2 = 1.2
upper/lower bounds of the random velocity weight: vj

max = 0.72, vj
min = −0.72

upper/lower bound of the position: xj
max = 1.9, xj

max = 0.1

IWO

population size: N = 30
maximum group size itermax = 30
nonlinear harmonic parameter n = 2
initial standard deviation σi = 0.5
final standard deviation σi = 0.001
upper/lower bound of weed seeds: 1.9/0.1

GWO population size: N = 30
upper/lower bound of wolf group(alpha): 1.9/0.1

BBO
number of habitats: N = 30
max/min migration rates: E = I = 1, mmax = 0.1
upper/lower bound of habitat species: 1.9/0.1



Algorithms 2024, 17, 58 14 of 24

Two indexes, the tracking error standard deviation (TESD) and average tracking error
(ATE) are employed to evaluate the performances of both the simulations and experiments.
These indexes are defined by

(1) ATE:

m =
n

∑
k=1

e(k)
n

(30)

with e(k) =
√

e2
x(k) + e2

y(k) where ex(k) and ey(k) are the tracking errors in the X- and

Y-axis. As there are two slides on the Y-axis, the tracking error becomes ey(k) =
eym(k)+eys(k)

2 ,
and n denotes the number of all contour points.

(2) TESD:

Ts =

√
∑n

k=1(T(k)− m)2

n
(31)

The ATE and TESD indices are often used to measure contour tracking performance.
The former is used to measure the capability of trajectory tracking, while the latter can
evaluate the oscillation.

5.3. Simulation Results

Figure 9 shows the curves of ITAE in the iterations of optimization for the four methods.
Among them, PSO has the fastest decline, but IWO eventually approaches a lower value.
Table 4 shows the optimal learning parameters corresponding to the PSO, IWO, BBO, and
GWO methods. Common optimal parameters are employed in each simulation result, and
the tracking errors are compared and summarized. Table 5 shows the comparison of the
simulation results for the optimization algorithms. Taking an average of all four contours,
the IWO method achieved a higher accuracy, with an ATE of 1.7852 µm, TESD of 6.4548 µm,
and ITAE of 692.6948.
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Table 4. Optimal scaling factor parameters for all trajectory types.

value Ke µ Kde λ β α

PSO 1.8931 0.1097 0.4520 1.5940 1.9000 0.9726
IWO 1.8237 0.2757 1.8330 1.6256 1.4351 1.1889
BBO 1.8980 0.1006 1.8914 1.6927 1.9000 0.6967

GWO 1.3132 0.1285 1.8970 1.6103 1.8326 1.0344

value Ke1 µ1 Kde1 λ1 β1 α1

PSO 0.4488 0.1000 1.9000 1.4877 1.9000 0.8245
IWO 1.8866 0.1012 1.6841 1.5311 1.8837 0.7184
BBO 1.7297 0.4819 0.7888 1.4647 1.6594 0.8007

GWO 1.8825 0.1085 1.4989 1.3023 1.8645 1.4217

value Ke2 µ2 Kde2 λ2 β2 α2

PSO 1.2828 0.142 1.9000 1.4889 1.4156 0.6118
IWO 1.8302 0.1000 1.7325 1.5320 1.9000 0.7267
BBO 1.8914 0.4146 1.1917 1.4872 1.3578 0.6606

GWO 1.8992 0.2610 1.7539 1.3435 1.8493 1.3241

Table 5. The simulation results of all trajectories.

Method ATE (µm) TESD (µm) ITAE

Circle

PSO 1.4719 3.2174 728.4400
IWO 0.9100 1.6635 689.4438
BBO 1.5367 3.0456 732.9247

GWO 1.1919 1.4536 732.1176

Heart

PSO 1.3767 7.3135 687.1533
IWO 1.2314 5.5600 662.0899
BBO 1.4962 7.7701 706.2485

GWO 1.2854 4.7161 716.1556

Star

PSO 2.9381 9.7067 758.2886
IWO 2.9195 6.0844 732.7888
BBO 2.9834 9.8334 822.2761

GWO 2.8224 6.8502 800.8768

Bow

PSO 6.2185 30.6246 726.3240
IWO 2.0803 12.5113 686.4565
BBO 5.9139 27.0573 778.0170

GWO 5.0548 18.6534 795.2960

Average

PSO 3.0013 12.7156 725.0515
IWO 1.7852 6.4548 692.6948
BBO 2.9826 11.9266 759.8666

GWO 2.5886 7.9183 761.1115

5.4. Experimental Results

The real-time control experiments are conducted to verify the performance of the
proposed method. Figures 10 and 11, respectively, show the star position error trajectories
using the GWO and IWO algorithms. The controller parameters are obtained from the
optimization process in the simulations. Figures 10a and 11a illustrate the tracking errors
on the X-axis, Figures 10b and 11b show the tracking errors of the master and slave Y-axes
together, and Figures 10c and 11c show the synchronization errors, which are within 20 µm
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and decay gradually. Figures 10d and 11d demonstrate the contour trajectories. The smooth
trajectories and small steady-state error can be seen in the results. The circle contour
tracking results using the GWO and IWO algorithms are shown in Figures 12 and 13,
respectively. Figures 12c and 13c show the synchronization errors, which are always
within 40 µm. Figures 14 and 15 are the position error trajectories of the bow tie with
GWO and IWO, respectively. Figures 14c and 15c show that the synchronization errors
are within 12 µm and 15 µm, respectively. The heart contour tracking results are shown
in Figures 16 and 17. The synchronization errors are shown in Figures 16c and 17c, and are
within 40 µm and 15 µm, respectively.

The ATE and TESD tracking indices for the star, circle, bow, and heart contours
are displayed in Table 6. From the average ATE and TESD indices in the experimental
results, it can be seen that GWO exhibited better tracking performance than IWO. Although
IWO has better tracking performance than the other algorithms in the simulations, the
experimental results are worse than the others. This situation may be due to an undetected
difference between the simulation and experimental setup. GWO has the best experimental
performance and the second-best simulation results; thus, it is concluded that a FOFPID
controller with a GWO parametric solution performs better than the same controller with
either IWO, BBO, or PSO.
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Figure 10. Experimental results of the star contour tracking by using GWO algorithm, (a) position
tracking error on X–axis, (b) position tracking errors on master and slave Y–axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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Figure 11. Experimental results of the star contour tracking by using IWO algorithm, (a) position
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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Figure 13. Experimental results of the circle contour tracking by using IWO algorithm, (a) position
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous 
error, and (d) X–Y plane tracking trajectory. 

  
(a) (b) 

Figure 14. Experimental results of the bow contour tracking by using GWO algorithm, (a) position
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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Figure 15. Experimental results of the bow contour tracking by using IWO algorithm, (a) position 
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous 
error, and (d) X–Y plane tracking trajectory. 
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Figure 16. Experimental results of the heart contour tracking by using GWO algorithm, (a) position 
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous 
error, and (d) X–Y plane tracking trajectory. 

Figure 15. Experimental results of the bow contour tracking by using IWO algorithm, (a) position
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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error, and (d) X–Y plane tracking trajectory. 

Figure 16. Experimental results of the heart contour tracking by using GWO algorithm, (a) position
tracking error on X−axis, (b) position tracking errors on master and slave Y−axes, (c) synchronous
error, and (d) X–Y plane tracking trajectory.
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error, and (d) X–Y plane tracking trajectory. 
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Table 6. The experimental results of all trajectories.

Method ATE (µm) TESD ( µm) ITAE

Circle

PSO 12.33468 19.06461 1000.13697
IWO 22.55877 39.85242 1018.96457
BBO 13.65512 15.22419 1009.078

GWO 7.93084 8.69547 998.86251

Heart

PSO 17.05340 23.22570 1011.88779
IWO 23.88164 36.07943 1015.39364
BBO 18.09240 27.08182 1008.25875

GWO 9.09414 16.49567 994.75943

Star

PSO 19.17965 21.18270 997.62259
IWO 23.93769 29.72738 1007.70703
BBO 21.82199 24.02363 1009.45364

GWO 14.13845 15.14002 993.72111
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Table 6. Cont.

Method ATE (µm) TESD ( µm) ITAE

Bow contour

PSO 16.95719 28.80572 1018.65117
IWO 23.79299 42.70955 1018.99118
BBO 23.44690 39.53237 1014.40448

GWO 14.36346 24.53757 976.54349

Average

PSO 16.38123 23.06968 1007.07463
IWO 23.54277 37.092195 1015.26410
BBO 19.25410 26.46550 1010.29870

GWO 11.38172 16.21718 990.97163

6. Conclusions

An evolutionary computation-based FOFPID controller is developed in this study
to control a two-axis gantry platform. The fractional-order controller benefits from the
flexibility of the parameters, and consequently outperforms conventional PID variants.
Incorporating the fuzzy logic control structure helps increase design flexibility in the control
law. Several evolutionary computation algorithms are tested and compared in simulation
and experiment: PSO, IWO, GWO, and BBO. These are used to optimize the FOFPID
control parameters while minimizing the tracking error index as measured by the ITAE for
four contours, circle, heart, star, and bowtie. The optimization processes are implemented
in MATLAB/Simulink simulations and the acquired parameters are then examined in a
series of experiments using a practical gantry platform.

The simulation and experimental results verify that the control design could cope with
the synchronous control issues and mitigate contour tracking errors. The GWO algorithm
outperforms other optimization methods using ATE 11.38172 µm, TESD 16.21718 µm, and
ITAE 990.97163 when measured using the average of all contours. Compared to PSO,
BBO, and IWO, the GWO algorithm showed a performance advantage of 1.6%, 1.9%, and
2.4% in ITAE, respectively. The demonstrated control scheme effectively compensates for
synchronous tracking errors, which subsequently shows no significant peaks in turning, and
non-smooth positions of the contours. The contribution of this research is to integrate the
evolutionary computation algorithms with the FOFPID, optimize the controller parameters,
and compare their performance via simulations and experiments. The control scheme is
implemented on a PMLSM-actuated gantry platform to tackle the synchronous error and
achieve superior tracking results.
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