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Abstract: Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10%
of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as
distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker
can diagnose EM. For this pilot study, we analyzed a cohort of 21 patients with endometriosis and
infertility-associated conditions. A microbiome dataset was created using five sample types taken
from the reproductive and gastrointestinal tracts of each patient. We evaluated several machine
learning algorithms for EM detection using these features. The characteristics of the dataset were
derived from endometrial biopsy, endometrial fluid, vaginal, oral, and fecal samples. Despite limited
data, the algorithms demonstrated high performance with respect to the F1 score. In addition, they
suggested that disease diagnosis could potentially be improved by using less medically invasive
procedures. Overall, the results indicate that machine learning algorithms can be useful tools for
diagnosing endometriosis in low-resource settings where data availability and availability are limited.
We recommend that future studies explore the complexities of the EM disorder using artificial intelli-
gence and prediction modeling to further define the characteristics of the endometriosis phenotype.

Keywords: endometriosis; machine learning; artificial intelligence; biomarkers; microbiome; oral
systemic; healthcare; SVM

1. Introduction

Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder character-
ized by endometrial-like tissue outside the uterus [1]. It affects 10% of women worldwide,
causing pelvic pain and infertility [2]. The uterus is not a sterile organ [3]. The inner lining
of the uterus, the endometrium, contains resident microorganisms that are different in type
and number from the microorganisms that reside in the vagina [4]. A conclusive clinical
diagnosis of EM usually requires a combination of medical history, physical examination,
imaging techniques (such as ultrasound or MRI), and sometimes laparoscopic surgery.
Currently, no single definitive biomarker can diagnose EM with 100% accuracy. Recent
studies show that the microbial composition in EM differs from that in healthy individuals.
This implies that it plays a significant role in disease and reproductive outcomes [5].

The composition and diversity of the microbiota [6] can indicate the onset or progres-
sion of the disease. Distal microbial changes can serve as biomarkers for EM. Gastrointesti-
nal biomarkers, such as those taken from the intestinal tract or oral cavity, are quantifiable
indicators that can offer valuable information on overall health. Using samples from the
oral microbiome could have advantages over other internal body sites in the female re-
productive tract because the process for collection is noninvasive, and specialized sample
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collection procedures are not required for the evaluation of EM. Consequently, the early
detection of EM can help avoid complications such as reduced fertility. Therefore, the timely
diagnosis of this condition is crucial for effective treatment and for the preservation of the
patient’s reproductive health.

Machine learning algorithms have proven their effectiveness in solving classification
problems [7]. These algorithms can employ methods such as logistic regression, deci-
sion trees, SVMs, neural networks, and fuzzy classifiers, among others [8,9]. Machine
learning has been applied to various problems in the domain of endometrial disease
detection [10–12]. For example, some researchers have proposed a novel machine learn-
ing algorithm to create precision prognostication systems for endometrial cancer [13,14],
while others have used deep learning to classify MRI images of endometrial cancer [15].
These studies demonstrate the potential of machine learning to improve the diagnosis and
treatment of endometrial diseases. Another study using noninvasive biomarkers [16], such
as blood, urine, or endometrial biopsy, was carried out using the QUADAS-2 tool as an
example of a failed attempt, and the conclusion was that they could not replace laparoscopy
as a diagnostic procedure. It is important to note that while these biomarkers are promising,
none of them are currently used as an independent diagnostic tool for EM [17].

Data scarcity is a common challenge for all algorithms, not only for those used for
classification purposes. This problem limits AI applications in the real world, especially in
medicine, where data are costly and public funding is needed [18]. Moreover, the availabil-
ity of public records is limited [19]. In these cases, algorithms fail to achieve an adequate
generalization capacity, which results in poor performance. Another major problem facing
classification learning algorithms is the imbalance between classes in datasets [20]. That is,
one or more classes have most of the examples, while the remaining classes are underrepre-
sented. The problem becomes more severe when the class with the least amount of data is
the most relevant [21].

In this study, several machine learning algorithms have been considered in order to
provide a classification of EM disease from the microbiome. Our hypothesis asserts that the
bacterial taxa present in the oral or fecal microbiome could serve as a surrogate biomarker
for the diagnosis of EM in women. If the hypothesis is confirmed, then the resulting impact
would have economic and clinical benefits due to the need for less invasive and lower-cost
sample collection procedures (see Figure 1).

Figure 1. Process schema.
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2. Materials and Methods
2.1. Data Sources

A total of twenty-one patients diagnosed with some pathology associated with infer-
tility were included in the analysis. From the total, seven were diagnosed with EM. We
included 5 sample types corresponding to the gastrointestinal tract (GIT) and the female
reproductive tract (FRT). The gastrointestinal tract included oral and fecal sample types. In
addition, the FRT included endometrial fluid (EF), endometrial biopsy (EB), and vaginal
(VA) sample types. When evaluating bacterial communities, we used each sample type
using microbiome abundances. The dataset consisted of up to 438 different bacterial taxa
(the link to the input data is available in the “Data Availability Statement” Section).

This list is an initial approach based on the available datasets:

• Address each sample type independently:

– Dataset for oral samples.
– Dataset for fecal samples.
– Dataset for endometrial fluid.
– Dataset for endometrial biopsies.
– Dataset for the vaginal samples.

• Group some sample types:

– The dataset for the GIT merges the oral–fecal datasets.
– The dataset for the FRT merges the endometrial fluid, endometrial biopsy, and

vaginal microbiomes.
– The dataset for FRT2 merges the endometrial biopsy and vaginal microbiomes.

Please note that the data size for all datasets was very small and that the proportion
of subjects with EM was low compared to that of the other patients; therefore, it was
difficult to obtain reliable results from the classification process. Otherwise, from a medical
perspective, even if the data size is small, this process is essential because it will enhance
patient care if a satisfactory classifier performance can be obtained with the oral or fecal
microbiome since it might be a less invasive procedure.

2.1.1. Data Source for Oral Region

All patients in the dataset suffer from an infertility-related disease, either EM or an-
other condition. These conditions are polyps, erythroplakia, hydrosalpinx, ovarian failure,
chronic endometritis, polycystic ovary syndrome, or a unicornuate uterus.

In Tables 1 and 2, we can see that some of the bacteria are more frequent and some of
them are almost negligible. We had to use a logarithmic scale to observe the variations in
values in Figure 2. Firmicutes Streptococcus is undoubtedly the most prevalent bacterium in
this region.

Table 1. The most frequent bacteria based on the global mean (X) of the relative abundance in the
oral region for EM patients.

Bacteria Name X (%)

Firmicutes Streptococcus 49.14%
Proteobacteria Neisseria 13.14%

Proteobacteria Haemophilus 4.58%
Actinobacteria Actinomyces 3.63%

Firmicutes Veillonella 3.51%

In Figure 2, the x-axis shows the patients and the y-axis shows the relative abundance.
Each point has a color that represents a different type of bacteria. However, we do not
provide the legend of the colors because they are only informative and the distribution is
the important aspect of the chart. We use the same criterion for Figures 3–6.
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Table 2. The most frequent bacteria based on the global mean (X) of the relative abundance in the
oral region for non-EM patients.

Bacteria Name X (%)

Firmicutes Streptococcusm 45.36%
Proteobacteria Haemophilusm 22.53%
Fusobacteria Fusobacteriumm 3.28%
Proteobacteria Pasteurellaceae 3.06%

Proteobacteria Neisseriam 2.69%

Figure 2. Biome distribution in oral region per patient.

2.1.2. Data Source for Fecal Region

In Tables 3 and 4, we can see that Firmicutes Lachnospiraceae is the most prevalent
bacterium in this region. However, the second and third ranks vary by the patient’s disease.

Table 3. The most frequent bacteria based on the global mean (X) of the relative abundance in the
fecal region for EM patients.

Bacteria Name X (%)

Firmicutes Lachnospiraceae 35.52%
Proteobacteria Enterobacteriaceae 21.14%

Firmicutes Streptococcus 13.89%
Firmicutes Ruminococcaceae 6.23%

Firmicutes Ruminococcus 3.98%
Firmicutes Blautia 3.59%

Firmicutes Faecalibacterium 3.27%
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Table 4. The most frequent bacteria based on the global mean (X) of the relative abundance in the
fecal region for non-EM patients.

Bacteria Name X (%)

Firmicutes Lachnospiraceae 24.78%
Firmicutes Ruminococcus 17.33%

Firmicutes Faecalibacterium 8.47%
Proteobacteria Enterobacteriaceae 8.46%

Firmicutes Ruminococcaceae 7.27%
Firmicutes Blautia 6.57%
Firmicutes Bacillus 3.91%

Firmicutes Streptococcus 3.47%
Firmicutes Erysipelotrichaceae 3.34%

Firmicutes Enterococcus 3.17%

As shown in Figure 3, the fecal region has a lower concentration of the dominant
bacteria. However, the same bacteria are among those with the highest relative abundance.

Figure 3. Biome distribution in fecal region per patient.

2.1.3. Data Source for Endometrial Fluid Region

In Tables 5 and 6, we can see that Firmicutes Lactobacillus is the most prevalent bac-
terium in this region, followed by Actinobacteria Gardnerella. In Figure 4, the bacterial
distribution in the EF region is shown.
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Table 5. The most frequent bacteria based on the global mean (X) of the relative abundance in the EF
region for EM patients.

Bacteria Name X (%)

Firmicutes Lactobacillus 67.61%
Actinobacteria Gardnerella 10.83%
Proteobacteria Rhizobiaceae 3.05%
Firmicutes Lachnospiraceae 2.43%

Firmicutes Megasphaera 1.83%

Table 6. The most frequent bacteria based on the global mean (X) of the relative abundance in the EF
region for non-EM patients.

Bacteria Name X (%)

Firmicutes Lactobacillus 61.20%
Actinobacteria Gardnerella 14.89%

Proteobacteria Enterobacteriaceae 6.78%
Proteobacteria Rhizobiaceae 2.22%

Proteobacteria Vibrio 1.62%

Figure 4. Biome distribution in EF region per patient.

2.1.4. Data Source for Endometrial Biopsy Region

In Tables 7 and 8, we can see that Firmicutes Lactobacillus is the most prevalent bac-
terium in this region, similarly to the EF region. In Figure 5, the bacterial distribution in the
EB region is shown.
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Table 7. The most frequent bacteria based on the global mean (X) of the relative abundance in the EB
region for EM patients.

Bacteria Name X (%)

Firmicutes Lactobacillus 82.63%
Proteobacteria Rhizobiaceae 3.41%
Actinobacteria Gardnerella 2.62%

Firmicutes Mogibacteriaceae 2.44%
Firmicutes Lachnospiraceae 1.94%

Table 8. The most frequent bacteria based on the global mean (X) of the relative abundance in the EB
region for non-EM patients.

Bacteria Name X (%)

Firmicutes Lactobacillus 49.62%
Firmicutes Lachnospiraceae 8.65%

Proteobacteria Enterobacteriaceae 5.49%
Proteobacteria Rhizobiaceae 3.51%

Firmicutes Streptococcus 3.05%
Bacteroidetes Bacteroides 2.89%

Actinobacteria Gardnerella 2.79%

Figure 5. Biome distribution in EB region per patient.

2.1.5. Data Source for Endometrial Vaginal Region

In Tables 9 and 10, we can see that Firmicutes Lactobacillus is the most prevalent
bacterium in this region, followed by Actinobacteria Gardnerella by a large margin. In Figure 6,
the bacterial distribution in the vaginal region is shown.
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Table 9. The most frequent bacteria based on the global mean (X) of the relative abundance in the
vaginal region for EM patients.

Bacteria Name X (%)

Firmicutes Lactobacillus 82.63%
Firmicutes Lactobacilluss 82.93%

Actinobacteria Gardnerellas 7.43%
Firmicutes Mogibacteriaceae 2.38%

Bacteroidetes Prevotella 1.94%

Table 10. The most frequent bacteria based on the global mean (X) of the relative abundance in the
vaginal region for non-EM patients.

Bacteria Name X (%)

Firmicutes Lactobacilluss 70.54%
Actinobacteria Gardnerellas 9.92%

Proteobacteria Enterobacteriaceaes 7.35%
Firmicutes Enterococcuss 2.93%

Firmicutes Lactobacillaceae 1.68%

Figure 6. Biome distribution in vaginal region per patient.

2.2. Preprocessing Data

Microbiome analysis was performed using the QIIME2 bioinformatics platform
(version 2022.8) to process raw 16S rRNA gene sequences [22]. Sequences were quality-
filtered, denoised, and duplicated using the DADA2 algorithm implemented in the denoise-
pyro plugin, which was specifically designed for single-end demultiplexed pyrosequencing
sequences [23]. To remove low-quality data, the first 15 bases at the 5′ ends of the sequences
were trimmed, and samples with a mean Phred quality score below 20 were excluded from
further analyses. The sequence variants of amplicons (ASVs) obtained were taxonomically
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classified using the Greengenes 13_8 99% Operational Taxonomic Unit (OTU) reference
sequence [24,25] with the VSEARCH tool [26]. The VSEARCH tool was used to validate
and process raw data from the microbiome analysis. This ensured the quality and reliability
of the data before applying any machine learning techniques. We note that our study has
no outliers, but some of the datasets have missing values. In these cases, the default value is
zero, indicating that there are no bacteria of this type. Each column in the dataset represents
a relative abundance and must satisfy Equation (1). This equation ensures that for each
patient and area, the sum of all levels is equal to one since the units are proportions.

∀i(rows) :
last_relative_abundance_column

∑
j= f irst_relative_abundance_column

Xi,j = 1 (1)

2.2.1. Filtering

All columns with zero values were discarded, as they did not contribute to the models.
Thus, the resulting datasets were reduced according to Table 11.

Table 11. Total of microbiome columns per region.

Region Number of Columns Number of Discarded Columns

EB 256 (58.45%) 182 (41.55%)
EF 230 (52.52%) 208 (47.48%)

Vaginal 230 (58.45%) 208 (47.48%)
Oral 144 (32.88%) 294 (67.12%)
Fecal 124 (28.31%) 314 (71.69%)

2.2.2. Scaling

Some bacterial taxa were very rare in the microbiome, which can cause rounding
errors in the analysis. To avoid this, relative abundances were expressed in units per
million (ppm). A further explanation of the rationale behind using the ppm unit of measure
is as follows: First, we found the maximum of all abundance values for a given sample
type. In the following step, we looked for the smallest maximum abundance that was
not zero, as this value must have an integer part. For example, the smallest abundance
in the EB sample type was for the bacterium Firmicutes Desulfurispora, which has a value
of 5.028848829 ppm. After applying Equation (2), the resulting models should be exactly
equivalent if the predictions are also scaled.

∀i(rows), j(columns) : Xi,j ← Xi,j × 106 (2)

2.2.3. Class Imbalance

For this study, we used a diagnosis associated with infertility from the patient’s clinical
history. Dealing with unbalanced datasets is a challenging task for machine learning
algorithms. Some authors suggest downsampling the majority class, but this would result
in a significant loss of information in such a small dataset like the one analyzed in our
study [27].

Synthetic data (SD) are often used to augment or replace real data in various domains,
such as healthcare, where data privacy and availability are major concerns [28]. Moreover,
clinical trial data typically have a relatively small number of participants; however, the
suggested sizes are always larger than a thousand entries [29–31].

Some authors propose generating synthetic data for the minority class, but this could
lead to overfitting the model to artificial samples [32].

SD have some drawbacks that limit their usefulness and reliability for building robust
and accurate models [33]. Creating a realistic and representative SD model is challenging
and time-consuming. It requires a lot of domain knowledge, expertise, and effort. It is not
easy to capture the complexity, variability, and correlations of real data in a synthetic model.
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SD may contain omissions and inconsistencies and may not reflect all relevant features,
patterns, and anomalies of the real data. This is especially true if the model is based on
incomplete or outdated information. Moreover, SD may introduce artificial noise or bias
that can affect the performance and the validity of models trained on it. The quality of SD
is largely dependent on the skill of the expert building the model. Different experts may
have different assumptions, preferences, and methods for generating SD, which can lead to
inconsistent and incomparable results. Furthermore, the quality of SD can degrade over
time, as real data evolve and change. SD may miss some important insights or discoveries
that can only be revealed by analyzing real data. This is because SD are oblivious to
the ground truth hidden in real field data that is not yet known in theory. For example,
SD may not capture some rare cases that are not well understood or documented in the
literature. Even so, SD were tested at an early stage of the study and generated worse
results. Therefore, we decided not to use SD for our model based on these drawbacks in
the healthcare domain.

2.3. Dataset from One Area

Supervised learning algorithms were based on the diagnostic values of EM in each
patient, which were obtained by using a clinical detection method. This detection could
involve methods such as the histological examination of the lesions or laparoscopic surgery,
among others [34,35]. Laparoscopic surgery is a minimally invasive procedure that allows
the visualization of the pelvic organs and the confirmation of the presence or absence of
endometriosis lesions. The diagnosed values are then used as labels for the training and
testing of the machine learning models.

There are two possible states for a binary problem, so a Boolean variable was used to
perform the classification. The criterion for selection was defined as follows: If endometriosis
is present, then the value is true. If endometriosis is not present, then the value is false.
By applying this premise, the binary classification problem was resolved.

2.4. Machine Learning Models

We conducted different experiments with machine learning algorithms using scikit-
learn (version 1.3.0) [36], a free software library for Python, with the main support of the free
software libraries numpy (version 1.24.3) and pandas (version 2.0.3). The experiments were
run in a Conda environment (version 23.7.3) with Python (version 3.11.4). The experiments
compared the viability of several classification techniques using real-world datasets.

Cross-validation [37] is the standard technique to estimate the performance of machine
learning models on unseen data. Data were divided into k groups or folds, and one fold was
used as the test set and the rest as the training set. The choice of k affects the bias–variance
trade-off of the model, where a smaller k leads to a higher bias but a lower variance,
and a larger k leads to a lower bias but a higher variance. A single execution of k-fold
cross-validation may result in noisy values, because the order of the data may affect the
performance values, especially if the datasets are small or imbalanced [38]. However, if the
computational cost is not a problem, repeated k-fold cross-validation, which repeats the
process n times, each time using a different random seed to shuffle the data before splitting
it into folds, can provide a more robust and less dependent estimate [39]. To achieve
statistical stability, we used a group of 100 random state values for each test conducted in
this study. Thus, we repeated the cross-validation process 100 times with different random
seeds and averaged the results. Considering that the dataset consists of 21 observations,
we set the number of splits in cross-validation to 7. Then, we had a large enough number
of data points in the training set to be able to obtain an adequate classifier. Consequently,
the number of training data points was 18, compared to 3 validation data points. If the
dataset size was less than 21, the number of splits varied as indicated in Section 2.1.

The general algorithm is described in Algorithm 1. The function performs the classifi-
cation task using the given classifier and the repeated k-fold cross-validation method [40].
The function uses four inputs: the X matrix, the Y matrix, the number of folds for cross-
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validation, and the specific classifier for the chosen method of classification. In this study,
we used 100 repetitions for cross-validation.

The function returns a dictionary with the tuples of the mean (X), the standard
deviation (σ), and the length of each cross-validation score of each metric. The function
also handles cases where there is a zero-division error in calculating precision and recall by
filtering out those scores.

The standard deviation (σ) was used to monitor and prevent overfitting [41], which
is a risk of having models with a large variance (σ2). Overfitting considers the model’s
capture of noise or the specific features of the training set but does not generalize well to
new or unseen data. The standard deviation measures how much the model’s predictions
deviate from the mean.

We used the following four common metrics to evaluate the performance of machine
learning models in classification tasks: accuracy (see Equation (3)), precision (see Equation (4)),
recall (see Equation (5)), and F1 (see Equation (6)). Accuracy measures how often the model
predicts the correct class. Precision measures how often the model’s positive predictions
are correct. Recall measures how often the model detects positive cases. The F1 score is
the harmonic mean of precision and recall; it captures the trade-off between precision and
recall, which was used to rank the performance of each algorithm due to the imbalance
in the classes. Another interesting measure of fit for unbalanced data is the geometric
mean [42]. However, during the experiment, we observed that there were many test sets
with one class. In such cases, the result provided by this metric was 0, which invalidated
this metric.

To make a final decision about the most relevant model, we focused on the F1 score.
The F1 score could be more informative due to accuracy, or the receiver operating charac-
teristic curve (ROC). When dealing with a small number of items, both false positives and
false negatives must be considered and could have a significant effect on a small sample.

All the variables used by Equations (3)–(6) are defined in Table 12.

Table 12. Confusion matrix.

Actual Classification

Positive Negative

Predicted
classification

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2× Precision× Recall
Precision + Recall

=
2× TP

2× TP + FP + FN
(6)

In order to avoid overfitting, we used the RepeatedStratifiedKFold validator from
the scikit-learn library to evaluate the performance of the model. This validator randomly
splits the data into k folds and repeats the process n times while preserving the class
distribution of the data in each fold. This is more suitable for classification problems with
imbalanced classes, as it ensures that each fold has a representative sample of each class.
On the other hand, the RepeatedKFold validator from the same library does not preserve
the class distribution. This can result in some folds having very few or no samples of
some classes, which in turn can affect the performance of the model. We compared both
validators and found that the RepeatedStratifiedKFold validator scores were slightly
higher than the RepeatedKFold validator scores.
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Algorithm 1: classify(X, Y, k, classifier)
X : Input. X matrix.
Y : Input. Y matrix.
k : Input. The number of folds for cross-validation.
classifier : Input. The specific classifier for the chosen means of classification.
Result: This method returns a dictionary with the tuples of the mean, standard

deviation, and length of each cross-validation score of each metric; the
keys of the dictionary are “accuracy”, “precision”, “recall”, and “f1”.

// Create metrics
1 metrics← ∅
2 metrics[“accuracy”]← {new: Accuracy()}
3 metrics[“precision_zero_division_0”]← new: Precision(zero_division = 0)
4 metrics[“precision_zero_division_1”]← new: Precision(zero_division = 1)
5 metrics[“recall_zero_division_0”]← new: Recall(zero_division = 0)
6 metrics[“recall_zero_division_1”]← new: Recall(zero_division = 1)
// Create a repeated k-fold cross-validator generator with 100

repetitions.
7 cv← new: RepeatedStratifiedKFold(k, number_of_repetitions = 100)
// Evaluate cross-validation. It returns a dictionary of arrays

with all the scores. One entry per metric.
8 scores← cross_validate(X, Y, classifier, cv, metrics)
// Filter all zero-division scores.

9 accuracy← scores[“accuracy”]
10 precision_zd0← scores[“precision_zero_division_0”]
11 precision_zd1← scores[“precision_zero_division_1”]
12 recall_zd0← scores[“recall_zero_division_0”]
13 recall_zd1← scores[“recall_zero_division_1”]
14 f iltered_scores←

filter_non_zero_division(accuracy, precision_zd0, precision_zd1, recall_zd0, recall_zd1)
// Calculate F1.

15 f iltered_scores[“ f 1”]← get_f1(filtered_scores(“precision”), filtered_scores[“recall”])

// Calculate the mean and standard deviation for the scores.
16 result← ∅
17 for each: score_name, score_array in: f iltered_scores do
18 global_mean← mean(score_array)
19 global_std← std(score_array)
20 length← len(score_array)
21 result[score_name]← ⟨global_mean, global_std, length⟩
22 end
23 return result

When there were no data from the EM class in the test set, we faced a major zero-
division problem in calculating precision, recall, and F1. In these cases, we considered the
zero-division argument and calculated the classification for the two possible values for
the score: 0, which would be penalized, and 1, which would be rewarded. Subsequently,
we only took scores with the same value for the same classification that were not affected
by this situation, and then we filtered them using Algorithm 2. Although there were no
zero-division problems in the accuracy calculation, we calculated this metric only when
precision and recall were well defined to ensure the consistency of the results. We applied
this method to all the algorithms in this study.
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Algorithm 2: filter_non_zero_division(precision_zd0, precision_zd1,
recall_zd0, recall_zd1)

accuracy : Input. An array of decimals with all the accuracy metrics. The length of this array is n.
precision_zd0 : Input. An array of decimals with all the precision metrics when zero_division is 0.

The length of this array is n.
precision_zd1 : Input. An array of decimals with all the precision metrics when zero_division is 1.

The length of this array is n.
recall_zd0 : Input. An array of decimals with all the recall metrics when zero_division is 0.

The length of this array is n.
recall_zd1 : Input. An array of decimals with all the recall metrics when zero_division is 1.

The length of this array is n.
Result: This method returns a dictionary with an array of cross-validation scores per metric when

zero_division has not happened.

1 f iltered_accuracy← ∅
2 f iltered_precision← ∅
3 f iltered_recall ← ∅
4 for i← 1to n do
5 if precision_zd0(i) = precision_zd1(i) AND recall_zd0(i) = recall_zd1(i) then
6 f iltered_accuracy← f iltered_accuracy ∪ {accuracy(i)}
7 f iltered_precision← f iltered_precision ∪ {precision_zd0(i)}
8 f iltered_recall ← f iltered_recall ∪ {recall_zd0(i)}
9 end

10 end
11 result← ∅
12 result[“accuracy”]← f iltered_accuracy
13 result[“precision”]← f iltered_precision
14 result[“recall”]← f iltered_recall
15 return result

For the calculation of the F1 score, the method defined in Algorithm 3 based on
Equation (6) (previously shown) was used. This method prevented a zero-division error,
which occurs when the divisor in the formula is zero, by returning not a number, or NaN.
The scikit-learn library expected the default value of 0 or 1. However, we were interested in
using NaN as the default value. Using this approach, we could later discard the undefined
values in our evaluation.

Algorithm 3: get_f1(precision, recall)
precision : Input. An array of decimals with all the precision metrics. The length of

this array is n.
recall : Input. An array of decimals with all the recall metrics. The length of

this array is n.
Result: This method returns a set of arrays of cross-validation scores when

zero_division has not happened.

1 result← ∅
2 for i← 1to n do
3 if precision(i) + recall(i) ̸= 0 then
4 f 1← 2 · precision(i)·recall(i)

precision(i)+recall(i)

5 result← result ∪ { f 1}
6 end
7 else
8 result← result ∪ {NaN}
9 end

10 end
11 return result
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2.4.1. Logistic Regression Classification

Algorithm 4 is a binary classification algorithm that uses LogisticRegression [36,43]
from the scikit-learn library as the classifier, with the default value of C=1.0 as the inverse
of the regularization strength. The regularization strength is a parameter that controls the
complexity of the model and prevents overfitting. The solver “liblinear” was chosen
because it performed well on small datasets.

Algorithm 4: classify_by_logistic_regression(X, Y, k)
X : Input. X matrix.
Y : Input. Y matrix.
k : Input. The number of folds for cross-validation.
Result: This method returns a dictionary with the tuples of the mean, standard

deviation, and length of the cross-validation scores for each metric.
The keys of the dictionary are “accuracy”, “precision”, “recall”,
and “f1”.

1 C ← 1.0 // Inverse of regularization strength
2 solver ← “liblinear”
3 classi f ier ← new: LogisticRegression(C, solver)
// Evaluate classification

4 result← classify(x, y, k, classifier)
5 return result

2.4.2. Decision Tree Classification

Algorithm 5 is a classification algorithm that uses DecisionTreeClassifier [36,44]
from the scikit-learn library to predict EM disease based on a set of decision rules.
DecisionTreeClassifier is a nonparametric supervised learning method that can handle
both numerical and categorical data. We determined that the maximum number of features
to be considered when looking for the optimal split to be the square root of the total number
of features. In our case, this means 20 features out of 438 features in our original data.
We then partitioned and evaluated our data using repeated k-fold cross-validation for
our experiment.

Algorithm 5: classify_by_decision_tree(X, Y, k)
X : Input. X matrix.
Y : Input. Y matrix.
k : Input. The number of folds for cross-validation.
Result: This method returns a dictionary with the tuples of the mean, standard

deviation, and length of the cross-validation scores for each metric.
The keys of the dictionary are “accuracy”, “precision”, “recall”,
and “f1”.

1 max_ f eatures← “sqrt” // Square root of the number of columns of X
2 classi f ier ← new: DecisionTreeClassifier(max_features)
// Evaluate classification

3 result← classify(x, y, k, classifier)
4 return result
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2.4.3. Support Vector Classification

Algorithm 6 is a classification algorithm that uses a support vector classifier,
svm.SVC [36,45], from the scikit-learn library to predict EM disease based on a subset of
training points, which are called support vectors. The support vectors define a decision
boundary that maximizes the margin between classes. The support vector classifier uses
a kernel function to map the input data to a higher-dimensional feature space, where the
decision boundary can be found more easily. Depending on the kernel function, the gamma
coefficient is applied or not to control the influence of individual training points on the
decision boundary. We then partitioned and evaluated our data using repeated k-fold
cross-validation for our experiment.

For the SVC classification model, we experimented with two types of kernels: linear
and radial basis function (rbf). The linear kernel used liblinear as the underlying solver,
while the rbf kernel was suitable for nonlinear problems.

Algorithm 6: classify_by_svc(X, Y, k, kernel, C)
X : Input. X matrix.
Y : Input. Y matrix.
k : Input. The number of folds for cross-validation.
kernel : Input. Algorithm to use in the optimization problem. Possible values:

“linear” or “rbf”.
C : Input. The regularization parameter.
Result: This method returns a dictionary with the tuples of the mean, standard

deviation, and length of the cross-validation scores for each metric.
The keys of the dictionary are “accuracy”, “precision”, “recall”,
and “f1”.

// Create C-Support vector classifier
1 if kernel is “rbf” then
2 gamma← “scale”
3 classi f ier ← new: SVC(C, kernel, gamma)
4 else
5 classi f ier ← new: SVC(C, kernel)
6 end
// Evaluate classification

7 result← classify(x, y, k, classifier)
8 return result

2.5. Dataset from a Single Sample Type

Table 13 shows the number of patients per sample type. We used repeated k-fold cross-
validation to evaluate the performance of our machine learning model on different sample
types. We divided the data into k equal parts and tested the model on each part. For the
FRT sample type, we used k = 7, so each part contained 3 samples (EB, EF, and vaginal). For
the GIT sample type, we used k = 4, so each part also contained 3 samples (oral and fecal).

Table 13. Patients per region.

Region Number of Patients Patients with EM

EB 21 7 (33.33%)
EF 21 7 (33.33%)

Vaginal 21 7 (33.33%)
Oral 12 3 (25.00%)
Fecal 13 4 (30.76%)
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2.6. Dataset from Multiple Sample Types

In Section 2.1, we present a data analysis focused on the GIT and FRT regions. This
section also explains how we implemented the proposed method.

There were regions with missing data for some sample types due to a variety of
factors, including the complexity and/or invasiveness of the sample collection process,
contamination, or the degradation of sample quality. As a result, we only took into account
sample types that had complete datasets for each patient and omitted the others from
the study.

Table 14 shows that the GIT region had a very limited sample size and an unbalanced
distribution of patients with EM disease. For the GIT region, we could use k = 3, so each
part would contain 3 samples. However, this led to an insufficient number of samples
per class for classification purposes, resulting in the lowered reliability of the evaluation
metrics, such as accuracy or the F1 score. Therefore, we did not evaluate the classification
performance for the GIT region in this study.

Table 14. Patients per sample type.

Region Number of Patients Patients with EM

GIT (oral + fecal) 08 3 (37.50%)
FRT (EB + EF + vaginal) 21 7 (33.33%)

FRT2 (EB + vaginal) 21 7 (33.33%)

The FRT could be partitioned into 7 subsets, each containing 3 samples that could
be used to conduct an evaluation. Therefore, a new dataset was required that aggregated
features by patient. The merging method presented in Algorithm 7 transformed a dataset
with a list of features into a new dataset, where each patient had a single row with all
their features. For the initial part of the execution, we created a list of columns for all the
types and features of the samples, plus a dictionary of datasets for each “PatientID”. The
next step was to check whether there were any missing sample types for each patient. If
the patient was missing a sample type, then they were skipped. Separately, the algorithm
added the column “IsEndometriosis” and grouped the dataset by “SampleType”. Next,
the values of each type of sample were appended to an array; the array was scaled and then
added to the list of rows. The final output was a dataset with these rows and columns.

A total of 438 bacterial taxa were provided as input data before the merge. The merge
operation increased the number of features to 1314, as each feature had 3 values for the
FRT, 1 for each sample type. Nevertheless, applying the filtering described in Section 2.2.1
reduced the number of features to 716, so 54.49% of the columns were discarded.

The algorithm for FRT classification is based on the previous methods presented in
Algorithm 8. It first combines the data and then applies a supervised machine learning
method to classify the patients.
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Algorithm 7: merge(dataset, features, sample_types=[ “EF”, “EB”,
“Vaginal” ])

dataset : Input. A dataset where the rows are the relative abundances,
and each column represents a feature. At least the columns
“IsEndometriosis”, “PatientID”, “SampleType”, and all the
features should be present.

features : Input. A list of column names that represent the features of the
input data.

sample_types : Input. A list of the different types of samples. The values are
filtered by the column “SampleType”.

Result: This method creates a new dataset, where each row contains all the
patient’s features.

1 column_names← {“IsEndometriosis”, “PatientID′′}
2 for each: sample_type in: sample_types do
3 for each: f eature in: f eatures do
4 column_name← concat(sample_type, “-”, feature)
5 column_names← columns ∪ {column_name}
6 end
7 end
8 rows← ∅
9 dataset_per_patient← group_by(D, “PatientID”)

10 for each: patient_ID, dataset_per_patient in: dataset_per_patient do
11 if NOT∀sample_type ∈ sample_types, ∃row ∈

dataset_per_patient, dataset_per_patient[“SampleType”] = sample_type then
// Ignore it.

12 end
13 else

// All the rows have the same value for this column
14 y← dataset_per_patient[“IsEndometriosis”].first()

// Only rows with the given sample types are allowed
15 dataset_per_patient←

filter(dataset_per_patient, sample_types, “SampleType”)
// Group by column SampleType

16 dataset_per_sample_types← group_by(dataset_per_patient, “SampleType”)
// Recreate the new row

17 for each: sample_type, dataset_per_sample_type in:
dataset_per_sample_types do

18 row_x ← ∀j(columns), column ∈ f eatures : dataset_per_sample_type0,j

19 row_x ← scale_to_ppt(row_x)
20 end
21 row← {y, sample_type} ∪ row_x
22 rows← rows ∪ {new: Array(row)}
23 end
24 end
25 result← new: Dataset(rows, columns)
26 return result
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Algorithm 8: classify_frt(dataset, features, k, classifier)
dataset : Input. A dataset where the rows are the relative abundances, and each

column represents a feature. At least the columns “IsEndometriosis”,
“PatientID”, “SampleType”, and all the features should be present.

features : Input. A list of column names that represent the features of the input
data.

k : Input. The number of folds for cross-validation.
classifier : Input. The specific classifier for the chosen means of classification.
Result: This method returns a dictionary with the tuples of the mean and

standard deviation of each cross-validation score of each metric. The keys
of the dictionary are “accuracy”, “precision”, “recall”, and “f1”.

// Merge feaures
1 sample_types← [“EF”, “EB”, “Vaginal”]
2 merged_dataset← merge(dataset, features, sample_types)
// Select the inputs for classification

3 X ← ∀column, column ∈ f eatures : merged_dataset[column]
4 Y ← merged_dataset[“IsEndometriosis”]
// Evaluate classification

5 result← classify(X, Y, k, classifier)
6 return result

2.7. Hyperparameter Optimization

Hyperparameter optimization of the selected classifier may not necessarily improve its
performance. Furthermore, the influence of hyperparameter optimization could be affected
by the variability induced by the random_state hyperparameter, controlling both the model
and the cross-validation process. Therefore, 100 different values of random_state were
tested in order to achieve the statistical stability of the results of each classification task.

For the SVC algorithm, the regularization hyperparameter C was adjusted following
a manual grid search [46] to find the optimal values. The regularization strength varied
inversely with C, which required a strictly positive value. Following the standard approach,
we set the initial value of C to a default of 1 and then evaluated powers of 10, namely, 1, 10,
and 100, for comparison.

The parameter γ in the rbf kernel was considered by default since preliminary experi-
mentation showed that, in the specified range, the performance did not vary significantly.

3. Results

It is worth noting that if a random classifier [47] from Table 13 was considered, the
accuracy and the F1 score were 10

16 (62.5%) and 3
12 (25%) in the oral region, respectively.

Equations (7)–(10) prove the previous figures.

IP[EM] =
3
12

IP[Non EM] =
9

12

IP[Success EM] =
3

12

IP[Success Non EM] =
9

12

(7)

Accuracy = IP[Success] = IP[Success EM]× IP[EM] + IP[Success Non EM]× IP[Non EM] (8)

Accuracy =
3

12
× 3

12
+

9
12
× 9

12
= (

1
4
)2 + (

3
4
)2 =

10
16

(9)

Accuracy =
10
16

F1 = IP[EM] =
3
12

(10)
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In the fecal sample type, the accuracy and the F1 score were 97
169 (57.4%) and 4

13 (30.8%),
respectively. Equations (11) and (12) prove the previous figures.

IP[EM] =
4
13

IP[Non EM] =
9

13

IP[Success EM] =
4

13

IP[Success Non EM] =
4

13

(11)

Accuracy =
4
13
× 4

13
+

9
13
× 9

13
= (

4
13

)2 + (
9

13
)2 =

97
169

F1 = IP[EM] =
4

13
(12)

In the other regions, the accuracy and the F1 score were 5
9 (55.6%) and 1

3 (33.3%),
respectively. See Equations (13) and (14).

IP[EM] =
7
21

IP[Non EM] =
14
21

IP[Success EM] =
7

21

IP[Success Non EM] =
14
21

(13)

Accuracy =
7

21
× 7

21
+

14
21
× 14

21
= (

7
21

)2 + (
14
21

)2 =
245
441

=
5
9

F1 = IP[EM] =
7

21
=

1
3

(14)

As a result, we can see that the random classifier performed poorly in all regions.
Thus, we recommend using models that reach at least these performance thresholds.

Considering the number of folds of cross-validation and the number of repetitions
(100), the classifier was trained a total of 300 times in the oral and fecal regions and 700
times in the other regions. Nevertheless, only classifiers not presenting zero division were
considered for obtaining the statistics and are reported in the corresponding tables.

As mentioned in Section 2.4, the F1 score was used to compare the performance
of the different machine learning classifiers. Next, the best classifiers obtained for each
model—logistic regression, decision tree, SVM linear, and SVM rbf—after the grid search
are presented and analyzed.

3.1. Logistic Regression Classification

The main parameters for this classification are shown in Table 15. Table 16 summarizes
the main findings of this experiment using these parameters.

Table 15. The parameters for the logistic regression classification model.

Name Value Description

Classifier LogisticRegression Python classifier from sklearn.linear_model
solver liblinear Algorithm to use in optimization problem

max_iter 1,000,000 Maximum number of iterations
C 1.0 Inverse of regularization strength

n_repeats 100 Number of repetitions in RepeatedKFold
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Table 16. Global mean (X) and global standard deviation (σ) for scores for logistic regres-
sion classification.

Metric Statistic EB EF Vaginal Oral Fecal FRT FRT2

# 536 469 625 179 335 610 608

Accuracy
{ X(%) 38.43 37.67 29.97 80.07 59.38 39.78 46.38

σ 0.25 0.26 0.25 0.29 0.25 0.25 0.26

Precision
{ X(%) 23.54 22.28 20.27 71.97 40.72 30.16 35.8

σ 0.33 0.32 0.26 0.4 0.33 0.3 0.32

Recall
{ X(%) 36.29 33.48 38.8 81.01 69.25 54.75 61.84

σ 0.46 0.45 0.47 0.39 0.46 0.48 0.47

F1

{ # 215 175 267 145 232 360 398
X (%) 26.46 25.04 25.31 74.77 49.72 36.54 42.87

σ 0.34 0.34 0.3 0.39 0.36 0.32 0.34
# denotes the number of classifiers used in the calculation of the statistics.

As shown in Table 16, the F1-score of the random classifiers for the EB, EF, and vaginal
samples did not exceed the minimum threshold of 33.33% given by Equation (12).

The F1 scores for the oral and fecal samples were 74.77% and 49.72%, respectively. GIT
sample types were higher than the minimum thresholds of the random classifier, which
were 25% for oral samples and 30.8% for fecal samples. These results validated the initial
hypothesis that the classification of the oral and fecal sample types is better than in the
reproductive region. In particular, the result obtained in the oral region is very promising.

3.2. Decision Tree Classification

The main parameters for this classification are shown in Table 17. Table 18 summarizes
the main findings of this experiment using these parameters.

Table 17. The parameters for the decision tree regression classification model.

Name Value Description

Classifier DecisionTreeClassifier The Python classifier from sklearn.tree.

max_features sqrt
The number of features to consider when looking

for the best split: this parameter affected the
performance and complexity of the decision tree.

n_repeats 100 The number of repetitions in RepeatedKFold.

Table 18. Global mean (X) and global standard deviation (σ) for scores for decision tree classification.

Metric Statistic EB EF Vaginal Oral Fecal FRT FRT2

# 456 510 452 178 270 534 547

Accuracy
{ X(%) 40.86 29.61 38.2 73.6 58.73 51.56 46.86

σ 0.29 0.25 0.25 0.26 0.31 0.28 0.28

Precision
{ X(%) 27.89 13.01 21.2 61.42 39.85 39.61 33.24

σ 0.36 0.28 0.32 0.38 0.41 0.34 0.36

Recall
{ X(%) 41.67 20.69 32.3 80.34 54.81 63.39 50.18

σ 0.48 0.4 0.45 0.4 0.5 0.46 0.48

F1

{ # 205 112 160 143 148 356 294
X (%) 31.06 14.93 23.81 67.6 44.52 46.49 37.68

σ 0.36 0.3 0.33 0.37 0.43 0.36 0.37
# denotes the number of classifiers used in the calculation of the statistics.
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Table 18 shows that the random classifiers for the EF and vaginal samples had F1
scores below 33.3%, which is the minimum threshold given by Equation (14). This value
suggests that they performed more poorly than the random classifier.

3.3. Support Vector Classification with the linear kernel

The main parameters for this classification are shown in Table 19. Table 20 summarizes
the main findings of this experiment using the listed parameters.

Table 19. The parameters for the support vector classification model (linear kernel).

Name Value Description

Classifier SVC Python classifier from sklearn.svm
kernel linear Kernel type to be used

C 1.0 Regularization parameter
n_repeats 100 Number of repetitions in RepeatedKFold

Table 20. Global mean (X) and global standard deviation (σ) for scores for SVC classification with
linear kernel and C = 1.

Metric Statistic EB EF Vaginal Oral Fecal FRT FRT2

# 476 491 667 154 278 572 642

Accuracy
{ X(%) 38.31 35.17 25.69 79.44 69.9 47.03 44.29

σ 0.25 0.25 0.24 0.29 0.24 0.27 0.26

Precision
{ X(%) 21.46 20.03 18.04 70.78 53.99 35.81 33.52

σ 0.31 0.31 0.24 0.41 0.34 0.33 0.30

Recall
{ X(%) 34.77 30.86 36.21 79.87 81.65 59.97 60.44

σ 0.46 0.44 0.46 0.4 0.39 0.47 0.47

F1

{ # 181 169 264 123 227 363 412
X (%) 25.18 22.52 22.88 73.59 62.91 42.37 40.93

σ 0.34 0.32 0.29 0.39 0.34 0.35 0.33
# denotes the number of classifiers used in the calculation of the statistics.

The results of the SVC with the linear kernel shown in Table 20 are very similar to
those obtained with logistic regression. Therefore, the results support the initial hypothesis
that the classification in the oral and fecal regions is better than in the reproductive region.
Furthermore, by taking into account the unbalanced EM class, the results of precision and
recall in the oral and fecal regions are very promising.

3.4. Support Vector Classification with the rbf kernel and C = 100

The main parameters for this classification are shown in Table 21. Table 22 summarizes
the main findings of this experiment using these parameters. It should be noted that in this
case, C was much larger.

Table 21. The parameters for the support vector classification model (rbf kernel and C = 100).

Name Value Description

Classifier SVC Python classifier from sklearn.svm
kernel rbf Kernel type to be used
gamma scale Kernel coefficient

C 100 Regularization parameter
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Table 22. Global mean (X) and global standard deviation (σ) for scores for SVC classification with rbf
kernel, and C = 100.

Metric Statistic EB EF Vaginal Oral Fecal FRT FRT2

# 623 349 574 124 261 575 613

Accuracy
{ X(%) 67.58 25.02 54.59 76.34 66.03 62.72 63.4

σ 0.27 0.14 0.28 0.32 0.26 0.27 0.26

Precision
{ X(%) 60.54 1.72 44.37 68.82 47.19 54.84 55.85

σ 0.34 0.07 0.37 0.4 0.39 0.36 0.32

Recall
{ X(%) 84.27 5.16 64.55 80.65 68.2 76.17 85.24

σ 0.34 0.22 0.45 0.4 0.47 0.4 0.33

F1

{ # 547 18 397 100 178 466 540
X (%) 67.05 2.58 49.56 72.45 53.96 60.23 64.13

σ 0.31 0.11 0.36 0.39 0.4 0.33 0.29
# denotes the number of classifiers used in the calculation of the statistics.

Table 22 shows the results of the SVC classification with the rbf kernel. The F1 score
for FRT2 was high, indicating a good performance. The F1 scores for the other regions were
similar to those of the other models, except for EF. We have crossed out the F1 score of the
EF sample type in Table 22 because the number of classifiers was very small, and it did not
produce meaningful statistics.

4. Conclusions

This paper presents a comparative analysis of three machine learning classification
algorithms: logistic regression, decision trees, and support vector machines. We applied
these algorithms to seven sample types to detect EM disease. Our results show that logistic
regression outperforms the other two algorithms in terms of the F1 score. The logistic
regression achieved an accuracy of 80.07%, a precision of 71.97%, a recall of 81.01%, and an
F1 score of 74.77%. Our findings confirm our initial hypothesis that the oral sample type
contains relevant information to predict EM disease. They also suggest that a machine
learning model based on logistic regression could be a reliable and noninvasive tool for
early diagnosis.

The findings from our study have several implications for both health and research.
They could reduce the costs and risks associated with endometrial analysis and provide
insight into surrogate biomarkers associated with EM disease. The machine learning
model’s results can assist the specialist in considering EM as a potential diagnosis. However,
there are some limitations that we faced that future studies should address.

First, our sample size was relatively small, with only 12 patients in the oral sample type
region and 3 of them with EM disease. Having a small sample size allows for some bias or
noise in the data, which could affect the scalability and robustness of our model. Although
more information was available for the other sample types, the data were still limited.

Second, our study was cross-sectional, which means that we did not follow the patients
over time to monitor the progression of the disease or the response to treatment. This could
limit our understanding of the causal relationships between bacteria and EM disease and
the temporal dynamics of surrogate biomarkers. Therefore, we suggest that future studies
include larger cohorts, thus increasing the sample size, and conduct longitudinal studies to
track changes in the oral sample type over time.

Finally, we encourage future studies to explore additional machine learning algorithms
or methodologies that may improve the performance or comprehension of our model. This
could include fuzzy classifiers, neural networks, ensemble techniques, transfer learning,
pre-trained models, or more sophisticated models that could be enhanced by synthetic data.
Further investigations using machine learning algorithms could reveal the microbial role in
the disease and the local (FRT) and distal (GIT) host–microbial homeostasis related to EM.
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17. Anastasiu, C.V.; Moga, M.A.; Elena Neculau, A.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.M.; Chicea, L.M. Biomarkers for
the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [CrossRef]

18. Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E. Review of Artificial Intelligence and Machine Learning Technologies:
Classification, Restrictions, Opportunities and Challenges. Mathematics 2022, 10, 2552. [CrossRef]

19. Rychnovská, D. Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health. Sci. Eng. Ethics 2021,
27, 30. [CrossRef] [PubMed]

20. Nuñez, H.; Gonzalez-Abril, L.; Angulo, C. Improving SVM Classification on Imbalanced Datasets by Introducing a New Bias. J.
Classif. 2017, 34, 427–443. [CrossRef]

21. Gonzalez-Abril, L.; Angulo, C.; Nuñez, H.; Leal, Y. Handling binary classification problems with a priority class by using Support
Vector Machines. Appl. Soft Comput. 2017, 61, 661–669. [CrossRef]

22. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

23. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef] [PubMed]

24. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An
improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.
2012, 6, 610–618. [CrossRef]

25. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing
taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6.
[CrossRef]

26. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016,
4, e2584. [CrossRef]

27. Barandela, R.; Sánchez, J.; García, V.; Rangel, E. Strategies for learning in class imbalance problems. Pattern Recognit. 2003,
36, 849–851. [CrossRef]

28. Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare.
Nat. Biomed. Eng. 2021, 5, 493–497. [CrossRef]

29. Azizi, Z.; Zheng, C.; Mosquera, L.; Pilote, L.; El Emam, K. Can synthetic data be a proxy for real clinical trial data? A validation
study. BMJ Open 2021, 11, e043497. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fcimb.2020.00350
http://dx.doi.org/10.1186/s40168-021-01184-w
http://www.ncbi.nlm.nih.gov/pubmed/34980280
http://dx.doi.org/10.1186/s43043-023-00136-8
http://dx.doi.org/10.1109/TII.2021.3084352
http://dx.doi.org/10.1016/j.ijar.2010.02.003
http://dx.doi.org/10.1109/ICICV50876.2021.9388403
http://dx.doi.org/10.1016/j.eswa.2014.01.011
http://dx.doi.org/10.1016/j.fertnstert.2009.08.061
http://dx.doi.org/10.1016/j.ygyno.2020.09.047
http://dx.doi.org/10.3389/fonc.2022.852746
http://dx.doi.org/10.1007/s00330-020-06870-1
http://www.ncbi.nlm.nih.gov/pubmed/32337640
http://dx.doi.org/10.1002/14651858.CD012281
http://www.ncbi.nlm.nih.gov/pubmed/27405583
http://dx.doi.org/10.3390/ijms21051750
http://dx.doi.org/10.3390/math10152552
http://dx.doi.org/10.1007/s11948-021-00305-w
http://www.ncbi.nlm.nih.gov/pubmed/33881646
http://dx.doi.org/10.1007/s00357-017-9242-x
http://dx.doi.org/10.1016/j.asoc.2017.08.023
http://dx.doi.org/10.1038/s41587-019-0209-9
http://dx.doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
http://dx.doi.org/10.1038/ismej.2011.139
http://dx.doi.org/10.1186/s40168-018-0470-z
http://dx.doi.org/10.7717/peerj.2584
http://dx.doi.org/10.1016/S0031-3203(02)00257-1
http://dx.doi.org/10.1038/s41551-021-00751-8
http://dx.doi.org/10.1136/bmjopen-2020-043497
http://www.ncbi.nlm.nih.gov/pubmed/33863713


Algorithms 2024, 17, 108 25 of 25

30. Esteban Lasso, A.; Martínez Toledo, C.; Perosanz Amarillo, S. Diseño de un Modelo Para Generar Datos Sintéticos en Investigación
Médica; Universidad de Alcalá: Alcalá de Henares, Spain, 2023; Volume 12.

31. Reiner Benaim, A.; Almog, R.; Gorelik, Y.; Hochberg, I.; Nassar, L.; Mashiach, T.; Khamaisi, M.; Lurie, Y.; Azzam, Z.S.; Khoury,
J.; et al. Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data Results: Systematic
Comparison From Five Observational Studies. JMIR Med. Inform. 2020, 8, e16492. [CrossRef]

32. Chawla, N. Data Mining and Knowledge Discovery Handbook. In Data Mining and Knowledge Discovery Handbook; Chapter Data
Mining for Imbalanced Datasets: An Overview; Springer: New York, NY, USA, 2010; pp. 875–886. [CrossRef]

33. Murtaza, H.; Ahmed, M.; Khan, N.F.; Murtaza, G.; Zafar, S.; Bano, A. Synthetic data generation: State of the art in health care
domain. Comput. Sci. Rev. 2023, 48, 100546. [CrossRef]

34. Spaczynski, R.Z.; Duleba, A.J. Diagnosis of Endometriosis. Semin. Reprod. Med. 2003, 21, 193–208. [CrossRef]
35. Hsu, A.L.; Khachikyan, I.; Stratton, P. Invasive and non-invasive methods for the diagnosis of endometriosis. Clin. Obstet.

Gynecol. 2010, 53, 413–419. [CrossRef] [PubMed]
36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
37. Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale

Machine Learning Classification. Remote Sens. 2019, 11, 185. [CrossRef]
38. Santos, M.S.; Soares, J.P.; Abreu, P.H.; Araujo, H.; Santos, J. Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic

and Overfitting Approaches [Research Frontier]. IEEE Comput. Intell. Mag. 2018, 13, 59–76. [CrossRef]
39. Wong, T.T.; Yeh, P.Y. Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594.

[CrossRef]
40. Simon, R. Supervised Analysis When the Number of Candidate Features (p) Greatly Exceeds the Number of Cases (n). SIGKDD

Explor. Newsl. 2003, 5, 31–36. [CrossRef]
41. Cawley, G.; Talbot, N. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach.

Learn. Res. 2010, 11, 2079–2107.
42. Gonzalez-Abril, L.; Nuñez, H.; Angulo, C.; Velasco, F. GSVM: An SVM for handling imbalanced accuracy between classes

inbi-classification problems. Appl. Soft Comput. 2014, 17, 23–31. [CrossRef]
43. Peng, C.; Lee, K.; Ingersoll, G. An Introduction to Logistic Regression Analysis and Reporting. J. Educ. Res. 2002, 96, 3–14.

[CrossRef]
44. Quinlan, J. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
45. Gonzalez-Abril, L.; Angulo, C.; Velasco, F.; Català, A. Dual unification of bi-class support vector machine formulations. Pattern

Recognit. 2006, 39, 1325–1332. [CrossRef]
46. Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve

Classification Performance. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2016, 14, 1502. [CrossRef]
47. Falomir, Z.; Museros, L.; Sanz, I.; Gonzalez-Abril, L. Categorizing paintings in art styles based on qualitative color descriptors,

quantitative global features and machine learning (QArt-Learn). Expert Syst. Appl. 2018, 97, 83–94. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2196/16492
http://dx.doi.org/10.1007/978-0-387-09823-4_45
http://dx.doi.org/10.1016/j.cosrev.2023.100546
http://dx.doi.org/10.1055/s-2003-41326
http://dx.doi.org/10.1097/GRF.0b013e3181db7ce8
http://www.ncbi.nlm.nih.gov/pubmed/20436318
http://dx.doi.org/10.3390/rs11020185
http://dx.doi.org/10.1109/MCI.2018.2866730
http://dx.doi.org/10.1109/TKDE.2019.2912815
http://dx.doi.org/10.1145/980972.980978
http://dx.doi.org/10.1016/j.asoc.2013.12.013
http://dx.doi.org/10.1080/00220670209598786
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/j.patcog.2006.01.007
http://dx.doi.org/10.12928/telkomnika.v14i4.3956
http://dx.doi.org/10.1016/j.eswa.2017.11.056

	Introduction
	Materials and Methods
	Data Sources
	Data Source for Oral Region
	Data Source for Fecal Region
	Data Source for Endometrial Fluid Region
	Data Source for Endometrial Biopsy Region
	Data Source for Endometrial Vaginal Region

	Preprocessing Data
	Filtering
	Scaling
	Class Imbalance

	Dataset from One Area
	Machine Learning Models
	Logistic Regression Classification
	Decision Tree Classification
	Support Vector Classification

	Dataset from a Single Sample Type
	Dataset from Multiple Sample Types
	Hyperparameter Optimization

	Results
	Logistic Regression Classification
	Decision Tree Classification
	Support Vector Classification with the linear kernel
	Support Vector Classification with the rbf kernel and C = 100

	Conclusions
	References

