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Abstract: Salient object detection (SOD) aims to identify the most visually striking objects in a
scene, simulating the function of the biological visual attention system. The attention mechanism
in deep learning is commonly used as an enhancement strategy which enables the neural network
to concentrate on the relevant parts when processing input data, effectively improving the model’s
learning and prediction abilities. Existing saliency object detection methods based on RGB deep
learning typically treat all regions equally by using the extracted features, overlooking the fact that
different regions have varying contributions to the final predictions. Based on the U2Net algorithm,
this paper incorporates the split coordinate channel attention (SCCA) mechanism into the feature
extraction stage. SCCA conducts spatial transformation in width and height dimensions to efficiently
extract the location information of the target to be detected. While pixel-level semantic segmentation
based on annotation has been successful, it assigns the same weight to each pixel which leads to
poor performance in detecting the boundary of objects. In this paper, the Canny edge detection loss
is incorporated into the loss calculation stage to improve the model’s ability to detect object edges.
Based on the DUTS and HKU-IS datasets, experiments confirm that the proposed strategies effectively
enhance the model’s detection performance, resulting in a 0.8% and 0.7% increase in the F1-score
of U2Net. This paper also compares the traditional attention modules with the newly proposed
attention, and the SCCA attention module achieves a top-three performance in prediction time, mean
absolute error (MAE), F1-score, and model size on both experimental datasets.

Keywords: attention mechanism; channel attention; salient object detection; edge detection loss

1. Introduction

In an era of rapidly increasing data volume and diverse application scenarios, tradi-
tional machine learning methods have exhibited significant limitations in processing image
data. As a result, deep learning, which relies on massive data, has gradually become the
mainstream approach. Over the past few years, deep learning methods have consistently
outperformed previous state-of-the-art machine learning techniques in various domains,
with computer vision being one of the most prominent examples [1–3]. Computer vision is
a crucial field within artificial intelligence which studies how computers acquire, process,
analyze, and understand digital images [4,5]. The primary research areas in computer
vision include image classification, object detection, image segmentation, object tracking,
scene understanding, image retrieval, image matching, and image registration.

Inspired by the human biological system, an attention mechanism tends to focus
on individual parts when processing large amounts of information. In cases of limited
computing power, an attention mechanism can be used as a resource allocation scheme
to prioritize the processing of more important information [6,7]. Furthermore, attention
introduces a form of explanation to neural network models, which are often considered
highly complex [8]. Attention mechanisms in neural networks have been utilized in a wide
range of tasks, such as image caption generation, text classification, machine translation,
action recognition, and speech recognition. The channel attention mechanism learns the
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weight relationship of each pixel within a single channel dimension and applies it to all
pixel regions [9]. Attention mechanisms can adaptively focus on important regions by
weighting image features at different locations and channels. However, typically only a
single attention mechanism is utilized.

Salient object detection simulates the visual attention and aims to extract the most
informative objects and regions in the scene, and then combines this local information to
effectively understand the whole scene. Normally, the main approaches can be summarized
as locating salient objects and drawing the outline. Salient object detection has been widely
used in various computer vision tasks, such as stereo matching, image understanding,
co-saliency detection, action recognition, video detection and segmentation, etc. In recent
years, FCN-based encoder–decoder models have achieved success in pixel-level dense
prediction tasks, but many challenges still remain. (1) The contribution of different features
to salient objects is not considered, and redundant information such as noise from low
layers and fuzzy boundaries from high layers will lead to accuracy degradation. (2) In
the saliency detection task, the binary cross-entropy (BCE) loss is usually used as the loss
function to train the relationship between the supervised saliency map and the ground
truth. However, the BCE loss treats each pixel equally and often has low confidence. (3) The
importance of context information for extracting salient regions is ignored, resulting in the
omission of part of the object. The current strategies for improving salient object detection
algorithms include fusion models, single-stream/multi-stream models, attention modules,
and more. In order to effectively learn the features of RGB images and depth images
simultaneously and explore the correlation between RGB images and depth maps, various
models fuse RGB images and depth maps using different strategies [10–12].

This paper proposes a split coordinate channel attention (SCCA) that divides the
input feature map channels in half. SCCA performs convolution operation and width and
height pooling aggregation, effectively extracting feature information from the image and
determining the position information of the target. This paper introduces the Canny edge
detection loss [13] to redefine the loss function in salient object detection. It accurately
calculates the pixel loss of the object boundary, addressing the issues of missing edges and
difficulty in distinguishing salient objects in cluttered backgrounds.

The main contributions of this paper are as follows:

1. This paper proposes an attention module called split coordinate channel attention
(SCCA), which splits input channels to capture high-level semantic information and
location information simultaneously.

2. This paper replaces the encoder and decoder of U2Net [14] with SCCA and devises
a novel loss function C2 loss to prioritize edges and objects. By implementing these
improvement strategies, this paper presents SCCA-U2Net for salient object detection.

3. SCCA-U2Net achieves top-three results on four metrics in salient object detection tasks
on the DUTS and HKU-IS datasets and outperforms nine other advanced attention
modules. Ablation studies demonstrate the superiority of SCCA-U2Net, and this
paper provides visualizations of comparing detection results.

2. Related Work
2.1. Salient Object Detection Research

In recent years, salient object detection (SOD) methods utilizing encoder–decoder and
feature aggregation architecture have achieved high performance. Below, we will briefly
review models related to this work.

PAGE-Net [15] exploits an essential pyramid attention structure for emphasizing salient
object detection while focusing on the importance of salient edges and attributes the unclear
boundary to the smoothness of convolution kernel and downsampling. F3Net [16] proposes
a cross feature module (CFM) to refine both high-level features and low-level features and
consists of a cascaded feedback decoder (CFD) to correct the output features before the final
output. BASNet [17] designs a refinement module (RM) and a hybrid loss function which
consists of BCE loss, SSIM loss, and IoU loss. Introducing the calculation of similarity and
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intersection, BASNet better localizes the boundary of salient object detection. GateNet [18]
contains multilevel gate units to address the issue of interference control between the en-
coder and decoder during information exchange. To deal with the separate extraction of
RGB and thermal features, CFIDNet [19] designs a feature-enhanced module to extract
informative depth cues and leverage multiscale complementary information, avoiding the
noise-degraded saliency map result from simple element-wise addition or multiplication.
CCFENet [20] proposes an essential cross-collaboration enhancement strategy (CCE), which
facilitates the interactions when encoding. HFANet [21] jointly models boundary learning
to salient object detection, addressing the issue of cluttered backgrounds, scale invariance,
complicated edges, and irregular topology. It extracts abundant context in the deep semantic
features using Gated Fold-ASPP, integrating adjacent features with an unparameterized
alignment strategy by AFAM. ERPNet [22] is delivered into two parallel decoders for edge
extraction and feature fusion, respectively. ERPNet addresses the challenges posed by
diverse object types, various object scales, numerous object orientations, and cluttered
backgrounds in optical remote sensing images. EDN [23] employs an extreme downsam-
pling technique to enhance high-level features and recovers object details with an elegant
decoder. CASNet [24] trains a baseline encoder–decoder model using the Lovász softmax
loss function, which outperforms 19 state-of-the-art image-and-video-based algorithms.

The research above mainly focuses on extracting semantic information and feature
fusion between early and deeper levels. It explores the boundaries of salient objects,
studies more realistic loss functions during training, and designs a more efficient network.
These studies have improved the detection performance of the model to varying degrees.
However, current models still encounter issues such as poor baseline model performance,
inaccurate localization of salient objects, and failure in edge detection, among others.

2.2. U2net Algorithm

U2Net is used for salient object detection (SOD), which aims to segment the most
prominent object in an image. Unlike image recognition, SOD focuses more on local de-
tail information and global contrast information, rather than deep semantic information.
Therefore, the primary research focuses on extracting features at multiple levels and scales.
The network structure of U2Net is shown in Figure 1. The overall structure is an encoder–
decoder architecture known as U-Net, in which each stage consists of a residual U-block
(RSU). This module consists of a two-layer nested U-structure. The U2Net is designed to
support deep architectures with rich multiscale features while incurring relatively low com-
putational and memory costs. The architecture is built exclusively using RSU blocks and
does not depend on any pretrained backbone network for feature classification. This makes
it flexible and adaptable to various work environments with a minimal loss of performance.
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Figure 1. The flow chart of U2Net. 

3. Proposed Method 
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3. Proposed Method
3.1. Split Channel Coordinate Attention

The split channel coordinate attention (SCCA) module in this paper is used to process
the feature maps extracted by U2Net. The attention module can guide the network to
process information selectively, focusing on the more meaningful spatial parts.

Given an intermediate feature map F ∈ R2C×H×W , SCCA divides the feature map into
halves F1, F2 ∈ RC×H×W along the channels, which is performed in different ways—line
1 and line 2, respectively. For line 1, F1 is operated by convolution, normalization, and
activation to obtain the high-level semantic information. For line 2, F2 is operated by two
transformations along the height and width direction to obtain the location of salient objects.
The overall attention mechanism can be summarized as

F′
1 = M1(F1)⊙ F1 (1)

F′
2 = M2(F2)⊙ F2 (2)

where ⊙ denotes the element-wise multiplication, F′
1, F′

2 is the output of F1, F2, and M1, M2
denotes line 1, line 2, respectively. Figure 2 depicts the whole computation process of SCCA.

F2 is processed on each channel by an average pooling transformation along the height
and width, where H, W denotes the height and width of F2, xc(h, i), xc(j, w) is the pixel
value at the location (h, i), (j, w) in the channel equal to c, and zh

c (h), zw
c (w) is the output

along two directions, respectively.

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (3)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (4)

The above two transformations aggregate feature maps along the channels, respec-
tively, to obtain a pair of direction-aware feature matrices zh, zw. Then, zh is transposed

and concatenated by zw, and
[(

zh
)T

, zw
]

is operated by convolution, normalization, and a

non-linear activation function. Where [ ] is the concatenate operation along the channels,
ϕ denotes a series convolution, batch normalization, σ denotes the activation function, and
f ∈ RC×H×W denotes the output.

f = σ

(
ϕ

[(
zh
)T

, zw
])

(5)

Then, SCCA repeats the transformation along the height and width to obtain f h, f w

and performs convolution and regularization in two dimensions to obtain gh, gw, re-
spectively. To avoid the problem of gradient explosion and gradient disappearance, f is
element-wise multiplied by the matrices gh, gw. xc(i, j) denotes the pixel value of f , and
yc(i, j) denotes the pixel value of the final output on every channel of line 2. Then, SCCA
concatenates both outputs to aggregate the semantic information and location information.
y1, y2 denotes the output from the different line 1 and line 2s, and Y is the final output
of SCCA.

gh = σ
(

ϕh

(
f h
))

(6)

gw = σ(ϕw( f w)) (7)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (8)

Y = [y1, y2] (9)
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3.2. C2 Loss

Edge detection is a common method for image segmentation based on grayscale
variation. Its purpose is to extract the features of discontinuous parts of the image. The
Canny operator is an edge detection technique introduced by John F. Canny in 1986 [25].
It involves five main steps: Gaussian filtering, pixel gradient calculation, non-maximum
suppression, hysteresis thresholding, and isolated weak edge suppression.

The Gaussian kernel used in Gaussian filtering is a two-dimensional Gaussian function
with dimensions x and y, which is typically used to remove the noise. The standard
deviation in the two dimensions can be expressed in the form

G(x, y) =
1

2πσ2 exp(− x2 + y2

2σ2 ) (10)

The Sobel operator calculates the gradient magnitude S and direction θ, and the
formula is as follows, where dx, dy denotes the convolution kernel in the x and y directions.

dx =

−1 0 1
−2 0 2
−1 0 1

, dy =

−1 −2 −1
0 0 0
1 2 1

 (11)

S =
√

d2
x + d2

y (12)

θ = arctan
(

dy

dx

)
(13)

Non-maximum suppression retains the maximum gradient value at each pixel and
filters out other values to make boundaries clear. The Canny operator sets an upper and
lower bound: if the pixel value is greater than the upper threshold, it is considered as
the boundary; if the pixel value is less than the lower threshold, it is considered not the
boundary. If a weak boundary connected to a strong boundary at a pixel is considered as
the boundary, the other weak boundaries are deleted.

U2Net utilizes the BCE loss function to calculate the pixel-level loss between the
ground truth and predicted maps, like semantic segmentation tasks, where PG(r,c), PS(r,c)
denotes the pixel value at the location (r, c) of the ground truth and predicted maps,
respectively. But, in this way, U2Net treats all pixels equally and has no focus, which may
lead to the failure of edge detection.

L1 = −
(H,W)

∑
(r,c)

[
PG(r,c) log PS(r,c) + (1 − PG(r,c)) log(1 − PS(r,c))

]
(14)

This paper utilizes the Canny detector to obtain the boundary of the objects in the
ground truth and predicted maps and sums up the number of pixels where the true edge
and predicted edge are not equal. The Canny loss formula is as follows:

L2 = −∑
(r,c)

[
PG(r,c) ̸= PS(r,c)

]
(15)
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Overall, combining BCE loss and Canny edge detection loss, this paper proposes a
novel loss function, namely, C2 loss. While U2Net effectively detects the salient objects,
the edges of objects of predicted pictures are clearer. Figure 3 depicts the loss calculation
process. The C2 loss can be expressed in the form as follows, where L is the total loss, and
α is the learning weight for edge detection:

L = L1 + αL2 (16)
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Loss

Predicted Map

Ground Truth  
Figure 3. Loss calculation graph.

3.3. Improved U2Net

Based on the two improvement strategies, this paper proposes an enhanced U2Net
algorithm for salient object detection. In the backbone network for feature extraction, while
keeping the overall framework unchanged, the encoder module is replaced by the SCCA
module, which can better identify the position information of the object. The structural
changes are shown as follows. The BCE loss function is replaced by C2 loss when calculating
total loss. The architecture of Encoder and SCCA-Encoder can be seen in Figures 4 and 5.
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4. Results and Discussion
4.1. Experiment Processing

The training and prediction process of salient object detection for the SCCA-U2Net
algorithm is as follows:

1. Model parameter initialization, including the training device, number of input batches,
number of iterations, weight decay, learning rate, validation intervals, and whether to
use mixed precision;

2. Input the training dataset in batches and perform scaling, random cropping, random
flipping, and regularization of the images;

3. Model training, calculate the loss of the training process;
4. Update the weight values according to the direction of the loss gradient and update

the learning rate according to the measurement;
5. If the maximum number of iterations is reached, the training is terminated, and

the weight value is retained. Otherwise, the mean absolute error is calculated, the
experimental round is iterated, and the training step is continued until the maximum
number of iterations is reached;

6. Input pictures and predict the binarized images.

4.2. Experiment Details

For the experiment, we selected several attention modules for comparison, including
encoder, CA (coordinate attention) [26], SCCA (split coordinate channel attention), CBAM
(convolutional block attention module) [27], SENet (squeeze-and-excitation network) [28],
triplet [29], GCB (global context block) [30], SKNet (selective kernel network) [31], NLB
(non-local block) [32], and APNB (asymmetric pyramid non-local block) [33]. The objective
is to confirm the role of attention modules in salient object detection and to compare
the highlighting effects of different attention modules on salient object detection. The
prediction time for a single image, the mean absolute error (MAE), F1-score, and model
size are compared and analyzed.

The split ratio of the squeeze block and the kernel size of spatial attention in the CBAM
is set as 16 and 7 × 7, respectively. The average transformation and the ratio used in SE is
adaptive average pooling and 2, respectively. The reduction ratio in the SCCA, CA is 4, and
the kernel size of the convolution of line 1 in the SCCA is 3 × 3. The overall architecture of
attention modules is depicted in Figure 6.



Algorithms 2024, 17, 109 8 of 14Algorithms 2024, 17, x FOR PEER REVIEW 10 of 16 
 

Feature

AAP

Conv2d

ReLU

Sigmoid

Output

Conv2d

(b)  SE Block

Feature

CA

Sigmoid

SA

Sigmoid

(c)  CBAM 
Block

Feature

Output

AAP_W

MLP

Sigmoid

AAP_H

Conv2d_H Conv2d_W

(a)  SCCA 
Block

Half Half

Feature

Output

AAP_W

MLP

Sigmoid

AAP_H

Conv2d_H Conv2d_W

(d)  CA Block

Feature

Output

(e) Triplet 
Attention Block

SG SG SG

Feature

Output

Sigmoid Sigmoid

(f)  Encoder 
Block

FC

Output

 
Figure 6. The structure of six compared attention blocks, AAP, MLP, CA, SA, RT, and FC, represents 
the adaptive average pooling, multilayer perceptron, channel attention, spatial attention, residual 
transformation, and full connection, respectively. 

4.3. Dataset 
DUTS is a saliency detection dataset that includes 10,553 training images and 5019 

test images. All training images are collected from the ImageNet DET train/validation set, 
while the test images are obtained from the ImageNet DET test set and the SUN dataset. 
Both the training and test sets include highly challenging saliency detection scenarios. 

HKU-IS contains 4447 original images and corresponding ground truths, each of 
which is annotated at the pixel level for salient object detection research. Some images are 
selected for visualization in Figure 7. 

Car Boys Bird Dog 

    

Figure 6. The structure of six compared attention blocks, AAP, MLP, CA, SA, RT, and FC, represents
the adaptive average pooling, multilayer perceptron, channel attention, spatial attention, residual
transformation, and full connection, respectively.

4.3. Dataset

DUTS is a saliency detection dataset that includes 10,553 training images and 5019 test
images. All training images are collected from the ImageNet DET train/validation set,
while the test images are obtained from the ImageNet DET test set and the SUN dataset.
Both the training and test sets include highly challenging saliency detection scenarios.

HKU-IS contains 4447 original images and corresponding ground truths, each of which
is annotated at the pixel level for salient object detection research. Some images are selected
for visualization in Figure 7.
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4.4. Evaluation Metrics

There are several metrics used to evaluate the model, including precision (P), recall (R),
F-measure (Fβ), and mean absolute error (MAE). The precision calculates the proportion
of correctly predicted positive samples among the predicted positive samples. The recall
calculates the proportion of correctly predicted positive samples among the true positive
samples. The F-measure calculates the weighted harmonic mean considering the precision
and recall, while the absolute mean error measures the average pixel absolute error between
the predicted saliency map and the true value. M is the binary mask image transformed
from the saliency map, G is the true value, S is the predicted value, and W and H represent
the width and height of the feature map, respectively. The introduction of hyperparameters
α, β results in a set of maximum or average Fβ measures.

P =
|M ∩ G|
|M| (17)

R =
|M ∩ G|

|G| (18)

Fβ =
(

1 + β2
) P × R

β2(P + R)
(19)

MAE =
1

W × H

W

∑
i=1

H

∑
j=1

∣∣Si,j − Gi,j
∣∣ (20)

4.5. Training Process

The experimental results in Figure 8 show the F1-score and MAE of different attention
modules under 50 rounds and 100 rounds on the DUTS and HKU-IS datasets, respectively.
The F1-score of each model increases with an increase in iterations, and the MAE of each
model decreases with an increase in iterations, indicating that the training of the model
is successful.

Figure 8. Training results of the DUTS dataset with added attention modules: encoder, CA (channel
attention), SCCA (split coordinate channel attention), CBAM (convolutional block attention module),
SE (squeeze-and-excitation Network), and triplet. (a,b) shows the comparison results of F1-score and
MAE, respectively.

4.6. Comparison Analysis

The proposed SCCA module is compared with nine existing state-of-the-art methods.
For a fair comparison, different methods are trained using the same parameters. The
number of batches, weight decay, number of training rounds, and initial learning rate are
set to 16, 1 × 10−4, 50, and 1 × 10−3, respectively. The top-three outstanding performers
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under the single measure are highlighted in bold. The comparison results are shown in
Figure 9 and Table 1.

Figure 9. Detection results of the compared attention mechanisms.

The encoder makes predictions in the shortest time, taking only 0.387 and 0.020 s to
predict a single image, respectively. This illustrates that the original U2Net model utilizes
convolutional coding in a reasonable and efficient manner. The SCCA training model has
the smallest MAE, being the only model with less than 0.07 and 0.03. SCCA achieves the
highest F1-score measure, while CA and SENet are tied for second place on the DUTS
dataset, both with an F1-score measure of 0.802. The module sizes of SENet, SCCA, and
GCB are the smallest, at 0.50 MB, 0.57 MB, and 0.57 MB, respectively. In the comprehensive
evaluation, SCCA demonstrates the best performance, achieving the top-three marks in
all four indicators. Encoder and SENet perform well on the HKU-IS dataset but still have
potential in improving detection precision and reducing training error. Therefore, the SCCA
module has the best detection effect among all attention modules. It not only boasts a high
prediction accuracy and few parameters but also has a short prediction time, making it
very suitable for deployment on mobile devices for salient object detection tasks.

Table 1. Detection results of the compared attention mechanisms.

Attention Size
DUTS HKU-IS

Times MAE F1-Score Times MAE F1-Score

Encoder 1.29 0.387 0.071 0.801 0.020 0.032 0.932
CA 0.58 0.555 0.072 0.802 0.054 0.033 0.927

SCCA 0.57 0.424 0.067 0.806 0.054 0.028 0.938
CBAM 0.6 0.609 0.074 0.801 0.089 0.032 0.930
SENet 0.5 0.436 0.071 0.802 0.021 0.031 0.931
Triplet 0.88 0.544 0.071 0.801 0.034 0.034 0.924
GCB 0.57 0.582 0.070 0.800 0.038 0.036 0.919

SKNet 6.65 1.086 0.840 0.792 0.072 0.040 0.894
NLB 35.01 1.568 0.180 0.768 1.002 0.048 0.882

APNB 35.01 1.653 0.160 0.770 1.004 0.048 0.884

4.7. Ablation Studies

This paper conducts ablation experiments on the two proposed enhanced strategies to
verify the impact of SCCA and C2 loss on detection performance, respectively. The model
that incorporates both improvement strategies achieves optimal performance across three
metrics, albeit with a slight increase in prediction time. The results of ablation studies are
shown in Figure 10 and Table 2. The MAE of U2Net+ SCCA+ C2 Loss is significantly smaller
than that of the original model, without any additional improvement strategies added.
Moreover, the F1-score is higher than that of the model with only a single improvement
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strategy added. Therefore, the ablation experiment demonstrates that the two enhancement
strategies outlined in this paper lead to improvements in the model’s performance to
varying degrees.

Figure 10. Ablation results of U2Net.

Table 2. Ablation results of U2Net. × indicates that the strategy is not used,
√

indicates that the
strategy is used.

SCCA C2 Loss Size DUTS HKU-IS

Times MAE F1-Score Times MAE F1-Score

× × 1.29 0.387 0.071 0.801 0.020 0.032 0.932√
× 0.57 0.424 0.067 0.806 0.054 0.028 0.938

×
√

1.29 0.402 0.069 0.804 0.032 0.030 0.934√ √
0.57 0.424 0.066 0.809 0.056 0.028 0.939

4.8. Visualization

In the experiment, six attention modules, namely, encoder, SCCA, CA, CBAM, SENet,
and triplet, were chosen for visualizing the detection results. Figure 11 displays the
detected salient objects using an RGB color map, while Figure 12 shows the detected salient
objects using a black-and-white binarized image. For the bird detection results, SCCA can
accurately detect the bird entity. However, encoder, CA, and triplet cannot detect the tail of
the bird. Although CBAM can detect the bird entity, it is unable to detect the size of the
bird. SCCA can accurately detect the woman holding the cat, eliminate noise interference,
and outline the woman and the cat. All attention modules perform well in the phone booth
detection, but only the predictions of SCCA and encoder which have no gap in the middle
of the phone booth are close to the ground truth. When it comes to detecting small sea
lions, all attention modules show similar detection effects.

The model’s detection results on the DUTS and HKU-IS datasets indicate that the
SCCA attention module exhibits the best overall performance in the evaluation metrics
for salient object detection. Furthermore, the two enhancement strategies proposed in
this paper have contributed to the model’s improved performance. Visualization results
demonstrate that the detection performance of SCCA in real-life scenarios surpasses that of
other comparison models. It offers rapid detection speed and minimal model parameters,
making it fully suitable for deployment in real-world scenes.
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5. Conclusions

In this paper, we propose an enhanced salient object detection algorithm, SCCA-
U2Net, to address issues such as incomplete target detection, edge detection failure, noise
interference, and interference from secondary targets in salient object detection tasks.
Compared to attention modules such as encoder, CA, CBAM, SENet, triplet, GCB, SKNet,
NLB, and APNB, SCCA achieves top-three excellent detection results in the four indicators
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of single prediction time, F1-score, absolute mean error, and model size in the DUTS and
HKU-IS datasets. This capability allows for effective detection of the target entity and
edge and the ability to distinguish salient objects from secondary objects and background.
A novel loss function, C2 loss, proposed in this paper enables the model to learn the
edge information of the target to be detected and enhances the detection performance of
the model. The experimental results on ablation show that the model achieves the best
performance when employing two improved strategies simultaneously. Compared to the
original model, the improvement effect is evident.
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