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Abstract: We consider the Golden Section and Parabola Methods for solving univariate optimization
problems. For multivariate problems, we use these methods as line search procedures in combination
with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves
method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained
versions of zero-order methods is given in the present work. The set of test problems includes
nonconvex functions with a large number of local and global optimum points. Zero-order methods
combined with the Parabola method demonstrate high performance and quite frequently find the
global optimum even for large problems (up to 100 variables).
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1. Introduction

Zero-order methods are usually applied to problems in which the function being
optimized has no explicit analytic expression. To calculate the values of such functions,
it is necessary to solve non-trivial auxiliary problems of computational mathematics and
optimization. In some cases, it is assumed that the calculation of a single objective function
value may take from a few minutes to several hours of continuous computer operation.
Developing an effective global optimization method requires identifying certain properties
of the objective function (and constraints), for example, determining a good estimate of
the Lipschitz constant [1–4] or representing a function as a difference between two convex
functions [5–7]. Such auxiliary problems do not always have a unique solution and are not
often easily solvable. The effectiveness of global optimization methods often depends on
the ability to quickly find a good local solution [8], which can significantly speed up some
global optimization methods (for example, the branch and bounds method).

The aim of the paper is to test several well-known zero-order methods on nonconvex
global optimization problems a using special version of the multistart strategy. We check
the ability of these methods not only to find a good local solution but also to find a global
optimum of the problem. The multistart strategy was considered as a starting case for
population-based optimization. It is necessary to note that the multistart approach can
be considered as an overabundant population. Our aim is to check the efficiency of the
suggested approach under this condition.

Special attention is given to the Parabola Method in the present work. The reason for
such an investigation is the following: if the objective function is differentiable, then in a
small neighborhood of an interior local minimum point, the objective function behaves like
a convex function. In [9], a more general statement of this property based on the concept
of local programming is given. A combination of this method with different zero-order
methods in multivariate optimization problems demonstrates quite high performance and
global optimization method qualities. We tested several well-known zero-order multivari-
ate optimization methods; nevertheless, application of this modification of the Parabola
Method as the line-search procedure can be used in many other methods.
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The paper is organized as follows. In Section 2, we give a description of the Golden
Section and Parabola Methods and perform numerical experiments on a set of univariate
optimization problems. A numerical comparison of zero-order methods in combination
with the Golden Section and Parabola Methods is presented in Section 3. We conclude the
paper with a short discussion of the results in Sections 4 and 5.

2. Univariate Optimization: Parabola Method

We consider the following optimization problem

minimize f (x),
subject to x ∈ P ⊂ R, P = {x ∈ R : α ≤ x ≤ β},

(1)

where f : R → R is a continuously differentiable function. It is assumed that f has a
finite number of local minima over P, and only values of f are available. Problems with
such an assumption are described in [10]. In this section, we consider two well-known
univariate optimization methods: the Golden Section Method (GSM) [11] and the Quadratic
Interpolation Method or the Powell M.J.D. Method or the Parabola Method (PM) [12]. Let
us give brief descriptions of both methods.

2.1. The Golden Section Method

Step 0. Choose the accuracy of the algorithm ε > 0. Set γ =
√

5−1
2 , α0 = α, β0 = β,

λ0 = α0 + (1 − γ)(β0 − α0), µ0 = α0 + γ(β0 − α0). Evaluate f (λ0) and f (µ0). Set
k = 0.

Step 1. If βk − αk ≤ ε, stop: x∗ is ε-optimal point. Otherwise, if f (λk) > f (µk), go to Step 2;
else, go to Step 3.

Step 2. Set αk+1 = λk, βk+1 = βk, λk+1 = µk, µk+1 = αk+1 + γ(βk+1 − αk+1). Evaluate
f (µk+1). Go to Step 4.

Step 3. Set αk+1 = αk, βk+1 = µk, µk+1 = λk, λk+1 = αk+1 +(1−γ)(βk+1 − αk+1). Evaluate
f (λk+1). Go to Step 4.

Step 4. Increase k → k + 1, and go to Step 1.

2.2. The Parabola Method

Step 0. Choose the accuracy ε > 0. Choose points x0
1 < x0

2 < x0
3 ∈ [α, β] such that

f (x0
1) > f (x0

2) < f (x0
3). (2)

Set z = x0
2, k = 0.

Step 1. Find the minimum xk of the quadratic interpolation polynomial in the following way.

xk =
1
2

(
xk

1 + xk
2 −

ak
1

ak
2

)
,

ak
1 =

f (xk
2)− f (xk

1)

xk
2 − xk

1
, ak

2 =
1

xk
3 − xk

2

(
f (xk

3)− f (xk
1)

xk
3 − xk

1
− ak

1

)
.

Step 2. Check stop criterion
|xk − z| ≤ ε. (3)

If (3) is held, then terminate the algorithm, and x⋆ = x̄k is ε-optimal point. Otherwise,
go to Step 3.
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Step 3. Choose x̂k = arg min
x=xk

1,xk
3

f (x).

Set z = xk. Denote points x̂, xk
2, xk in ascending order as xk+1

1 , xk+1
2 , xk+1

3 . Increase
k → k + 1, and go to Step 1.

When f is a unimodal (semi-strictly quasiconvex [13]) over P function, both methods
determine an approximate point of minimum in a finite number of iterations. In the case of
the Golden Section Method the number of function evaluations is equal to the number of
iterations plus two; in the case of the Parabola Method, the number of function evaluations
is equal to the number of iterations plus three. It is well known that, in general, the Golden
Section Method is more efficient than the Parabola Method. However, in the continuously
differentiable case, the behavior of the Parabola Method can be improved.

Consider the following two examples from [14].

Example 1. In problem (1), f (x) = −16(x2 − 24x + 5)e−x, P = [1.9, 3.9]. The Golden
Section Method with ε = 0.001 finds the approximate solution x∗ = 2.867996734 with f (x∗) =
−3.850450707 in 16 iterations. The Parabola Method with the same ε finds the approximate solution
x∗ = 2.868823736 with f (x∗) = −3.850448184 in six iterations.

Example 2. In problem (1), f (x) = 2(x − 3)2 + e
x2
2 , P = [−3, 3]. The Golden Section Method

with ε = 0.001 finds the approximate solution x∗ = 1.590558077 with f (x∗) = 7.515924361
in 19 iterations. The Parabola Method with the same ε finds the approximate solution x∗ =
1.584929941 with f (x∗) = 7.516292947 in 35 iterations.

In both examples, the objective functions are unimodal. In the first example, the
Parabola Method worked two times faster, and in the second example, the Parabola Method
worked about two times slower than the Golden Section Method. From a geometrical point
of view, the objective function in the first example is more like a parabola than in the second
example, and we are going to show how the efficiency of the Parabola Method can be
improved in cases similar to Example 2.

We start from checking efficiency of the Golden Section Method on a number of
multimodal functions. Tables 1 and 2 present the results of 17 test problems from [14].

Table 1. Test problems 1–5.

No. Function and Interval Solution g/l Record k f

1. f (x) = x6

6 − 52
25 x5 + 39

80 x4+ f ∗ = −29763.23, g f ♯ = −29763.23 22
71
10 x3 − 79

20 x2 − x + 1
10 , x∗ = 10 x♯ = 9.9996

x ∈ [−1.5, 11]

2. f (x) = sin(x) + sin
(

10x
3

)
, f ∗ = −1.899599, g f ♯ = −1.899599 20

x ∈ [2.7, 7.5] x∗ = 5.145735 x♯ = 5.145733

3. f (x) = −
5
∑

k=1
k sin((k + 1)x + k), f ∗ = −12.031249, g f ♯ = −12.031234 22

x ∈ [−10, 10] x∗,1 = −6.774576 x♯ = −0.491707
x∗,2 = −0.491390
x∗,3 = 5.791794

4. f (x) = (3x − 1.4) sin(18x), f ∗ = −1.489072, l f ♯ = −0.4612863 17
x ∈ [0, 1.2] x∗ = 0.966086 x♯ = 0.6291664

5. f (x) = sin(x) + sin
(

10x
3

)
+ f ∗ = −1.601308, g f ♯ = −1.601308 20

ln(x)− 0.84x + 3 x∗ = 5.199778 x♯ = 5.199901
x ∈ [2.7, 7.5]
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The sign g in the g/l column corresponds to the case when a global minimum point
was determined, and the sign l corresponds to the case when only a local minimum
point was determined. Symbol k f corresponds to the number of function evaluations.
Surprisingly enough, only in four problems was a local minimum determined; in all other
problems, the Golden Section Method found global solutions.

Table 2. Test problems 6–17.

No. Function and Interval Solution g/l Record k f

6. f (x) = −
5
∑

k=1
k cos((k + 1)x + k), f ∗ = −14.50801, g f ♯ = −14.50780 22

x ∈ [−10, 10] x∗,1 = −7.083506 x♯ = 5.483102
x∗,2 = −0.800321
x∗,3 = 5.482864

7. f (x) = sin(x) + sin
(

2x
3

)
, f ∗ = −1.905961, l f ♯ = −1.215982 22

x ∈ [3.1, 20.4] x∗ = 17.039199 x♯ = 5.361825

8. f (x) = −x sin(x), f ∗ = −7.916727, g f ♯ = −7.916727 22
x ∈ [0, 10] x∗ = 7.978666 x♯ = 7.978632

9. f (x) = 2 cos(x) + cos(2x), f ∗ = −1.500000, g f ♯ = −1.499999 21
x ∈ [−1.57, 6.28] x∗,1 = 2.094395 x♯ = 2.094447

x∗,2 = 4.188790

10. f (x) = sin3(x) + cos3(x), f ∗ = −1.000000, g f ♯ = −0.999999 21
x ∈ [0, 6.28] x∗,1 = 3.141593 x♯ = 4.712287

x∗,2 = 4.712389

11. f (x) = −e−x sin(2πx), f ∗ = −0.788595, l f ♯ = −0.039202 20
x ∈ [0, 4] x∗ = 0.224982 x♯ = 3.226282

12. f (x) = x2−5x+6
x2+1 , f ∗ = −0.035534, g f ♯ = −0.035533 22

x ∈ [−5, 5] x∗ = 2.414214 x♯ = 2.414418

13. f (x) = x6 − 15x4 + 27x2 + 250, f ∗ = 7.000000, g f ♯ = 7.000001 21
x ∈ [−4, 4] x∗,1 = −3.0 x♯ = −3.000009

x∗,2 = 3.0

14. f (x) = −x + sin(3x)− 1, f ∗ = −7.815675, l f ♯ = −5.721279 21
x ∈ [0, 6.5] x∗ = 5.872866 x♯ = 3.778193

15. f (x) = cos(x)− sin(5x) + 1, f ∗ = −0.952897, g f ♯ = −0.952896 21
x ∈ [0, 7] x∗ = 2.839347 x♯ = 2.839196

16. f (x) = −xe− sin(3x) + 1, f ∗ = −3.363290, g f ♯ = −3.363290 20
x ∈ [−3, 2] x∗ = 1.639062 x♯ = 1.638984

17. f (x) = ln(3x) ln(2x)− 1, f ∗ = −1.041100, g f ♯ = −1.041100 21
x ∈ [0.1, 7] x∗ = 0.408248 x♯ = 0.408014

The geometrical interpretation of failure of the Golden Section Method in finding a
global minimum can be given on the basis of problems 7 and 11 from Table 2. In these cases,
only local minimum points were determined, and, as can be seen from Figures 1 and 2, the
global minimum points are located closer to the endpoints of the feasible intervals. Hence,
we can make the following assumption: univariate multimodal problems with global
minimum points located more or less in the middle of the intervals are more efficiently
tractable by the Golden Section Method from the global optimization point of view. This
topic needs further theoretical investigation and is not the subject of our paper.
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x0 4

f (x)

x♯x∗

Figure 1. f (x) = −e−x sin(2πx), x∗—global minimum, x♯—local minimum, determined by the GSM.

x0
x∗x♯

f (x)

3 20

Figure 2. f (x) = sin(x) + sin
(

2x
3

)
, x∗—global minimum, x♯—local minimum, determined by

the GSM.

Let us turn now to the Parabola Method. In order to start the method, property (2)
must be satisfied. The points satisfying property (2) are known as a three-point pattern
(TPP) in [11]. In order to find the TPP, we propose the following procedure.

2.3. TPP Procedure

Step 0. Choose integer N > 0, and calculate ∆ = β−α
N . Set k = 0, kp = 0.

Step 1. Calculate yk
1 = α + k∆, yk

2 = α + (k + 1)∆, yk
3 = α + (k + 2)∆.

Step 3. If f (yk
1) > f (yk

2) < f (yk
3), then kp = kp + 1, ν

kp
1 = yk

1, ν
kp
2 = yk

2, ν
kp
3 = yk

3.

Step 4. If y
kp
3 ≤ β − ∆, then increase k → k + 1, and go to Step 1. Otherwise, stop.

When the TPP procedure stops, we have kp three-point patterns, and in order to find
the best solution, we can start the Parabola Method for all kp patterns. In practice, we used
the TPP procedure several times. We started from a small enough value of N, say N = 3,
and ran the TPP procedure. Then, we increased N → 2N and ran the TPP procedure again.
When the number of three-point patterns was the same in both runs, we stopped. In this
case, we say that the TPP procedure stabilized. Otherwise, we increased N and ran the TPP
procedure again, and so on. Since we assumed that the number of local minima of f over
P is finite, such a repetition is also finite. Finally, we obtained kp TPP subintervals [νi

1, νi
3]
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and the three-point corresponding patterns νi
1, νi

2, νi
3, i = 1, . . . , kp. We cannot guarantee

that each subinterval contains exactly one local minimum; but, in practice, this property
is true rather often. Then, we ran the Parabola Method for each subinterval, found the
corresponding local minima, and selected the best ones as solutions. If kp = 0, then no
three-point patterns were detected. In this case, the Parabola Method is not applicable (it
can be disconvergent), and we switch to the Golden Section Method. We call this strategy a
two-stage local search approach (two-stage approach for short).

Let us apply the two-stage approach to solving problems 11 (Figure 1) and 7 (Figure 2)
from Table 1 for which the Golden Section Method did not find global minimum points
and then run the Parabola Method over each obtained subinterval.

Example 3. Problem 11: f (x) = −e−x sin(2πx), P = [0, 4]. Initial value N = 3. The TPP
procedure was run four times. After the first run, one subinterval with one three-point pattern
was obtained, after the second run, two subintervals with two three-point patterns were obtained,
after the third run, four subintervals with four three-point patterns were obtained, and after the
fourth run, four smaller subintervals with four three-point patterns were obtained again. The TPP
procedure was stopped, and kp = 4. The total number of function evaluations was equal to 24.
Then, with the accuracy ε = 0.001, we ran the Parabola Method, which stopped after two additional
function evaluations for each subinterval. The final subintervals, the three-point pattern (TPP),
the corresponding starting parabolas, and additional function evaluations (k f ) of the Parabola
Method over each subinterval are given in Table 3.

Table 3. Results for Example 3.

i Subinterval TPP Parabola k f
[νi

1, νi
3] {νi

1, νi
2, νi

3}

1 [0, 0.333] {0, 0.166, 0.333} 15.206x2 − 6.931x 2

2 [1, 1.333] {1, 1.166, 0.333} 5.590x2 − 13.733x + 8.144 2

3 [2, 2.333] {2, 2.166, 2.333} 2.055x2 − 9.159x + 10.101 2

4 [3, 3.333] {3, 3.166, 3.333} 0.755x2 − 4.878x + 7.837 2

Therefore, in total, after 32 function evaluations, all minima of the given function were
determined. The geometrical interpretation of the results of the TPP procedure application
corresponding to Table 3 is presented in Figure 3.

x0 4

f (x)

ν1
1 ν1

3 ν2
1 ν2

3 ν3
1 ν3

3 ν4
1 ν4

3

Figure 3. f (x) = −e−x sin(2πx), four subintervals of minima localization are given in red.
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Example 4. Problem 7: f (x) = sin(x) + sin
( 2x

3
)
, P = [3.1, 20.4]. Initial value N = 3.

Three subintervals were determined after four runs of the TPP procedure, kp = 3 (see Figure 4).
The results of the TPP procedure and the Parabola Method are given in Table 4.

Table 4. Results for Example 4.

i Subinterval TPP Parabola k f
[νi

1, νi
3] {νi

1, νi
2, νi

3}

1 [4.542, 5.983] {4.542, 5.263, 5.983} 0.486x2 − 5.238x + 12.887 4

2 [9.588, 11.029] {9.588, 10.308, 11.029} 0.249x2 − 5.181x + 26.728 5

3 [16.075, 17.517] {16.075, 16.796, 17.517} 0.638x2 − 21.713x + 182.968 3

x0

ν1
1 ν1

3 ν2
1 ν2

3 ν3
1 ν3

3

f (x)

3 20

Figure 4. f (x) = sin(x) + sin
(

2x
3

)
, three subintervals of minima localization are given in red.

After 36 function evaluations, all minima were detected.
Now, we apply the two-stage approach to the problems from Tables 1 and 2. The results

are given in Tables 5 and 6. Since problems 7 and 11 were considered in Examples 3 and 4,
they are not included in the Table 5. Problem 6 is described in Table 5.

Table 5. Application of the two-stage approach to problems 1–5, 8–10, and 12–17.

Problem Minima TPP
No. Structure kTPP

f Subintervals kGSM
f kPM

f g/l

1. 2 local 12 [8.917, 11.0] 16 6 g
1 global

2. 2 local 12 [3.100, 3.900] 14 4 l

1 global [4.700, 5.500] 14 4 g

[6.700, 7.500] 14 4 l

3. 17 local 24 [−7.500,−5.833] 16 4 g

3 global [−2.500,−0.833] 16 5 l

[1.666, 3.333] 16 6 l

[5.000, 6.667] 16 5 g

4. 4 local 24 [0.050, 0.150] 10 3 l

1 global [0.350, 0.450] 10 3 l

[0.600, 0.700] 10 2 l

[0.900, 1.000] 10 3 g
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Table 5. Cont.

Problem Minima TPP
No. Structure kTPP

f Subintervals kGSM
f kPM

f g/l

5. 2 local 12 [3.100, 3.900] 14 5 l

1 global [4.700, 5.500] 14 4 g

[6.700, 7.500] 14 4 l

8. 1 local 12 [0.833, 2.500] 16 5 l

1 global [7.500, 9.167] 16 4 g

9. 1 local 6 [1.047, 3.663] 17 8 g
2 global

10. 1 local 6 [2.093, 4.187] 16 4 g
2 global

12. 1 local 6 [1.666, 5.000] 17 14 g
2 global

13. 1 local 12 [−3.333,−2.000] 15 7 g

2 global [−0.667, 0.667] 15 1 l

[2.000, 3.333] 15 7 g

14. 3 local 24 [1.354, 1.896] 14 4 l

1 global [3.521, 4.063] 14 1 l

[5.687, 6.229] 14 4 g

15. 5 local 6 [2.333, 4.667] 17 6 g
1 global

16. 1 local 24 [−1.750,−1.333] 13 3 l

1 global [1.375, 1.792] 13 4 g

17. 1 global 12 [0.100, 1.250] 15 19 g

In these tables, the Minima structure column shows how many local and global
minima each problem has, the kTPP

f column shows the number of performed function
evaluations until the TPP procedure is stabilized, the TPP subintervals column shows the
subintervals obtained from application of the TPP procedure, the kGSM

f column shows the

number of function evaluations of the Golden Section Method, the kPM
f column shows

the number of function evaluations of the Parabola Method, and the g/l column shows
the type of the calculated point: g—global minimum, l—local minimum. For example,
for problem 2 with two local minima and one global minima, the TPP procedure found three
subintervals after 12 function evaluations. The first subinterval contains a local minimum,
the second subinterval contains a global minimum, and the third subinterval contains a
local minimum. The minimum over the first subinterval was found by the Golden Section
method in 14 function evaluations and by the Parabola Method in 4 function evaluations.
The same results from both methods were demonstrated over the second and the third
subintervals. Therefore, the total number of function evaluations spent by the two-stage
approach with the Golden Section Method at the second stage was 12 + 3 × 14 = 54 and
12 + 3 × 4 = 24 function evaluations with the Parabola Method.

Table 6 shows the results of the application of the two-stage approach to problem 6.
Application of the TPP procedure finished in 19 subintervals, and for each of them, the
Golden Section Method and the Parabola Method were used; all global minima were found,
as well as all interior local minima, and one local minimum was attained at the endpoint of
the feasible interval.
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Table 6. Application of the two-stage approach to problem 6.

Problem Minima TPP
No. Structure kTPP

f Subintervals kGSM
f kPM

f g/l

6. 17 local 96 [−9.583,−9.167] 13 3 l

3 global [−8.541,−8.125] 13 3 l

[−7.291,−6.875] 13 3 g

[−6.250,−5.833] 13 4 l

[−5.208,−4.791] 13 4 l

[−4.166,−3.750] 13 4 l

[−3.125,−2.708] 13 4 l

[−2.291,−1.875] 13 4 l

[−1.042,−0.625] 13 4 g

[0.208, 0.625] 13 4 l

[1.042, 1.458] 13 4 l

[2.083, 2.500] 13 3 l

[3.125, 3.542] 13 4 l

[4.166, 4.583] 13 2 l

[5.208, 5.625] 13 4 g

[6.458, 6.875] 13 3 l

[7.500, 7.917] 13 2 l

[8.333, 8.750] 13 4 l

[9.375, 9.792] 13 2 l

We can see from the presented test results that the direct application of the two-stage
approach may involve a lot of computation. If we are interested in finding a good local
solution faster than the pure Golden Section Method we can use the following Accelerated
Two-Stage Approach (ATSA).

3. Accelerated Two-Stage Approach

In this section, we propose a modification of the two-stage approach described in
the previous section. We set the integer parameter N in the TPP procedure in advance
and do not change it. When the TPP procedure is finished, N + 1 values of the objective
function at points xk = α + k∆, k = 0, . . . , N with ∆ = β−α

N are available. We determine
the record value f Rec = min{ f (xi) : i = 0, . . . , N} and a corresponding record point
xRec ∈ Arg min{ f (xi) : i = 0, . . . , N}. If the number kp of the TPP subintervals is positive,
kp > 0, then we choose the TPP subinterval, which contains the record point xRec, and
run the Parabola Method over this TPP subinterval. Let xPM be a point found by the
Parabola Method. We define the point x∗ = arg min{ f (xRec), f (xPM) and the correspond-
ing objective value f ∗ = f (x∗). We deliver the pair (x∗, f ∗) as the result of the Accelerated
Two-Stage Approach. If the number kp is equal to zero, i.e., no TPP subintervals were
detected, then we determine

m ∈ {0, . . . , N − 1} : xm ≤ xRec ≤ xm+1, (4)

and run the Golden Section Method over the interval [xm, xm+1]. Let xGSM be the corresponding
point determined by the Golden Section Method. As in the previous case, we define the
point x∗ = arg min{ f (xGSM), f (xRec) and the value f ∗ = f (x∗), and we deliver the pair
x∗, f ∗, as a result of the Accelerated Two-Stage Approach (ATSA).

Let us now give the description of the ATSA procedure.



Algorithms 2024, 17, 107 10 of 15

The ATSA Procedure

Step 1. Apply the TPP procedure. Let kp and ∆ be parameters calculated by the TPP proce-
dure. Let f Rec be the record value over all calculated points and xRec : f (xRec) = f Rec.

Step 2. If kp > 0, then select the subinterval containing xRec and run the Parabola Method
over the selected subinterval, obtaining the point xPM. Define the point x∗ =
arg min{ f (xRec), f (xPM)} and value f ∗ = f (x∗). Stop.

Step 3. If kp = 0, then determine the subinterval [xm, xm+1] according to (4) and run
the Golden Section Method, obtaining the point xGSM. Define the point x∗ =
arg min{ f (xRec), f (xGSM)} and value f ∗ = f (x∗). Stop.

The results of testing the accelerated two-stage approach are given in Table 7. The in-
teger parameter N for the TPP procedure was equal to 3. The GSM/PM column shows the
number of function evaluations of the corresponding method. If, after the first stage, the
number of TPP subintervals was equal to zero (as for problem 1 kp = 0), then the Golden
Section Method was used, and the number of function evaluations kGSM

f = 17. If, after the
first stage, the number of the TPP subintervals was positive (as for problem 2 kp = 2), then
the Parabola Method was used, and the number of function evaluations kPM

f = 5. The Total
k f column shows the total number of function evaluations of the ATSA procedure, and the
g/l column shows a global (g) or local (l) minimum was found.

Table 7. Results of application of the accelerated two-stage approach.

Problem No. Number of TPP Subintervals, kp GSM/PM Total k f g/l

1. 0 GSM, kGSM
f = 17 23 g

2. 2 PM, kPM
f = 5 11 g

3. 2 PM, kPM
f = 9 15 g

4. 2 PM, kPM
f = 4 10 g

5. 2 PM, kPM
f = 5 11 g

6. 1 PM, kPM
f = 8 14 g

7. 2 PM, kPM
f = 4 10 g

8. 2 PM, kPM
f = 4 10 g

9. 1 PM, kPM
f = 2 8 g

10. 1 PM, kPM
f = 8 14 g

11. 1 PM, kPM
f = 6 10 l

12. 1 PM, kPM
f = 22 28 g

13. 2 PM, kPM
f = 17 23 g

14. 2 PM, kPM
f = 6 10 l

15. 1 PM, kPM
f = 6 10 g

16. 0 GSM, kGSM
f = 15 21 g

17. 1 PM, kPM
f = 21 26 g

We have to mention that the integer parameter N (the number of the subdivision
points in the TPP procedure) is the most crucial. If, for example, N is equal to 20, then
for all testing problems, global minimum points were determined. However, in this case,
the numbers of objective function evaluations were rather large, more than several tens.
The parameter N can be chosen according to the number of expected local minima. In the
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general case, we aim to find a good local minimum, and from the results of our testing, we
recommend choosing an N between 5 and 10.

We can see from Table 7 that the accelerated two-stage approach finds solutions with
lower computational efforts compared to the pure Golden Section Method, still finding
global solutions in almost all the test problems. As for problems 12 and 17, some further
modifications can be invented. Nevertheless, the current results are encouraging.

4. Numerical Comparison of Zero-Order Methods: Multivariate Optimization Problems

We tested and compared the following zero-order methods: the Hooke and Jeeves
method combined with the ATSA, the Rosenbrock method with a discrete step in the search
procedure, the Rosenbrock method combined with the ATSA, and the coordinate descent
method combined with the ATSA. In the current section, we give a brief description of these
methods. Many of them are described in monographs and review articles on optimization
methods [10,11,15–19].

Hooke and Jeeves method. The pattern search method of Hooke and Jeeves consists
of a sequence of exploratory moves about a base point that, if successful, are followed by
pattern moves.

The exploratory moves acquire information about the function f (x) in the neighbor-
hood of the current base point bk = (xk

1, . . . , xk
n). Each variable xk

i , in turn, is given an
increment εi (first, in the positive direction and then, if necessary, in the negative direction),
and a check is made of the new function value. If any move results in a reduced function
value, the new value of that variable will be retained. After all the variables have been
considered, a new base point bk+1 will be reached. If bk+1 = bk, no function reduction has
been achieved. The step length εi is reduced, and the procedure is repeated. If bk+1 ̸= bk ,
a pattern move from bk is made.

A pattern move attempts to speed up the search by using the information already
acquired about f (x) to identify the best search direction. A move is made from bk+1

in the direction d = bk+1 − bk, since a move in this direction leads to a decrease in the
function value. In this step, we use the ATSA to solve a univariate optimization problem
f (λ) = minλ f (bk+1 + λd) and obtain a new point pk = bk+1 + λ⋆d. The search continues
with a new sequence of exploratory moves about pk. If the lowest function value obtained
is less than f (bk), then a new base point bk+2 has been reached. In this case, a second
pattern move is made. If not, the pattern move from bk+1 is abandoned, and we continue
with a new sequence of exploratory moves about bk+1.

Rosenbrock method. The main idea of the method is to iteratively find the descending
direction of a function along linearly independent and orthogonal directions. A successful
step in the current direction leads to an increase in this step on the following iteration
by means of a stretch coefficient ρ > 0; otherwise, the coefficient 0 < ρ < 1 is used to
decrease the step. The search within the current direction system is implemented until
all possibilities of function reduction are exhausted. If there are no successful directions,
a new set of linearly independent and orthogonal directions is constructed by means of
rotating the previous ones in an appropriate manner. To obtain a new direction system,
the Gram–Schmidt procedure is used.

Iterative coordinate descent method. This method is a simplified version of the Hooke
and Jeeves method. It uses only the analogue of exploratory moves with an appropriate
step size obtained from the line search procedure along the current basis vector.

Combined versions. We designed three modifications of the described methods to
estimate the potential for finding the global optimum. The iterative coordinate descent
method, the Hooke and Jeeves method, and the Rosenbrock method are combined with
the ATSA and presented in this section. The following test problems were used to perform
numerical experiments.
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1. Branin function

f (x) =

(
x2 −

5.1x2
1

4π2 +
5x1

π
− 6

)2

+ 10
(

1 − 1
8π

)
cos x1 + 10,

X =
{

x ∈ R2 : −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15,
}

.

Global optimum: x⋆ = (3.141593, 2.275), x⋆⋆ = (−3.141593, 12.275), f ⋆ = 0.397667.
2. Treccani function

f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2,

X =
{

x ∈ R2 : −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,
}

.

Global optimum: x⋆ = (0, 0), x⋆⋆ = (2, 0), f ⋆ = 0.
3. Shubert function

f (x) =

(
5

∑
i=1

i cos((i + 1)x1 + i)

)
·
(

5

∑
i=1

i cos((i + 1)x2 + i)

)
.

X =
{

x ∈ R2 : −10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10,
}

.

The function has 760 local minimum points for x ∈ X, 18 of them are global optimum
points, and f ∗ = −186.730909.

4. 3-hump camel function

f (x) = 2x2
1 − 1.05x4

1 +
x6

1
6

− x1x2 + x2
2,

X =
{

x ∈ R2 : −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,
}

.

This function has three minimums for x ∈ X, one of them is global: x⋆ = (0, 0), and
f ⋆ = 0.

5. 6-hump camel function

f (x) = 4x2
1 − 2.1x4

1 +
x6

1
3

+ x1x2 − 4x2
2 + 4x4

2,

X =
{

x ∈ R2 : −3 ≤ x1 ≤ 3, −1.5 ≤ x2 ≤ 1.5,
}

.

The 6-hump camel function has six minimum points for x ∈ X, two of them are
global optima: x⋆ = (−0.089842, 0.712656), x⋆⋆ = (0.089842,−0.712656), and f ⋆ =
−1.031628.

6. Rosenbrock function

f (x) = 100
(

x2
1 − x2

)2
+ (x1 − 1)2,

X =
{

x ∈ R2 : −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5,
}

.

The only global minimum of the function is x⋆ = (1, 1), and f ⋆ = 0.
7. Levy-1 function

f (x) =
π

n

(
10 sin2(πx1) +

n−1

∑
i=1

(xi − 1)2[1 + 10 sin2(πxi+1)] + (xn − 1)2

)
,

X = {x ∈ Rn : −10 ≤ x ≤ 10}.
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The function has approximately 5n local minima for x ∈ X, the global minimum is
x⋆i = 1, i = 1, . . . , n, and f ⋆ = 0.

8. Levy-2 function

f (x) =
π

n

(
10 sin2(πy1) +

n−1

∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2

)
,

yi =
xi − 1

4
+ 1,

X = {x ∈ Rn : −10 ≤ x ≤ 10}.

As with Levy-2 function, the function has approximately 5n local minima for x ∈ X,
the global minimum is x⋆i = 1, i = 1, . . . , n, and f ⋆ = 0.

9. Levy-3 function

f (x) =
1
10

sin2(3πx1) +
1

10

n−1

∑
i=1

(xi − 1)2
(

1 + sin2(3πxi+1)
)
+

+
1

10
(xn − 1)2

(
1 + sin2(2πxn)

)
,

X = {x ∈ Rn : −10 ≤ x ≤ 10}.

This function has approximately 30n local minima for x ∈ X, the only global minimum
is x⋆i = 1, i = 1, . . . , n, and f ⋆ = 0.

The results of the numerical experiments are presented in Tables 8 and 9. The following
notations are used: n is the number of variables; fbest is the best value of the objective
function found during the executing of the algorithm; f ⋆ is the optimal value of the
objective function; k f is the average number of function calculations during the execution
of the algorithm considering all launches of the current problem; m is the number of
problems solved successfully using the multistart procedure; M is the total number of
randomly generated points. The multistart procedure launches the algorithm from one of
the generated points. The designation m/M means that m launches of the algorithm from
M starting points resulted in a successful problem solution (the global minimum point was
found). Coordinate descent–par is the coordinate descent method in combination with
the ATSA; Hooke–Jeeves–par is the Hooke and Jeeves method combined with the ATSA;
Rosenbrock–dis is the Rosenbrock method with a discrete step in the search procedure;
Rosenbrock–par is the Rosenbrock method in combination with the ATSA.

Table 8. Coordinate descent method and Hooke–Jeeves method.

Coordinate Descent–Par Hooke–Jeeves–Par

Problem fbest − f ⋆ k f m/M fbest − f ⋆ k f m/M

Branin 10−4 1752 154/1000 10−4 18,117 64/200
Trecani 10−6 808 1000/1000 10−6 1318 688/1000
Shubert 10−6 1056 1000/1000 10−1 4451 33/1000
3-hump camel 10−6 1061 673/1000 10−6 12,172 33/200
6-hump camel 10−4 1828 1000/1000 10−2 13,515 1/200
Rosenbrock 10−3 37,768 95/1000 10−6 8306 26/200
Levy-1 (n = 5) 10−6 1323 735/1000 10−2 10,383 44/200
Levy-1 (n = 50) 10−6 12,543 780/1000 10−3 13,853 5/200
Levy-1 (n = 100) 10−6 25,535 750/1000 100 14,950 0/200
Levy-2 (n = 5) 10−6 1339 1000/1000 10−3 49,081 14/50
Levy-2 (n = 50) 10−6 14,285 50/50 100 35,751 12/50
Levy-2 (n = 100) 10−6 31,372 50/50 100 40,945 11/50
Levy-3 (n = 5) 10−6 4864 1000/1000 10−1 33,975 3/50
Levy-3 (n = 50) 10−6 31,945 50/50 100 16,244 11/50
Levy-3 (n = 100) 10−6 75,752 50/50 100 46,882 0/50
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Table 9. Rosenbrock methods.

Rosenbrock–Dis Rosenbrock–Par

Problem fbest − f⋆ k f m/M fbest − f⋆ k f m/M

Branin 10−4 296 200/200 10−4 9840 12/200
Trecani 10−6 115 200/200 10−6 7817 53/200
Shubert 10−5 4451 9/200 10−6 10,964 100/200
3-hump camel 10−6 127 85/200 10−6 11,107 22/200
6-hump camel 10−6 90 131/200 10−2 14,210 60/200
Rosenbrock 10−6 489 172/200 10−4 8201 15/200
Levy-1 (n = 5) 10−6 705 20/200 100 33,418 1/200
Levy-1 (n = 50) 10−3 22,550 1/20 100 241,667 0/20
Levy-1 (n = 100) 10−3 63,142 1/20 100 576,160 0/20
Levy-2 (n = 5) 10−3 573 7/20 100 39,955 1/20
Levy-2 (n = 50) 10−3 6765 3/20 100 373,840 0/20
Levy-2 (n = 100) 10−3 17,145 4/20 100 871,650 0/20
Levy-3 (n = 5) 10−1 33,975 4/50 10−1 49,301 1/20
Levy-3 (n = 50) 10−1 22,235 7/20 100 398,060 0/20
Levy-3 (n = 100) 100 42,040 1/20 100 886,740 0/20

5. Discussion of the Results

The coordinate descent method in combination with the ATSA proved to be an effective
method in searching for the global optimum even in quite difficult optimization problems.
For instance, notice the results for Levy functions. Despite the large number of local minima
in the search area of these functions, the algorithm in most cases found the global minimum
points. The coordinate descent method in combination with the ATSA demonstrated an
acceptable number of function calculations and quite high accuracy of the best function
value for all tested problems.

The Hooke and Jeeves method combined with the ATSA attained global optimum
points in most tested problems but not as frequently as the coordinate descent method.
Nevertheless, it is possible to obtain quite a high accuracy of the best-found solution
for some problems. The price for this accuracy is a large number of objective function
calculations due to the careful selection of start points in the ATSA.

The Rosenbrock method with the ATSA has the same obvious drawback as the Hooke
and Jeeves method, namely, the number of function calculations is quite large. However,
we can notice that the Rosenbrock method with a discrete step demonstrated acceptable
performance considering the number of successive launches and function calculations.

6. Conclusions

We tested some of the well-known zero-order methods and added to their algorithms
a line search based on the ATSA for univariate problems. Some of the tested problems,
for instance, the Shubert problem and Levy problems are quite difficult in terms of searching
for the global optimum; however, according to the numerical experiments, it is possible
to use zero-order methods to find the global optimum with quite high accuracy and
with acceptable performance. The coordinate descent method combined with the ATSA
deserves attention in terms of its ability to find a global optimum with high frequency in
most tested problems.

It would be very interesting to combine the suggested Parabola Method with other
zero-order methods like the Downhill Simplex, Genetic Algorithm, Particle Swarm Op-
timization, Cuckoo Search Algorithm, and the YUKI algorithm. We will continue our
investigations and are working on a new paper devoted to such extension and testing.
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