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Abstract: The proliferation of classification-capable artificial intelligence (AI) across a wide range of
domains (e.g., agriculture, construction, etc.) has been allowed to optimize and complement several
tasks, typically operationalized by humans. The computational training that allows providing such
support is frequently hindered by various challenges related to datasets, including the scarcity of
examples and imbalanced class distributions, which have detrimental effects on the production of
accurate models. For a proper approach to these challenges, strategies smarter than the traditional
brute force-based K-fold cross-validation or the naivety of hold-out are required, with the following
main goals in mind: (1) carrying out one-shot, close-to-optimal data arrangements, accelerating
conventional training optimization; and (2) aiming at maximizing the capacity of inference models to
its fullest extent while relieving computational burden. To that end, in this paper, two image-based
feature-aware dataset splitting approaches are proposed, hypothesizing a contribution towards
attaining classification models that are closer to their full inference potential. Both rely on strategic
image harvesting: while one of them hinges on weighted random selection out of a feature-based
clusters set, the other involves a balanced picking process from a sorted list that stores data features’
distances to the centroid of a whole feature space. Comparative tests on datasets related to grapevine
leaves phenotyping and bridge defects showcase promising results, highlighting a viable alternative
to K-fold cross-validation and hold-out methods.

Keywords: deep learning training optimization; dataset splitting/arrangement optimization; deep
feature inspection; deep feature-based data organization; classification deep learning; explainable
artificial intelligence

1. Introduction

In recent years, the proliferation of classification-capable artificial intelligence (AI)
across a wide range of domains (e.g., civil engineering [1], agriculture [2], medicine [3–5],
aeronautics [6], footwear retail [7], etc.) has been of outstanding importance for the digital-
ization of knowledge among vanishing professionals with particular sets of relevant skills,
leading to the automation of workflows, time-effective decision support, and the dynamiza-
tion of business models, among many other benefits. Supporting the success of this family
of computational approaches are several artificial neural network architectures of distinct
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complexities that have been proposed over time by the technical-scientific community—e.g.,
VGG [8], ResNet [9], Xception [10], within the scope of deep learning—with the goal of
providing different strategies to reach inference models of increasingly better performances,
which are typically assessed against unseen data [11]. Among the perceived challenges is
the need to mitigate potential overfitting, which affects models of higher complexity more
severely [12]. Therefore, employing best-practices to find the proper balance between gen-
eralization capabilities and biases contributes to the achievement of more suitable inference
capabilities. One of these practices consists of finding adequate training data arrangements
to ensure harmonization, configured by a balanced distribution of examples per class/label,
representativeness, diversity, among other aspects. In that regard, the data splitting process
for setting up datasets is crucial for the achievement of reliable and consistent models [13].

In the dataset splitting context, there are different techniques [14]. Currently, two
methods are widely used for this purpose: K-fold cross-validation (KFCV) and hold-out
validation (HO) [15–18]. These traditional approaches pose some issues, not only in terms
of demanding both computational time and processing resources, but also because they
do not always ensure the exploration of models’ full inference potential (or nearly close to
that golden rate). Other eventual drawbacks include decompensations that may prevent
the matching of features between training and validation examples, and even lead to
unrepresentative performance assessments while testing the models against unseen data,
especially in cases wherein heterogeneity is a prevalent characteristic—for example, with
the inclusion of many classes and/or noisy backgrounds. In cases wherein the datasets are
reduced, the division can result in subsets composed of only a few samples, impacting the
effectiveness of training or evaluation. If the dataset is unbalanced, and if certain classes
or categories are underrepresented in the training, validation, or testing subset, the model
may not learn accurately. Design patterns [19] may not work in such scenarios either.
While rebalancing by oversampling may induce bias for decompensated classes, doing it
by underfitting can lead to a substantial loss of problem representation.

In this study, in contrast with conventional dataset split methodologies, two one-shot
techniques are proposed and compared. Their primary focus is on achieving feature-based
balanced datasets, aiming to mitigate the trial-and-error orientation underlying traditional
subdivision approaches. More specifically, a lightweight feature-aware exploration strategy
was conceptualized and developed to automatically and expeditiously organize data
towards achieving uniform feature distribution, with the particular goal of assessing the
impact of evenly distributing diversity in imagery characteristics on deep learning (DL)
models’ convergence. Tests made to evaluate the proposed strategies, considering two
datasets with distinct contexts (grapevine leaves for phenotyping determination and bridge
defects for the identification of degradation factors) demonstrated very promising results
in comparison to the KFCV and HO techniques.

Regarding the structure, besides this introductory section, the remainder of the paper
is organized as follows: Section 2 will address the related work; Section 3 covers the material
and methodology; Section 4 presents the experimental results, followed by Section 5, which
provides a summary discussion, main conclusions and some future directions.

2. Related Work

Machine learning algorithms’ tasks include extracting features from data and con-
structing effective prediction models. Within this operational line, the primary objective
is to create computational models that not only excel humans in making accurate predic-
tions but also demonstrate a robust ability to generalize to new/unseen data. One of the
factors that affect the model’s generalization performance is the binomial size/quality of
the training, validation, and testing subsets; another one is the data arrangement, carried
out through proper division. Highlighting the importance of appropriate data splitting,
various statistical sampling methods for data splitting have been proposed [20].

Fox et. al [21] used both the KFCV and normal split techniques to divide the ITEC
LapGyn4 Gynecologic Laparoscopy Image Dataset [22] and employed them to classify the
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images using a convolutional neural network (CNN) model and scale-invariant feature
transform (SIFT) classification. Their results show better performance for the KFCV using a
CNN. A feature-weighted sampling method was proposed in [23] to optimize the split of
the dataset. In this work, firstly, a division of the full dataset into several subsets using the
modified R-value-based sampling (RBS) [24] was carried out. Then, the distances of each
set to the whole dataset were computed to obtain a similarity score, and the one with the
smallest distance was chosen. Eliane [25] employed different methods to split the dataset
into training/test sets, including KFCV, sample set partitioning based on joint x–y distance
(SPXY), Kennard–Stone (KS), and a random sampling algorithm. The use of Pearson correla-
tion scores (PCSs) for comparison allowed for ranking the performance of these approaches
from best to worst, as follows: KFCV, SPXY, and KS. An algorithm for performing stratified
KFCV with a focus on similarity-based sample splitting was developed by Farias et al. [26].
First, they select a pivot sample from each label group that is most similar to other samples
within the same label group. Afterward, the algorithm identifies additional samples that
are most similar to the “pivot” sample. They employed different similarity functions,
including Cityblock, Chebyshev, Euclidean, cosine, and correlation, deploying different
classifiers: nearest neighbors (KNN); random forest (RF) classifier with 100 trees; support
vector machine (SVM); and multilayer perceptron (MLP). Their results showed the better
performance of the proposed algorithm over the normal KFCV when using the correlation
similarity function. It is worth mentioning that the difference between the accuracies
of different similarity functions was almost 1%. Nurhopipah et al. [27] compared four
dataset splitting techniques for face classification tasks: random sub-sampling validation,
bootstrap validation, KFCV, and Moralis Lima Martin validation (MLMV). They concluded
that KFCV provides a more stable performance, with higher accuracy. The KFCV method
was, once again, employed in [28] to partition brain image samples for tumor diagnosis,
using the SVM algorithm. In this work, different kernels of the SVM were used. In [29],
KFCV, with K = 10, was applied to split a vegetation dataset into training and validation
subsets and, subsequently, build different classifiers—k-nearest neighbors, Gaussian naive
Bayes, random forests, SVM, and multilayer perceptron—capable of performing vegetation
physiognomic classification. Inside the cross-validation loop, they performed a univariate
statistical test (ANOVA F-value) between physiognomic classes and the features in the
training set to select the best-scoring features from the training set. A higher accuracy (81%)
was verified for random forests.

Varma and Simon [30] used both normal and nested KFCV and showed that the nested
one can be considered a nearly bias-free method. Vabalas et al. [31] used the train/test
split, normal, nested, and partially nested KFCV to split the dataset, as well as an SVM
and a logistic regression classifier to distinguish autistic from non-autistic individuals.
In their experiments, the train/test split and nested KFCV approaches produced robust
performance. Kahloot et al. [32] developed a technique named “Algorithmic splitting”.
They used, firstly, the Umap technique for dimension reduction and then two different
clustering methods, including hierarchical density-based spatial clustering of applications
with noise (HDBSCAN) [33] and gaussian mixture models (GMM) [34]. The distances of
data points to the mean were computed using Chebyshev’s inequality bound [35]. For
each cluster, they calculated the mean (µ) and standard deviation (σ) of the data points’
positions. Then, the algorithm defines different ranges based on µ and σ, which include
a “median range” (within 1 standard deviation from µ), an “extreme range” (beyond
2 standard deviations from µ), and a “quantile range” (between median and extreme
ranges). For each sub-dataset size (training, validation, testing with sizes of 70%, 20%, and
10%, respectively), the algorithm samples data points from the defined ranges according to
specified percentages and experiments with different rates of selection for each range to
train models based in VGG [8], ResNet [9], and Inception [36]. The optimal percentages
were 55%, 35%, and 10% out of the median, extreme, and quantile ranges, respectively. For
comparison purposes, they also split the dataset using random sampling. They concluded
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that the hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
outperforms the GMM with the algorithmic split.

To split the dataset, Doan et al. [37] first divided each class into clusters using HDB-
SCAN and then applied a stratification technique to select data from each cluster for
the train/test set. They also used random sampling, stratified sampling, stratified cross-
validation, and bootstrapping techniques as data splitting techniques and compared the
results with their approach, which proved to outperform the others for all the trained
models (MLP, SVM, RF, XGBoost).

Resampling, including normal, repeated, nested, leave-one-out KFCV, was used by [38]
to split a dataset for training different ML algorithms (linear regression, Bayes ridge
regression, ridge regression, LASSO regression, K-nearest neighbors, CART decision trees,
support vector machines regression—SVMR, extreme gradient boosting, gradient boosting,
random forests, and extra trees) to predict profits in olive farms. Their results presented
a better performance for SVMR compared to the others, and the resampling technique
outperformed the other splitting techniques. Huang et al. [39] split a dataset randomly,
in a traditional fashion, with a ratio of 4:1 for training and validation, respectively, for
their objective, which was using the U-Net for segmentation and AlexNet, VGG16, VGG19,
ResNet-50, Inception V3, and Xception for classification.

In specific contexts, such as agriculture, traditional dataset splitting is the preferred
option to be used [40–42], even in limited dataset conditions, as can be verified in [43],
which proposes the use of KFCV to split datasets to feed decision tree, random forest,
gradient boosting, and SVM models, aiming at tomato crop yield prediction, based on
certain inputs (soil properties, applied fertilizers, and weather conditions). Optuna [44]
employed a feature selection technique and, in the end, better performances were found
for gradient boosting and SVM. The same tendency of using traditional dataset splitting
techniques can be verified in the construction field [45].

From the works addressed above, one can infer that data-based features for setting
up ML/DL models are of key importance. In this context, two main steps can be identi-
fied: (a) feature extraction, which can be done using specific layers of consolidated CNN
architectures, such as VGG16—widely known for its capabilities in artificial deep vision
tasks [46–48]—benefiting from ImageNet [49] weights; and (b) dimensionality reduction,
achievable through techniques such as, for example, principle component analysis (PCA),
which is also capable of retaining the relevant variance of the data to preserve its intrinsic
characteristics [50–52].

To sum up, most of the data splitting-related works rely on techniques that can
be computationally burdensome and time-consuming, such as KFCV. In contrast, single
passages of HO techniques are likely to lead to uncalibrated datasets in terms of features—it
is hypothesized that the presence of elements in training images that, if missing in the
validation subset, cannot be confirmed and consolidated—potentially constraining the
exploration of the full potential of the models. Therefore, this study proposes methods
to work around the identified issues. The goal is to balance features during the training,
validation, and test stages. Further details will be explained in the following section.

3. Materials and Methods

This section presents the research approach, detailing the methodical preparation of
materials and outlining the methodologies employed in this study. It covers the contextu-
alization of the raw data used for experimentation purposes, as well as specific methods
applied for optimizing the dataset splitting techniques.

3.1. Imagery Used for the Empirical Assessment of the Proposed Dataset Splitting Methodology

A couple of distinct groups of imagery involving differentiated contexts are consid-
ered to perform empirical experiments on the proposed feature-aware dataset splitting
methodology. The first image group, described in [2], within the context of viticulture, is
composed of 6 different varieties (Figure 1), summing up a total of 480 images. The varieties
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involved in this image group are the following: Touriga Nacional, Tinto Cão, Códega, Moscatel,
Tinta Roriz, and Rabigato. In terms of acquisition procedure, weekly between 4 May and
31 July 2017, one leaf was picked from the same two previously selected plants of each
grapevine variety, put on top of a white sheet of paper (background), and photographed (in
the field) without any artificial lighting, using a Canon EOS 600D, equipped with a 50 mm
f/1.4 objective lens (Canon, Ota, Tokyo, Japan). For the sake of variability, data collected on
cloudy days and in sunny late afternoons was also included. It is worth noting that leaf
acquisition and labeling were supported by domain experts.
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Figure 1. Raw data of grapevine leaves composed of 6 classes (phenotypes), acquired over a white
background—also documented in previous work [2]. From left to right: Touriga Nacional, Tinto Cão,
Códega, Moscatel, Tinta Roriz, and Rabigato.

Table 1 presents the distribution of examples per class, more specifically 80 images
evenly assigned.

Table 1. Distribution of classes and their respective sizes within the grapevine leaves imagery.

Class Name Códega Moscatel Rabigato Tinta Roriz Tinto Cão Touriga Nacional

Size 80

The second image group regards the context of bridge defects. This collection was
created by capturing photographs of various bridges using a handheld camera and a mobile
phone, resulting in a set of images with a diverse range of sizes and resolutions. Afterward,
each image was manually labeled using a tool called LabelImg [53] and attributed to one of
the six groups representing defect types: paint deterioration, plant, absence of joint cover plate,
cracks, pavement crack, and peeling on concrete (Figure 2). In total, 2400 images were labeled.
However, a pruning operation to remove unusable data had to be carried out, resulting
in a final set of 1872 images. Civil engineers possessing technical expertise in the relevant
domain both participated actively in the direct image acquisition process and provided
support for the labeling procedures.

The distribution of classes in this dataset is illustrated in Table 2. The “pavement
crack” class is largest, with 461 images, while the “peeling on concrete” class is the smallest
one, containing 101 images. This dataset showcases an uneven distribution of data among
the classes.

Table 2. Distribution of classes and their respective sizes within the bridge defects imagery.

Class name Absence of
Joint Cover Plate Cracks Paint

Deterioration
Pavement

Crack
Peeling on
Concrete Plant

Size 149 461 406 523 101 232

Having both balanced and unbalanced datasets allows a more realistic evaluation of
the splitting techniques under comparison.
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previous work [1].

3.2. Complementary Imagery for Extended Assessments—Models Inference Consistency and
Attention Map Analysis

Two other grapevine and bridge defects external datasets were included in this study
(Figure 3), envisaging an extended assessment that focuses on the following aspects: (a) the
model prediction consistency over data that are characteristically different from the ones
used for training; (b) CNNs attention maps-based metrics for a richer interpretation of the
trained models.
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Figure 3. External image sets DL models extended assessments: (a) features a set of images for
grapevine variety identification through leaf analysis; (b) showcases examples related to the detection
of bridge defects. A careful alignment of the classes/labels that compose contextually corresponding
sets (grapevine and bridge defects group) was ensured.

Within the vineyard context, another dataset of 12 grapevine varieties was considered,
based on imagery captured in a natural background—Códega, Malvasia Fina, Malvasia Preta,
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Malvasia Rei, Moscatel (Galego), Mourisco Tinto, Rabigato, Tinta Amarela, Tinta Barroca, Tinta
Roriz, Tinto Cão, and Touriga Nacional. It resulted from a campaign that took place from
17 July to 20 September 2019, in intervals of 2 weeks, to collect 888 images of leaves, slightly
unbalanced in terms of classes distribution. As with the previous grapevine group, lighting
conditions were mostly influenced by direct solar incidence, occurring between 1 PM and
3 PM. However, both cloudy and sunny late afternoon illumination conditions were also
considered to complement imagery variability. The acquisition equipment was the same
as the one previously described for the 6-class grapevine dataset, i.e., a Canon EOS 600D
camera. In the scope of this study, a pruning operation was carried out to ensure that the
labels/classes of both grapevine datasets involved matched with each other, and a total of
10 samples per class were randomly considered.

The creation of the external assessment set for the bridge defects followed a similar
methodology, outlined in the first collected set of this domain. Utilizing the same equipment
and conditions, images were captured with a handheld camera and a mobile phone to
cover the six defect classes from the bridge: paint deterioration, plant, absence of joint cover
plate, cracks, pavement crack, and peeling on concrete. Just like in the latter external grapevine
dataset, 10 images per class were randomly selected, setting up the final bridge defects
imagery used for extended assessments in this study.

In this work, formal notation is defined to represent the specific datasets as Di
n, where

• D represents the dataset;
• i represents a specific dataset chosen from a set of datasets I = {bridge defects imagery

(BDI), grapevine leaves imagery (GLI)};
• n represents the specific sets N = {training-validation (Tr-Val), train (Tr), validation (Val),

test (Tst), and external test (Ext_Tst)}.

3.3. General Workflow

The process of model development begins with a critical step, which is the division of
the original dataset into distinct subsets for training-validation and testing. This process
serves as the foundation upon which the subsequent stages of model refinement and
evaluation rest. The workflow of this work (Figure 4) begins by partitioning the original raw
data into the training-validation and testing subsets, at a rate of 80% and 20%, respectively.
Then, the training-validation subset is subdivided once again into train and validation
subsets. During the evaluation step, a set of commonly used metrics is employed to assess
resulting models, namely, involving accuracy and intersection over union (IOU). These
metrics characterization can be found below:

• Accuracy is a fundamental metric in the field of machine learning, measures the
proportion of correctly predicted instances out of the total number of instances. It
is usually used to evaluate how well the model classified and predicted classes over
a testing subset. More specifically, it provides an overall assessment of a model’s
correctness (Equation (1)).

Accuracy =
TP

TP + TN + FP + FN
(1)

where true positives (TP) and true negatives (TN) represent, respectively, the number
of instances that were correctly classified as positive and negative by the model; in turn,
false positives (FP) and false negatives (FN) correspond to the number of instances
incorrectly classified as positive and negative, respectively.

• IOU is a spatial overlap metric commonly used in tasks involving object detection
and segmentation. It quantifies the degree of overlap between the predicted regions
and the ground truth regions. Specifically, IOU calculates the ratio of the intersection
area between the predicted and actual regions to the union area of those regions.
IOU allows the capture of the spatial alignment and precision of the model’s output
in relation to the true object regions. To compute it, the most prominent attention
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area of CNN’s gradient-weighted class activation mapping (Grad-CAM) is used as a
bounding box predictor (Equation (2)).

IoU =
OverlapArea
UnionArea

(2)

where OverlapArea and UnionArea represent, respectively, the intersection and the
union between ground-truth and the predicted bounding boxes of a given object
of interest.
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Regarding the training process, the Xception architecture is employed using Adam
with Nesterov momentum (Nadam), and stochastic gradient descendent (SGD) optimizers
with an initial learning rate of 1 × 10−3. To assure the consistency of the training conditions
across all dataset splitting approaches, a set of hyperparameters is maintained across
the experiments. This includes a batch size of 32, ensuring efficient training iterations;
100 training epochs; and an early stopping callback with a patience of 20 epochs. This former
event monitor tracks validation accuracy and triggers in the absence of fluctuations greater
than 1 × 10−4 for more than 20 consecutive epochs, indicating model stagnation. Also, a
dropout regularization with a weight of 0.2 was included to make the models less prone
to overfitting.

It is important to note that the hyperparameters used in the experiments were chosen
based on previous work [1] and remained consistent across all training sessions. This seeks
to ensure a fairer comparison and consistency in model training, by duly isolating and
accommodating the main study object, i.e., the impact of varying splitting techniques.

3.4. Hardware and Software Tools

All the operations related to the deep learning models training and evaluation took
place in a computer composed of the following components:
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• Processor: an Intel(R) Core (TM) i7-8700 CPU 3.20 GHz 3.19 GHz (Intel Co., Santa Clara,
CA, USA);

• Random access memory (RAM): 16.0 GB (Corsair, Fremont, CA, USA);
• Graphic card: NVIDIA GeForce GTX 1080, 16.0 GB (NVIDIA Co., Santa Clara,

CA, USA);
• Storage: 500 SSD (Samsung Electronics, Suwon, Republic of Korea);
• Operative system: Windows 10 Pro (Microsoft Co., Redmond, WA, USA).

In terms of software, the implementation of this module was conducted utilizing
Python version 3.8. The deep learning library employed in this project was TensorFlow
version 2.8, strategically configured to leverage the computational power of the GPU.

3.5. Setting Up the Standards: Traditional Splitting Methodology

Two fundamental strategies commonly employed for dataset split are (i) the HO
method; and (ii) the KFCV technique.

HO splitting involves partitioning the dataset into two subsets: the training set and the
validation set. The training set, which usually holds most of the dataset, is used for training
the models. The validation set, comprising the remaining portion, is kept separate and is
used for evaluation. On the other hand, KFCV involves partitioning data into K-folds. The
model is trained K times, each time using K-1 folds for training, leaving one for validation
(Figure 5).
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The splitting rates adopted in this work are 80% and 20% for training and validation
subsets, respectively.

3.6. Proposed Diversity-Oriented Data Split Approaches

The data split approach involves the integration of two key steps: feature engineering
and dataset splitting. The general workflow encompassing these steps is depicted in
Figure 6.
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3.6.1. Preliminary Feature Engineering

The feature engineering stage stands as the foundational step in the data preprocess-
ing pipeline. Its primary objective is to transform input data into a more representative
and informative feature space. This is achieved by extracting relevant characteristics,
patterns, and representations from the data. This empowers the subsequent stages of
the model to work with more meaningful inputs, leading to enhanced performance and
faster convergence.

VGG16 was chosen as a robust CNN architecture for feature extraction due to its
ability to effectively capture complex patterns based on deep image features. Moreover,
considering the volume of classes and images that compose the two sets of raw data
described previously, the extraction process occurs with due immediacy, at least, taking
less than 3 s per class, depending on the hardware in use, also detailed earlier.

In addition, PCA was included to systematically perform dimensionality reduction
upon the VGG16-based feature maps. A fundamental principle of the PCA implementation
was the criterion of maintaining components that collectively explain at least 99% of the
variance within the data. By keeping only those components that encapsulate the most
significant information, we ensure the preservation of the essence of the dataset while
simultaneously eliminating noise and redundancy. To ensure the effectiveness of PCA, a
prerequisite step involved the standardization of the data, which involves transforming the
variables to have a mean of zero and a standard deviation of one, preventing features with
larger scales from disproportionately influencing the PCA process. To reach a functional
dimensionality reduction, the selection of the final number of components is vital. To this
end, the elbow value is computed by analyzing the explained variance ratio derived from
PCA. The elbow value can be interpreted as the inflection point at which the marginal gain
in the explained variance diminishes significantly. Once the elbow value was established,
it was employed to guide the final reduction of features. Only the relevant components,
as determined by the elbow value, were retained for the transformation of the data. This
step resulted in the generation of a new feature space, compactly encapsulating the most
valuable aspects of the original data. The implemented PCA process is depicted in Figure 7.

By combining VGG16 for robust deep features extraction and PCA for effective dimen-
sionality reduction, a synergetic approach to grouping data by representative characteristics
with reduced computational costs was achieved, standing as a key component in the pro-
posed methodology.
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For the proposed dataset split, the centroid points of the features are computed, which
will be used as a key parameter for the further processes. In Figure 8, an illustrative example
of this process is provided, showcasing the centroid denoted by a distinctive red cross.
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Figure 8. Visualization of centroid point of features for the class of “absence of joint cover plate” for
DBDI

Tr−Val , for exemplification purposes. The blue dots represent the distribution of features, while the
red cross is the global centroid.

Two methods are proposed for systematic feature-aware data splitting, aiming towards
diversity-oriented dataset structures: (a) feature clustering distance-based image selection
(FCDIS) and (b) feature space center-based image selection (FSCIS). Both methods start by
considering 80% of the DTr−Val in the DTr and save the remaining 20% for the DVal .

3.6.2. Feature Clustering Distance-Based Image Selection (FCDIS)

The primary step in the FCDIS method is centered on the clustering technique, where
features extracted from each data class are structured using the K-means clustering algo-
rithm. Figure 9 illustrates the process that serves as a foundation for the FCDIS splitting
method, accompanied by a plot designed to provide an informative schematic representa-
tion of the divisions resulting from the application of this process.
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Figure 9. FCDIS process for setting up training and validation subsets: (a) presents the main pipeline
of the process; (b) depicts the pipeline’s general result-oriented concept using 3 abstract clusters as
examples, where in red, yellow, green represents the farthest, intermediate, and closer distance to
centroid, respectively. Considering the distance of each cluster centroid to a global centroid, the DTr

and DVal are assembled, grounded in the following diversity rule: the farthest the cluster centroid is,
the more images are used to compose the DTr.

K-means partitions the feature space into K clusters based on the similarity of the deep
features, aiming at the creation of distinct groups of related data points. To optimize the
clustering process, a crucial step involves fine-tuning the parameter K, using a precomputed
elbow value determination step (Figure 10a), aiding in the identification of the optimal
number of clusters necessary to effectively segment the data within a specific class [54,55].
Then, an iterative process is employed for each class to select images for training. The
essence of this selection lies in the distance ratio, wherein images positioned in farther
clusters from the global centroid are accorded higher consideration. More specifically, a
computation step of the distance between each cluster’s center and the center of the entire
features space is carried out (Figure 10b). The latter center corresponds to the global one,
denoted as C, which is the mean of the top-2 principal components in the reduced feature
space. This distance is computed using the Euclidean distance formula:

Distance(ci, C) =

√
(c ix − Cx)

2 + (c iy − Cy

)2
(3)

where (cix, ciy) are the coordinates of the i-th cluster center and correspond to (Cx, Cy), the
coordinates of the global center. Then, a metric-based distance is used to determine the
images’ selection size allocation for each cluster, according to the following formula:
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Image Selection Size(ci,) =
Distance(ci, C)

n
∑

j=1
Distance

(
cj, C

) (4)

where n represents the total number of clusters in the class. This ratio is used to determine
the relative importance of each cluster in contributing images used for setting up train-
ing/validation sets. It is based on the distance of their respective center from the global
center, with direct impact.
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Figure 10. Example of K-means-based clustering process plot perspective, using a computational
method for the determination of K value. In (a), there is a chart depicting the value determined
from the elbow technique regarding the “absence of joint cover plate” class belonging to DBDI

Tr−Val ,
for exemplification purposes. The resulting clustering operation, based on a predetermined K, is
illustrated in (b).

More intuitive results of the FCDIS approach can be seen in Figure 11, considering the
bridge defects “absence of joint cover plate” class as an example. Upon closer examination,
a noticeable visual similarity becomes apparent among images clustered together. This
visual consistency proves that the clustering algorithm successfully identified and grouped
images that share common features related to the “absence of joint cover plate” class. In
addition, in Figure 11b, a summary of the images collected for constituting DTr, dependent
on the distances and sizes of the clusters, is provided.
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Figure 11. Visualization of a few samples of each cluster for the “absence of joint cover plate” class
concerning DBDI

Tr−Val : (a) depicts the images grouped by K-means clustering; (b) presents a summary
of the images collected for DTr, considering each cluster’s distance and size.
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3.6.3. Feature Space Center-Based Image Selection (FSCIS)

The main objective of this approach is to partition a given distance list into multiple
sub-lists, subsequently enabling the selection of an image located at the median position
within each sub-list. To accomplish this, the following pivotal variables must be considered:
the designated size of the DTr–80% of the DTr−Val , as proposed in this work, a sorted list of
distances between each image’s features, and the global center of the entire feature space
(Figure 12).

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 29 
 

3.6.3. Feature Space Center-based Image Selection (FSCIS) 

The main objective of this approach is to partition a given distance list into multiple 

sub-lists, subsequently enabling the selection of an image located at the median position 

within each sub-list. To accomplish this, the following pivotal variables must be consid-

ered: the designated size of the 𝐷𝑇𝑟–80% of the 𝐷𝑇𝑟−𝑉𝑎𝑙, as proposed in this work, a sorted 

list of distances between each image’s features, and the global center of the entire feature 

space (Figure 12).  

 
(a) 

 
(b) 

Figure 12. FSCIS process for setting up training and validation subsets: (a) presents the main pipe-

line of the process; (b) depicts the result of the pipeline behavior, in which (i) images are firstly 

sorted by their distance to the feature space centroid, (ii) subgroups are then created, (iii) examples 

for training are iteratively selected, based on the median element of each created subgroup, until a 

percentage of 80% of the to 𝐷𝑇𝑟−𝑉𝑎𝑙 is reached, and, finally, (iv) the remaining images are assigned 

to 𝐷𝑉𝑎𝑙 . Black vertical lines illustrate the referred distance to the feature space centroid, white 

squares represent the images that have not yet been assigned; orange squares depict the images for 

𝐷𝑇𝑟; and, finally, purple squares represent the images that have been assigned for 𝐷𝑉𝑎𝑙. 

Figure 12. FSCIS process for setting up training and validation subsets: (a) presents the main pipeline
of the process; (b) depicts the result of the pipeline behavior, in which (i) images are firstly sorted by
their distance to the feature space centroid, (ii) subgroups are then created, (iii) examples for training
are iteratively selected, based on the median element of each created subgroup, until a percentage of
80% of the to DTr−Val is reached, and, finally, (iv) the remaining images are assigned to DVal . Black
vertical lines illustrate the referred distance to the feature space centroid, white squares represent the
images that have not yet been assigned; orange squares depict the images for DTr; and, finally, purple
squares represent the images that have been assigned for DVal .
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These variables are integrated into an image selection process, which performs a series
of computations. The first step involves calculating a factor number to divide the main
list into evenly weighted subgroups, i.e., as much as possible, with the same number of
elements, as shown in Equation (5), and, afterward, determine proper positions/indexes for
image extraction. Then, within these formed subgroups, the focal point is the identification
of the median-positioned images. Thus, for each subgroup, images at the median index
are picked and used to set up the DTr. This median-picking operation is executed until
the total number of images within the DTr is reached. Lastly, the remaining images are
allocated to the DVal . This approach aims to guarantee that the selected training images are
distributed evenly across the spectrum of distances between the features of each image and
the centroid point of all features.

Number of groups =
⌈

size o f DTr−Val
size o f DTr

⌉
(5)

4. Experimental Results

To evaluate the proposed feature-aware dataset splitting methods against traditional
dataset division approaches, a series of experiments encompassing both bridge defects and
grapevine varieties’ raw data was carried out. The architecture considered for the models’
training was Xception, combined with the Nadam and SGD optimizers. The various DL
models that resulted from these experiments are analyzed and compared in this section, in
terms of consistency through training plot inspection, actual accuracies, and activations
indicating the models’ attention.

4.1. Consistency of the Training Metrics: Analyzing the Learning Curves

After training the model, the learning curves were analyzed. By observation, their
respective training and validation lines seem smoother and more stable for the models
trained with datasets split by the FCDIS and FSCIS approaches, compared to the ones
built from datasets derived from traditional techniques. Such an aspect can be found
in Figure 13, which shows a set of training/validation accuracy-loss plots, regarding
a training session of 100 epochs over datasets built from both of the previously pre-
sented image collections (bridge defects and grapevine varieties). As observed, some
models finished earlier, due to the use of an early stopping control callback—described
in the previous section. This implies that the potential of learning was reached before
the last epoch for the training sessions. In Figure 13a, the KFCV10-fold0 finished at
epoch 71, while in Figure 13b, for the KFCV10-fold7, the final epoch was 48. Such control
over training progress is of high relevance—as demonstrated in previous works [1]—to
reach models with optimized performance in a timelier manner while simultaneously
preventing overfitting.

4.2. Assessment with the Data Reserved for Testing

Based on the previously documented grapevine and bridge defects imagery, datasets
compliant with a standard DL training process were built, resorting to both the traditional
and proposed approaches. These models were then assessed and compared in terms
of accuracy using a DTst reserved for this purpose (i.e., image subsets isolated from the
models’ training, as specified in Figure 4). The respective results for DBDI

Tst and DGLI
Tst can be

consulted in Tables 3 and 4, respectively.
As illustrated in Tables 3 and 4, the models employing the proposed techniques

completed the training up to epoch 100, while some models using traditional techniques
failed to reach that limit, due to the transversal use of an early stopping monitor in the
supervision of the training process.
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Table 3. Accuracy results for models trained with DBDI
Tst .

Dataset Split Approaches

Xception

Nadam SGD

Acc ESE Acc ESE

SCDIS 0.90 100 0.86 100

FSCIS 0.88 100 0.81 100

Hold out 0.89 100 0.82 100

KFCV10

Fold 0 0.89 71 0.86 100
Fold 1 0.88 100 0.84 100
Fold 2 0.87 100 0.82 100
Fold 3 0.90 100 0.81 100
Fold 4 0.88 100 0.82 100
Fold 5 0.88 100 0.85 100
Fold 6 0.89 100 0.83 100
Fold 7 0.89 100 0.82 100
Fold 8 0.88 89 0.84 100
Fold 9 0.88 100 0.83 100

Mean KFCV10 0.88 0.73

Table 4. Accuracy results for models trained with datasets DGLI
Tst .

Dataset Split Approaches

Xception

Nadam SGD

Acc ESE Acc ESE

SCDIS 0.70 100 0.67 100

FSCIS 0.76 100 0.74 100

Hold out 0.75 100 0.69 100

KFCV10

Fold 0 0.70 100 0.67 100
Fold 1 0.65 100 0.70 100
Fold 2 0.70 98 0.68 100
Fold 3 0.74 100 0.71 100
Fold 4 0.68 94 0.68 100
Fold 5 0.68 100 0.65 100
Fold 6 0.65 92 0.67 100
Fold 7 0.61 48 0.60 100
Fold 8 0.65 84 0.67 100
Fold 9 0.67 100 0.71 100

Mean KFCV10 0.67 0.67

In Table 3, the accuracy results demonstrate that the models trained with SCDIS and
FSCIS outperform the HO, as well as 90% of the KFCV10 group. Additionally, Table 4
highlights that the proposed methods performed better than the ones with conventional
techniques. These findings underscore their continual outperformance relative to the mean
performance achieved by KFCV10. Regarding the optimizers, it is worth noting that the
models trained with Nadam outperformed the ones supported by SGD.

4.3. Assessment with External Imagery Sources

An extension to the assessment of the previous models was carried out, using DGLI
Ext_Tst

and DBDI
Ext_Tst with a set of classes that seamlessly match the one that characterizes the former

datasets applied for training, as previously explained in the materials and methods section.
To that end and for the sake of contention while still ensuring some representativeness,
10 random images per class were considered.
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The trained models were evaluated against the above-mentioned external data and
the results are presented in Table 5 for DBDI

Ext_Tst, and in Table 6 for DGLI
Ext_Tst.

Table 5. Accuracy of models using the DBDI
Ext_Tst.

Dataset Split Approaches

Xception

Nadam SGD

Acc Acc

SCDIS 0.75 0.68

FSCIS 0.75 0.72

Hold out 0.72 0.70

KFCV10

Fold 0 0.72 0.73
Fold 1 0.72 0.77
Fold 2 0.77 0.70
Fold 3 0.73 0.73
Fold 4 0.68 0.75
Fold 5 0.77 0.67
Fold 6 0.75 0.75
Fold 7 0.75 0.70
Fold 8 0.73 0.70
Fold 9 0.72 0.68

Mean KFCV10 0.73 0.72

Table 6. Accuracy of models using the DGLI
Ext_Tst.

Dataset Split Approaches

Xception

Nadam SGD

Acc Acc

SCDIS 0.32 0.27

FSCIS 0.25 0.22

Hold out 0.22 0.20

KFCV10

Fold 0 0.25 0.25
Fold 1 0.25 0.22
Fold 2 0.25 0.28
Fold 3 0.23 0.28
Fold 4 0.32 0.28
Fold 5 0.23 0.27
Fold 6 0.23 0.23
Fold 7 0.25 0.25
Fold 8 0.27 0.23
Fold 9 0.25 0.30

Mean KFCV10 0.25 0.26

Considering the outcomes presented in Table 5, one can infer that SCDIS- and FSCIS-
based Xception/Nadam models clearly outperform HO, and, compared to KFCV10-based
models, most of the accuracies are matched or surpassed (8/10). A less noticeable tendency
can be observed for the FSCIS-based Xception/SGD model, which was still capable of
outperforming both HO and half of the KFCV10-based models. In Table 6, the SCDIS-based
model stands out, largely surpassing HO and most of the KFCV10-based models for both
Xception/Nadam and Xception/SGD combinations. Less successful was the FSCIS model,
which could only prevail over HO and a few KFCV10 models.

4.4. Attention Mechanisms Assessment with External Imagery Sources

Gradient-weighted class activation mapping (Grad-CAM)-based IoU allows a more
comprehensive understanding of the model’s performance, more specifically, by exploring
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the spatial accuracy and localization precision of the predictions. A more detailed examina-
tion of the salient features and attention areas associated with the models can be attained,
aligning with eXplainable artificial intelligence (XAI) strategies, which promote enhanced
interpretability and may provide directions for improving accuracies.

In this section, the models that reached the highest performances in the previous
assessment addressing classification tasks were considered. Before applying them in the
proposed analysis, a couple of preliminary steps were carried out: (i) determining the
Grad-CAM-generated area and (ii) annotating the corresponding ground truth regions
in the images involved in the assessment, i.e., those related to Grad-CAM and the masks
associated with the samples (Figure 14). One should note that the biases involved are highly
dependent on the Grad-CAM estimations provided by the previously trained models upon
DBDI

Tr−Val , DGLI
Tr−Val .
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Figure 14. Visualization of the Grad-CAM evaluation approach: (a,b) show the saliency maps
over DGLI

Ext_Tst. and DBDI
Ext_Tst, respectively. In each one, the first row corresponds to the Grad-CAM

visualization, while the second row presents the ground-truth.

As for the computation of Grad-CAM for each image, only the most salient attention
area is considered, i.e., the zone of the image highlighted in red. Subsequently, for each
image, a bounding box is computed around that salient area, and the distance between the
resulting delimitation and the corresponding ground-truth region is calculated, based on
the respective centroids. Besides the displacement between the computed centroids (Dis),
three other Grad-CAM-based elements were considered as key parameters: classification
accuracy (Acc), IoU, and Grad-CAM size (GCS).

Regarding the analysis made for the DGLI
Ext_Tst, Figure 15 showcases the Grad-CAM

outcomes for the top Xception models trained with the several considered approaches:
FSCIS, FCDIS, HO, and the best classifier that resulted from KCVF10. Each image is
accompanied by a short text denoting the respective key parameters formerly specified.
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Following a similar organization and structure, Figure 16 depicts the results in the context
of the DBDI

Ext_Tst.
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Ext_Tst is performed using the top Xception/Nadam model

trained with the documented splitting techniques. Model1, Model2, Model3, and Model4 correspond,
respectively, to the models trained with the DBDI

Ext_Tst variants split using SCDIS, FSCIS, HO, and
KFCV10. In the first column, the red rectangle represents the most prominent attention area deter-
mined through Grad-CAM, while the green rectangle corresponds to the hand-crafted ground-truth.
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Instead of closely examining the parameters for each specific image, the focus was on
calculating the mean values of key parameters for each class within both datasets, aiming
to provide an overview of the models’ performances at a more generalized level across
different classes. Tables 7 and 8 indicate the numeric results associated with the mean
values of key parameters corresponding to Xception/Nadam pairs.

Table 7. Prediction results upon the DGLI
Ext_Tst for Xception Nadam.

Class
SCDIS FSCIS HO KFCV10—Fold3

µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis

Codega 0.00 0.12 4393 85 0.00 0.13 4880 82 0.00 0.10 3541 87 0.00 0.11 4139 86
Moscatel 0.90 0.173 7349 69 0.50 0.16 6311 72 0.70 0.14 5396 75 0.00 0.15 4996 70
Rabigato 0.60 0.19 7678 67 0.80 0.19 7478 70 0.50 0.15 6099 76 0.70 0.15 6000 72

Tinta Roriz 0.20 0.24 8231 63 0.10 0.23 7731 62 0.10 0.24 7956 62 0.00 0.24 8526 62
Tinto Cao 0.00 0.21 7961 58 0.00 0.23 8911 58 0.00 0.16 6467 62 0.10 0.15 6415 65

Touriga Nacional 0.20 0.23 7707 67 0.10 0.21 7652 70 0.00 0.28 8784 63 0.00 0.22 7915 70
Total mean 0.38 0.19 7220 68 0.25 0.19 7160 69 0.22 0.18 6374 71 0.13 0.17 6332 71

Table 8. Prediction results for the proposed dataset splits for the Xception model using Nadam
optimizer upon DBDI

Ext_Tst. AJCP—absence of joint cover plate; PC—pavement crack; PoC—peeling
on concrete.

Class
SCDIS FSCIS HO KFCV10—Fold3

µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis µAcc µIoU µGCS µDis

AJCP 0.90 0.18 42,969 139 0.90 0.20 48,068 137 0.80 0.19 46,502 140 0.80 0.18 45,516 141
Cracks 0.70 0.21 39,203 126 0.70 0.21 38,771 129 0.40 0.18 38,429 132 0.60 0.20 37,225 127

Painting 0.50 0.20 36,071 124 0.50 0.18 32,077 117 0.90 0.20 33,226 107 0.70 0.21 36,871 118
PC 0.90 0.16 27,457 149 0.90 0.16 26,962 148 0.90 0.15 28,107 147 1.00 0.15 28,070 147

PoC 0.50 0.17 30,665 125 0.50 0.17 30,473 126 0.50 0.17 31,801 125 0.50 0.18 31,065 124
Plant 1.00 0.17 49,259 144 1.00 0.16 48,878 146 0.50 0.16 48,549 145 0.80 0.17 49,576 145

Total mean 0.75 0.18 37,604 135 0.75 0.18 37,538 134 0.67 0.18 37,769 133 0.73 0.18 38,054 134

Table 7 presents the outcomes obtained regarding the DGLI
Ext_Tst, wherein both SCDIS

and FSCIS outperform the opponents. In particular, the SCDIS split method was the best in
this series, yielding an accuracy of 38%, an µIoU = 0.19, a µGCS = 7220, and a µDis = 68.

Additionally, Table 8 presents the results for the DBDI
Ext_Tst, relying on the same metrics.

Once again, the most effective models originated from both of the proposed dataset splitting
methods. Notably, these models attained similar performances: µIoU = 0.18, µAcc = 75%,
µGCS = 37,604, and µDis = 135 for FSCIS; and µIoU = 0.18, µAcc = 75%, µGCS = 37,538,
and µDis = 134 for SCDIS.

On the other hand, the results show a spotlight pattern—greater IoU scores align with
higher classification accuracies, particularly when the region of attention is closer to the
ground-truth center. This pattern underscores the relationship between precise localization
and the model’s effectiveness in correctly classifying objects. These observations across the
tables emphasize the significance of spatial awareness in improving the overall accuracy of
the classification process.

5. Discussion, Summary, and Conclusions

In this section, the main findings and contributions of this work are summarized.
This research work hypothesizes feature-aware data splitting as a strategy to enhance the
performance of classification models in a timelier manner, at the expense of traditional
techniques, such as KFCV and HO. Therefore, datasets of two distinct contexts were
considered for the sake of condition variability: one related to bridge defects and the other
associated with grapevine leaves, for phenotyping distinction.

Regarding the proposed splitting approaches, the first one employs a feature-oriented
clustering-based splitting technique, with a selection method based on the centroid distance
of each cluster to the global centroid—FCDIS. The second approach revolves around
sorting and picking images at the feature space level, based on their distance to the global
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centroid—FSCIS. The main goal is to compare both of these methods with conventional
techniques, namely, HO and KFCV with 10 folds.

For training the classification models, the Xception architecture was utilized with
a learning rate of 10−3, and optimizers including Nadam and SGD, and the maximum
number of training epochs was set to 100. In most of the experiments, the proposed
FCDIS and FSCIS methods outperformed the traditional approaches. Furthermore, the
accuracy-loss plots illustrated a more stable training process with the proposed methods,
characterized by an apparent reduction in abrupt fluctuations associated with these metrics
across training sessions.

To assess the trained classifiers, external datasets were considered for a Grad-CAM-
based evaluation, while IoU was used as another metric for performance comparison. The
results pointed out that the models trained with the proposed methods had a consistently
higher capacity in identifying the relevant areas of the images, highlighting them as more
effective compared to the ones trained with traditional splitting techniques.

In comparison to the existing approaches, particularly those employing traditional
dataset splitting techniques, such as HO, resampling, normal, repeated, nested, and leave-
one-out KFCV, the proposed methods of this work—FCDIS and FSCIS—confirm and
consolidate the importance of using strategic division for the attainment of more accurate
models, with decreased computational burdens, while mitigating the need of multi-step
procedures (e.g., KFCV), at least when relatively short volumes of classes and examples
are involved.

It is noteworthy that a clustering-based method has been addressed in, at least, one of
the aforementioned works found in the literature. However, a K-fold-based strategy was
still applied to select data within clusters [37]. In contrast, the proposed FCDIS and FSCIS
methods provide strong evidence that one-shot data organization is a possible avenue to
attain models of top accuracy, as the experimental results demonstrate. Therefore, this
study also intends to inspire and challenge the scientific community and DL practitioners to
include strategic dataset splitting methods, either based on the proposed ones or supported
in brand-new approaches, to save time and computational resources, while aiming to
develop inference models that can operate near their full potential.

Notwithstanding, as the used datasets are relatively short, and the hardware and
software setup are more oriented to DL prototyping, further tests are encouraged, in-
volving wider data classes and examples, and resorting to high-performance computing.
Moreover, the generalizability of the proposed splitting techniques beyond the addressed
datasets and inference tasks requires deeper investigation through, namely, the inclusion of
complementary key-factors—for example, considering uncertainty and context-sensitive
false/true positives risk assessment—that contribute to explaining the models’ behavior
and, therefore, broadly optimize the training processes.
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