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Abstract: Anomaly detection in data streams (and particularly time series) is today a vitally important
task. Machine learning algorithms are a common design for achieving this goal. In particular, deep
learning has, in the last decade, proven to be substantially more accurate than shallow learning in a
wide variety of machine learning problems, and deep anomaly detection is very effective for point
anomalies. However, deep semi-supervised contextual anomaly detection (in which anomalies within
a time series are rare and none at all occur in the algorithm’s training data) is a more difficult problem.
Hybrid anomaly detectors (a “normal model” followed by a comparator) are one approach to these
problems, but the separate loss functions for the two components can lead to inferior performance.
We investigate a novel synthetic-example oversampling technique to harmonize the two components
of a hybrid system, thus improving the anomaly detector’s performance. We evaluate our algorithm
on two distinct problems: identifying pipeline leaks and patient-ventilator asynchrony.

Keywords: machine learning; inferential sensing; anomaly detection; pipeline leak detection; patient-
ventilator asynchrony

1. Introduction

Anomaly Detection (AD) is the process of observing and recognizing deviations in a
relatively small number of data points compared to the overall volume of data available [1].
Hawkins [2] describes an anomaly as a data instance that “deviates so significantly from
other observations as to arouse suspicion that it was generated by a different mechanism”.
In a wide variety of contexts, that “other mechanism” is a departure from normal processes
or operations, which also frequently threatens loss or harm to persons or property. Anomaly
detection, under various guises, is thus a high-value industry:

• Pipeline leak detection identifies losses of product due to a physical leak in a pipeline; the
product may be one of many types of liquids or gasses, and the product is sometimes
dangerous or toxic.

# Water-main pipeline leak-detection equipment revenues were $1.5 billion USD
in 2020, expected to grow to) $2.5 billion by 2028 (https://www.reportlinker.c
om/p06063427/Water-Pipeline-Leak-Detection-System-Market-Forecast-to-C
OVID-19-Impact-and-Global-Analysis-By-Offering-Equipment-Type-Pipe-Typ
e-and-End-User-and-Geography.html, (accessed on 29 January 2024)).

# Oil and gas pipeline leak-detection equipment revenues were $2.1 billion USD
in 2020, likely growing to over $2.8 billion by 2027 (https://www.industryrese
arch.co/enquiry/request-sample/18445354, (accessed on 29 January 2024)).
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• Patient-Ventilator Asynchrony (PVA) detection involves recognizing a discordance be-
tween a mechanical ventilator’s operation and the breathing reflex of a patient, one
that can exacerbate distress or even cause major injury if not addressed correctly, with
the worst case being a life-threatening pneumothorax (collapsed lung) [3,4].

In all of these cases, earlier recognition of the anomaly affords the chance to avoid or
mitigate the associated harm. Hence, improving the effectiveness of anomaly detection is
of significant economic and social benefit.

The focus of this article is on the intersection of semi-supervised and contextual
anomaly detection, specifically contextual anomaly detection in a time series where anoma-
lies are so rare that none appear in the training data. Semi-supervised contextual anomaly
detection is often approached via a hybrid model: a “normal model” is trained to mimic
the normal behaviors of a phenomenon (e.g., via a forecasting model trained on normal
data). The running predictions of this normal model are then compared against the actual
observations of the phenomenon using a separate algorithm (the Anomaly Detector, AD);
when the two deviate substantially, an anomaly is declared. Machine learning, and more
recently deep learning, is one common approach to building anomaly detectors [5]. For
semi-supervised contextual AD, hybrid designs with a deep normal model and a shallow
AD component (e.g., [6]) are often a reasonable approach, since the outputs of the normal
model are expected to be substantially lower-dimensional than its inputs. However, as
noted in [7], the loss functions for each component of the hybrid design are generic, rather
than being designed for the anomaly-detection objective. They also only measure loss for
the individual component, rather than the whole hybrid system. As a result, their detection
performance may be inferior, particularly for a very complex time series.

Our proposed solution is to manipulate the predictions of the normal model via strati-
fied sampling, in order to alter the AD model trained on those predictions. We propose an
oversampling technique (based on the creation of synthetic “normal” forecasts) to improve
the performance of the contextual anomaly detector for a time series with particularly
complex behaviors. We have evaluated this architecture in two domains: pipeline leak
detection and patient-ventilator asynchrony detection, finding that the proposed algorithm
performs well for both datasets in comparison to the literature.

Our contribution in this paper is to design and evaluate a semi-supervised AD algo-
rithm for time series data. To the best of our knowledge, this is the first time a deep neural
network forecaster has been combined with a shallow one-class classifier and synthetic-
example oversampling for this task. Our oversampling technique is also unique in the
literature, as it produces synthetic forecasts, rather than a synthetic point in embedding
space or an entire synthetic time series. This new architecture is able to achieve very high
performance in the leak-detection and PVA-detection problems.

The remainder of this paper is organized as follows. We first review essential back-
ground in Section 2 and related work in Section 3. We discuss the theoretical development
of our model in Section 4 and our design and evaluation methodology in Section 5. We
present our experimental results and compare them with the existing literature in Section 6.
We offer a summary and discussion of future work in Section 7.

2. Background

Our review in this section covers deep anomaly detection, pipeline leak detection, and
patient-ventilator asynchrony detection.

2.1. Deep Anomaly Detection

Detecting anomalies in data has been a major scientific concern for over 100 years;
research in outlier detection in the statistical community dates back to the 19th century.
In the modern world, awash in data from innumerable sensors, anomaly detection is
a common need in a wide variety of major systems and infrastructure. Per Chandola
et al. [5], AD algorithms can be classified into three categories: supervised, semi-supervised,
and unsupervised. The supervised algorithms resemble general supervised classification
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algorithms; examples of normal and anomalous behavior are collected, and a discriminative
model for them is learned. As classifiers assume that the normal and anomalous classes
both map to regions in the extracted feature space, a large amount of anomalous data is
needed to adequately cover this classification region. In reality, however, anomalous data
are often difficult or expensive to come by, and such data are almost always scarcer than
observations of normal behavior. This also means that a class imbalance problem further
complicates training the AD. In datasets with very complex behaviors, it may become
extremely difficult to adequately separate normal and anomalous instances. Semi-supervised
AD algorithms, on the other hand, are distinct from general semi-supervised learning. This
class of algorithms assumes that only normal examples are available in the training data,
due to the rarity or expense of observing anomalies. A semi-supervised AD is thus trained
to model normal behavior, and deviations from that model are considered anomalies.
One-class classifiers are commonly used in this class of problems. Finally, unsupervised
anomaly detection presumes that no labels are available at all. An assumption is made that
anomalies are relatively rare, and so models that capture the great majority of data points
should represent normal behavior. Deviations from these models are again declared to
be anomalies.

The type of anomaly to be detected also varies. The greatest volume of literature
focuses on point anomalies, for which values are highly distinct from normal behavior.
However, if “normal” behavior is not a constant phenomenon (as commonly happens in a
time series), one also encounters contextual anomalies, values that are within the overall
range of normal behaviors but are significantly different then observations around that
particular time [5].

In the past several years, deep learning has been proposed for AD. Deep Learning
(DL) methods have the ability to learn extremely complex tasks, through several levels
of representation acquired via individually simple non-linear modules. Moving deeper
into the model, each representation is thus at a higher level of abstraction. Studies also
indicate that DL is superior to “shallow” learning algorithms (decision trees, support vector
machines, etc.) in time-series forecasting [8,9] and modeling sequential data [10]. For
these reasons, DL seems to be a good match for the normal model. Some studies of deep
AD approaches have illustrated a considerable superiority over traditional methods in a
range of real-world problems [1,7]. However, recent investigations show that deep neural
networks are trained to be interpolators [11] and perform poorly on out-of-distribution
data [12].

2.2. Learning from Imbalanced Data

The well-known problem of imbalanced data, or more generally Sample Selection
Bias (SSB), refers to cases where either or both of the training and testing datasets for some
phenomenon of interest have a different distribution than the actual ground truth. This
undermines machine learning algorithms, because changing the distribution of examples
also changes their influence on how the current representation of a problem (weights in a
DNN, support vectors in SVM, etc.) is updated in the learning algorithm (see [13,14] for
reviews). Note, however, that [15] argues that SSB’s impact on a classifier varies with the
dataset, as well as its inductive bias.

In general, it is desirable to mitigate SSB in order for a learning algorithm to faithfully
model the phenomenon under study. One approach focuses on building new classification
algorithms that incorporate SSB mitigation directly, e.g., [16,17]. However, these approaches
require the creation of a bespoke learning algorithm. Attempts to mitigate SSB more
generally in machine learning can broadly be divided into stratification and cost-sensitive
classification approaches.

Stratification approaches usually undersample a majority class, oversample a minority
class, or both. Uniform random selection is one method for undersampling, but numerous
others exist [18]. Oversampling approaches include the simple replication of individual
minority-class examples or copying the minority class to form ensembles [19]. The well-
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known SMOTE algorithm [20] creates synthetic examples randomly placed on the line
connecting a pair of minority-class nearest neighbors. There are several extensions of
the basic SMOTE algorithm. The SMOTE + Tomek and SMOTE + ENN algorithms were
proposed in [21]. The authors in [22] created a new variant of SMOTE called Borderline-
SMOTE, in which only the minority examples near the class boundary are over-sampled.
Ref. [23] proposes combining random undersampling and SMOTE. Ref. [24] uses a different
method to generate synthetic examples.

The other general mitigation for SSB, Cost-Sensitive Classification (CSC), imposes
differential costs on errors in the majority and minority classes and revises the learning
algorithm to minimize the total error cost. This can again be performed by creating bespoke
algorithms, but the more common approach follows the MetaCost technique [25] of creating
a meta-classifier that provides cost-sensitivity to arbitrary learning algorithms. Hybrids of
stratifications and cost-sensitive learning are presented in [26].

2.3. Pipeline Leak Detection

It is generally accepted that the most economic, eco-friendly, and safest way to trans-
port large amounts of gas and liquid products over long distances is through pipelines [27].
On the condition that a pipeline is maintained properly, its operational lifetime can stretch
over several decades. The main factors that cause pipeline failures (leaks) include corrosion,
natural hazards, and mechanical damage (commonly from an excavation) [28]. A pipeline
leak has the potential to cause significant environmental and financial costs, depending on
what product was being transported at that time [29].

While preventing leaks is a principal goal in pipeline design, construction, and main-
tenance, the precautionary principle mandates that a pipeline operator also be prepared
to detect and stop leaks if they occur. Many jurisdictions, including the US and Canada,
will also require the operator to mitigate any environmental harm done at its own expense.
Leak-detection systems are one technology employed for this purpose. They can detect
and localize leaks as soon as they occur, which is a key step in stopping the leak and mini-
mizing harm done. A broad range of leak-detection systems (LDSs) are utilized in energy
pipeline industries that are recognized by the American Petroleum Institute (API). These
LDSs are organized in three categories: non-continuous external LDS (periodic inspections
for damage or leaks), continuous external LDS (condition monitoring via sensors), and
continuous internal LDS (sensor streams are continuously compared with a computational
model; also known as Computational Pipeline Monitoring, CPM [30]) [31].

CPM systems obtain field measurements from the pipeline’s supervisory control and
acquisition (SCADA) system and use a computational algorithm to determine if a leak is
present [30]. There are number of CPM algorithms in use, ranging from basic calculations
and hydraulic models to artificial intelligence and machine learning techniques. Inferential
sensing, in particular, has received considerable attention lately. The general concept is to
estimate a complex system state (which is not directly observed) by combining readings
from a number of simple sensors; machine learning has recently been a favored technique
for estimating this state [32]. Applications to LDS have been reported in [33,34].

2.4. Patient-Ventilator Asynchrony Detection

Every single cell in our body needs oxygen to live. Generally speaking, the brain can
only tolerate 3 to 6 min without oxygen before brain damage occurs [35]. Thus, breathing is
a basic sign of life and an innate skill of all mammals. The main driving force of respiration
is the pressure difference between the lung cavity and the atmosphere. As is shown in
Figure 1, when the diaphragm expands the lung cavity volume increases, dropping the air
pressure in the cavity below ambient atmospheric pressure, causing airflow to enter the
lungs (inhalation). Likewise, when the diaphragm contracts, the cavity volume decreases,
raising the air pressure above ambient and causing airflow to exit the lungs (exhalation) [36].
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Figure 1. Process of respiration [37].

Mechanical Ventilation

Mechanical ventilators supplement or replace a patient’s breathing effort when their
efforts are insufficient to maintain life. While both positive-pressure and negative-pressure
mechanical ventilators are used in different contexts, this research focuses only on Positive-
Pressure Ventilation (PPV). PPV requires that a pressure source (typically a supply of a
mixture of air and medical-grade oxygen controlled by electromechanical valves) generate
the inhalation and exhalation airflows in a ventilation tube that feeds directly into a patient’s
lungs. During inhalation, the system must generate a pressure above ambient in order to
create airflow into the patient’s lungs (which are assumed to begin in an exhaled state),
thereby delivering oxygen. The system pressure expands the patient’s diaphragm and
chest cavity. During exhalation, pump pressure is released and air in the lungs is exhausted
driven by the relaxation of the diaphragm. This of course carries waste CO2 out of the body.
A back-pressure valve regulates the Positive End Expiratory Pressure (PEEP) to maintain
the patient’s airway pressure above the atmospheric level, thereby opposing the complete
passive emptying of the lung.

The ventilator waveform (see Figure 2) is a standard presentation of the behavior of a
mechanical ventilator in operation. Air pressure and flow are plotted against time, resulting
in a bivariate time series having a complex repeating behavior. Flow (plotted in blue in
Figure 2) refers to the movement of breathing gasses between the patient and the ventilator
(measured as volume per time unit). A normal flow always starts with a positive value and
is then followed by a negative one, representing the processes of inhalation and exhalation,
respectively. The flow peaks in each direction are followed by plateaus: the inhalation hold
allows for gas exchange within the lungs, and the exhalation hold is a rest. The areas under
the positive portion and above the negative portion of the curve are defined as the tidal
volume inhaled (TVi) and tidal volume exhaled (TVe), respectively. These are the amounts
of air inhaled and exhaled within a single breath. Additionally, the flow waveform reveals
additional physiological information about whether a patient is resisting airflow and the
compliance of the lung [38]. However, these attributes are out of scope for the present study,
which focuses on patient-ventilator asynchrony.

Pressure, of course, refers to the air pressure delivered to the patient’s airway. A plot of
this pressure over time should have a form similar to the orange curve in Figure 2. Pressure
rises at the start of inhalation, holds briefly for gas exchange, and then drops as the patient
exhales. Notice that the pressure might not drop all the way to ambient in ventilators
that have a minimum pressure option to control PEEP. A PEEP above ambient can offer
several benefits to a patient, most notably holding an airway open rather than allowing
collapse at the end of a breath. Regardless of the PEEP setting, the control set-points for
pressure in a ventilator are nominally a constant square wave [38]. Some other pressure–
time relationship features can also be measured, such as the peak inspiratory pressure (PIP)
and plateau pressure (Pplat). PIP has an obvious meaning and is vital to patient safety, as
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excessive pressure can, in the worst case, rupture a lung. Pplat is the pressure in the airway
at zero airflow after inhalation [38].
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Patient-ventilator asynchrony (PVA) occurs when the patient’s own breathing reflex is
at odds with the mechanical ventilator’s control timings. In particular, if a patient who is not
under deep sedation has not received enough oxygen, then they may continue attempting
to inhale even after the ventilator has moved to the breath-hold or even exhalation phase.
As a result, the patient might not fully exhale before the next inhalation starts. This is
particularly dangerous if the ventilator compensates for low flow with higher pressures.
Lung injuries are a frequent outcome in this case. Thus, avoiding or correcting PVA is a key
concern. It is, for instance, a key reason why ventilated patients are sedated to suppress the
breathing reflex. Modern ventilators also display the real-time waveforms so that medical
personnel can check for PVA manually [38].

Clinical experience indicates that there are two principal types of PVA. Double Trig-
gering Asynchrony (DTA) is presented in Figure 3a, and Breath Stacking Asynchrony (BSA)
is presented in Figure 3b. In both cases, we can see that TVi is considerably greater than
TVe, meaning the lungs become hyperinflated [39]. However, the waveforms in Figure 3
are only examples; a number of other patterns would also constitute DTA or BSA. Indeed,
visually differentiating DTA and BSA waveforms has been shown to be inaccurate, and
so heuristic rules have been adopted to recognize them. Carers first determine whether
a breath is normal or abnormal and then apply the heuristics to diagnose a specific PVA.
Furthermore, some breaths match these heuristics, but are actually coughs, suctions, or
movements; these must be discounted [39].

Given how serious PVA can be, the difficulty in manually differentiating different
PVAs and the fact that qualified ICU personnel cannot spend their whole shift looking at
a single patient’s monitor, automated systems for detecting or even responding to PVA
are essential. Most of the existing PVA alarm algorithms use heuristic rules encoded
as thresholds on waveforms or features derived from them [40]. However, physiologic
manifestations vary from person to person, increasing the false-positive and false-negative
alarms rates. There are also some artifacts, such as coughs, suctions, and movements by
patients, that can lead to frequent false positive alarms [41], leading to alarm fatigue that
can put the patient at greater risk. As a result, some researchers have begun investigating
machine learning for detecting PVA from waveform data. We review this literature in
Section 3.3.
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3. Related Work
3.1. Anomaly Detection

Modern semi-supervised AD models are commonly either hybrid models or one-class
deep neural networks. The hybrid models are made up of two segments where deep
learning models are usually used as feature extractors. The features learned by the deep
models are then fed to conventional algorithms, such as one-class Support Vector Machine
(SVM) classifiers [7]. Some studies have achieved very promising results using various
hybrid models [6]. However, the hidden layers of the deep model use generic loss functions
as opposed to anomaly-detection-specific functions, which could have a negative impact
when the deep model acts as a feature extractor [7].

One-class neural networks integrate the representation learning capabilities of deep
networks with the one-class objective function, in order to develop boundaries that isolate
the normal data instances from the anomalies. Two well-known examples of such models
use a hypersphere (Deep Support Vector Data Description or Deep SVDD [42]) and a
hyperplane (OC-NN [43]) as their one-class objective, respectively. The research findings
indicate that one-class neural networks are among the state-of-the-art methods especially
for complex datasets; however, training times can be lengthy, especially when working
with high-dimensional data [7].

One-class adversarial networks (OCANs) [44] are end-to-end one-class anomaly detec-
tors that exploit the concept of bad GANs introduced in [45] to produce “bad” instances
using normal data in the training set. “Bad” in this context means the generator distribution
should not match the true data distribution. Hence, the data generated in bad GANs are
supposed to be complementary to the training dataset as opposed to matching, in order to
improve the generalization performance of a semi-supervised anomaly-detection algorithm.

Unsupervised anomaly-detection approaches rely on the intrinsic properties within
the data, such as distances or densities. Deep neural network architectures can be employed
to identify these properties in the dataset [46]. A major advantage of unsupervised learning
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is its cost-effectiveness since there is no need for labeled data for the training process.
Nevertheless, obtaining good performance with complex datasets is often very difficult.
Unsupervised methods are also quite vulnerable to noise and faulty data and, thus, are
generally outperformed by supervised or semi-supervised models. Furthermore, when un-
supervised autoencoders are used for anomaly detection there are critical hyper-parameters,
such as dimensionality reduction, to be tuned [7].

3.2. Sample Selection Bias Mitigation in Time Series

There is relatively little work in SSB for function approximation algorithms or time
series forecasting. In function approximation, the usual approach is to reweight exam-
ples [47], and so these are relatives of CSC. The Numeric Smote algorithm [48] instead uses
stratification to correct SSB in these problems. SSB also occurs in time series data, affecting
time series classification, forecasting, and anomaly detection [49]. Resampling approaches
(including SMOTE) have been adapted to the time series domain in, e.g., [50–52]. More
generally, resampling is also one approach for data augmentation, a collection of techniques
for perturbing examples from a dataset to create new synthetic examples that help to
improve deep neural network training [53]. Interestingly, there appears to be no work to
date on using time series forecasting to generate individual synthetic observations, as is
performed in our work. Existing work either generates a synthetic example in embedding
space, thus producing a completely synthetic delay vector, or produces an entire synthetic
times series using generative models (with Generalized Adversarial Networks a common
choice) [49].

The problem with the above is that delay vectors should not be thought of as indepen-
dent points in a feature space, which we can interpolate between. Each delay vector is a
sampled portion of a (reconstructed) state–space trajectory for the system being observed,
as per Takens [54]. Other sampled trajectories cannot simply be found by interpolating be-
tween two existing ones, particularly if the system’s state–space attractor has a complicated
geometry (time series datasets are generally not simple quadratic systems, so attractors are
not limited to points or limit cycles [55]). Thus, synthetic examples are fairly likely to inject
noise into the forecast model, rather than mitigating SSB. Meanwhile, creating a synthetic
time series is perhaps appropriate for forecasting problems with dozens or hundreds of
variates but would again be a strong noise signal when there are only a few variates being
modeled. Adding a synthetic variate might still be helpful in a pure forecasting application
(by again expanding the decision regions surrounding actual data points, as in OCAN), but
in AD, the goal is to find unusual behaviors. It seems likely that the injected noise points
themselves would be identified as outliers, which defeats the purpose of adding them to
improve the detection of existing outliers in the dataset.

3.3. Patient-Ventilator Asynchrony Detection

Gholami et al. [56] detected cycling asynchrony (delayed termination and premature
termination). Random forests and decision tree algorithms are combined in an ensemble
using normalized pressure and flow waveform data. Pan et al. [57] proposed an inter-
pretable 1D CNN anomaly detector with a global average pooling layer to monitor four
types of PVA after collecting pressure and flow waveform data separately. Rehm et al. [39]
used the Synthetic Minority Over-sampling TEchnique (SMOTE) to deal with imbalanced
breath metadata (normal breaths are far more common than asynchronous breaths). Using
extracted features, such as eTime, TVi, and TVe, an ensemble machine learning model is
produced. Zhang et al. [58] created a two-layer long short-term memory (LSTM) network
to detect double triggering asynchrony (DTA) and ineffective inspiratory effort (IEE) from
ventilator waveforms.

4. Proposed Anomaly Detector

Our proposed anomaly detector follows the hybrid design approach [5]; a normal
model is trained first, and its output is fed to the AD component. In addition, a technique
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for generating synthetic examples is designed for this system. The proposed architecture is
presented in Figure 4.
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In Figure 4, a time series (consisting only of “normal” observations) first undergoes
delay embedding and is passed to a forecasting algorithm. The resulting forecasts, as
well as the actual next-step observation, form the AD training dataset. This dataset is
then expanded by adding synthetic examples to the AD dataset, in effect oversampling
the “normal” predictions. This resampled dataset is then used to train the AD algorithm.
Outputs from the AD are then passed to some alarm interface, be it an automated log,
a warning signal for a human operator, etc. We discuss the three components of this
architecture below, starting with the normal model and AD to provide context for the
synthetic-data-generator algorithm.

4.1. Normal Model

The heart of a semi-supervised AD algorithm is, of course, the model of normal
behavior. For the case of semi-supervised contextual AD, one can design the normal model
by either reducing the contextual AD problem to a point AD one or by designing a model
of the contextual problem. In the latter case, the model is then used to forecast normal
behavior, and the AD algorithm will treat deviations from the forecast as anomalies.

For the specific case of AD in time series data, a number of studies have employed
regression-based forecasting algorithms, often from the Auto-Regressive Integrated Moving
Average (ARIMA) family, as normal models [5]. An ARIMA(p,d,q) model is given by

(1 − ∑p
i=1 aiLi) · (1 − L)dXt = (1 − ∑q

i=1 βiLi) · εt (1)

where p lags are taken, αi is the auto-regression coefficient of the i-th lag, L is the lag
operator (representing a previous observation Xt−i), d is the order of differencing, Xt is
the t-th element of a time series, q is the width of the moving-average window, βi is the
moving-average coefficient of the i-th lag, and εt is the t-th error term; errors are assumed
to be i.i.d. random variables drawn from a zero-mean normal distribution [59]. The topic
of auto-regressive models is well-known in statistics, and we direct the reader to those
sources for further information.

Numerous shallow machine learning algorithms have also been trained as forecasters
for this role. Generally, ML algorithms are adapted for time series forecasting by making
use of Takens’ results [54] on dynamical systems. It was shown that the unknown state
space for the dynamical system that produced a time series can be reconstructed at a
chosen point by taking a sufficient number of lags of the time series. A time series is thus
“embedded” into a set of ordered vectors of previous observations leading up to each point
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in the time series (less a few points at the beginning). At the n-th observation of the time
series, a delay vector has the form

→
xn =

(
xn−(m−1)d, xn−(m−2)d, . . . , xn

)
(2)

where m is the number of lags (equivalently, the number of dimensions in the reconstructed
state space), and d is a “delay” parameter that allows for subsampling of the time series
(allowing one to control the temporal correlations between elements of the vector); both
are integers. Per Takens [54], if a sufficient number of lags are taken, the embedding space
is related to the unknown original one by a smooth, invertible mapping; they are thus
equivalent, and the future values of the time series can be predicted from the lags. All
values of the d parameter are mathematically equivalent, but in practice, excessive temporal
correlations obscure the spatial correlations that define an attractor in state space [60].

The method of lags also undergirds many forecasters based on deep learning, in
particular the widely-used Keras implementations of LSTM and 1D CNNs [53]. Experience
now indicates that these algorithms are commonly more accurate forecasters than shallow
ML. We will explore both LSTM and 1D CNNs as the normal model in this work, as they
have repeatedly been found to be highly accurate forecasting models in numerous domains.

4.2. Anomaly Detector

For a contextual semi-supervised AD algorithm, the normal model is used to forecast
the current observation given prior observations, and then, the anomaly detector compares
the forecast against the actual current observation. This is a well-known step, usually
performed by one-class classification algorithms. A one-class classifier takes the data points
known to belong to a single class and learns a class boundary that encompasses them. This
is a key reason why semi-supervised AD is effective: “normal” behavior is very often a
well-defined concept that can be mapped to a specific region (or regions) of a feature space.
Anomalous behavior, on the other hand, is commonly not a well-defined concept, but often
most usefully defined as not normal. The one-class algorithms are thus highly congruent
to the AD problem; the one-class SVM and isolation forests, in particular, are common
choices [5]. We will explore both options in this work.

Nevertheless, it is quite common for finite training datasets to not fully capture a
concept or have too few examples in some regions of the feature space. In the case of
AD algorithms, the training dataset consists of (forecast, actual) data pairs, the forecast of
course being the output of the normal model. If the “normal” training observations do
not sufficiently cover the “normal” concept in feature space, then the AD could have an
excessive number of false-positive errors (an anomaly was erroneously detected) because
the “normal” concept extends beyond the class boundary that was learned. It is thus
necessary to widen the normal-class boundary, while minimizing any increase in the false
negative alarm rate. The latter goal, however, requires that we employ the normal model to
determine how to adjust the AD decision boundary, even though in the hybrid model, these
are independent algorithms. We have developed an oversampling technique for normal
examples that solves this problem, which we discuss in the next sub-section.

4.3. Oversampling for Reducing False Positives

In the OC-SVM algorithm of [61], the problem is to identify a region of the input
space where data points belong with high probability to a chosen distribution. The input
space is mapped to a high-dimensional inner-product space F using a kernel function
K, and then, a function f : F → [−1, 1] is learned that separates data points

→
xi belonging

to the chosen distribution
(

f
(→

xi

)
= 1

)
from those that do not

(
f
(→

xi

)
= −1 . As with

other SVM approaches, this is accomplished by selecting a set of support vectors, which
define a separating hyperplane with a maximum margin. However, unlike the classic SVM
algorithm, OC-SVM does not deal with a well-defined “negative” class, and so a maximum-
margin hyperplane must be determined in some other way. The solution adopted by [61]
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is to determine the maximum-margin hyperplane separating the training data points
from the origin point (zero vector) of the space F. The key parameters for learning the
hyperplane are the chosen kernel and its parameters and the margin parameter ν (which
represents the probability of a normal example in the test dataset appearing outside the
class boundary). Drawing these points together, we therefore find that the occurrence of a
large number of false positives with OC-SVM as our AD algorithm would be due to the
empirical distribution in the test set not matching the empirical distribution in the training
set; i.e., a covariate shift occurs.

Covariate shifts are a subclass of the general sample-selection bias problem, sometimes
also called learning from imbalanced data. As such, the techniques for learning under
imbalanced data appear to be reasonable candidates for modifying our hybrid AD algo-
rithm. As discussed in Sections 2.2 and 3.2, the two general approaches are as follows: (1) to
impose differential misclassification costs on FP and FN errors and use a cost-sensitive
classifier to minimize the total error cost; and (2) stratification-based approaches that over-
sample or under-sample specific classes in the training dataset to minimize the number
of FN or FP errors. Our proposed method follows the stratification approach and specifi-
cally is inspired by the SMOTE synthetic-example technique [20]. In SMOTE, a synthetic
example is created by randomly choosing a point in feature space on the line connecting
two nearest neighbors in the minority class (to ensure that the new point is interior to
the minority class boundary). The empirical investigation in [20] showed that creating
new synthetic examples broadened the decision regions learned by a C4.5 tree, whereas
replicating existing samples caused the decision regions to focus tightly on the examples
themselves. This is a promising characteristic, but creating a useful synthetic example that
can also reliably be considered “normal” is not so simple. Merely using SMOTE based
on the AD training dataset would not be expected to expand the decision boundary; by
definition, every synthetic example should be interior to the class boundary and should
thus not be a new support vector. If the support vectors do not change, then the learned
boundary will not change. In addition, the context for the (forecast, actual) data pairs is not
a part of the AD training set, and so there is no way to decide whether or not the synthetic
data point legitimately represents a “normal” instance.

Instead, we propose to use the normal model’s forecasts to create synthetic examples.
Consider a forecast for observation Xn, generated from lags Xn−1, Xn−2, . . .Xn−m. The
forecasted observation X̂n can then be treated as the most recent lag, and we forecast Xn+1
based on X̂n, Xn−1, . . .Xn−(m−1). This is in addition to the forecast we obtained based

on Xn, Xn−1, . . ., Xn−(m−1). The two forecasts ( ˆ̂Xn+1 and ˆXn+1, respectively) give us two

(forecast, actual) pairs in place of just the one, assuming that ˆ̂Xn+1 ̸= ˆXn+1. This seems like
a reasonable assumption, as we would expect the (inevitable) forecast error present in X̂n

to lead to increased error in ˆ̂Xn+1. If we repeat this step for every forecast data point, we
should ultimately double the size of the AD training dataset, and there should thus be a
high likelihood that the set of support vectors computed by the OC-SVM in feature space
will change.

5. Experimental Methodology
5.1. Pipeline Leak Detection
5.1.1. Datasets

Given that real-world pipeline leak data are proprietary and leaks are rare, we have
used computer-generated and lab-generated datasets in our research. The first dataset
consists of computer-simulated data for an idealized pipeline and records the flow and
pressure in the pipeline upstream and downstream of a simulated leak point. Our training
data contain no leaks, while we simulate leaks of various sizes during the out-of-sample
test period.

For our laboratory-generated data, Barrios [62] constructed and instrumented a
laboratory-scale pipeline loop that simulates normal and leakage behavior in an under-
ground liquids pipeline. Sixteen features were measured, including temperature measure-
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ments at four locations, pressure measurements at three locations, dielectric permittivity
at three locations, flow measurements at two locations, one mass measurement (for de-
termining the total volume leaked), and three-dimensional accelerometer readings (for
determining vibrations) at one location. The Reynolds number was a calculated feature
based on fluid type and viscosity. The experimental apparatus used to create the lab
generated data is illustrated in Figure 5.
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At its core, the apparatus is a pipe loop that begins and terminates in a reservoir tank.
Fluid is moved through the loop via a centrifugal pump connected to a variable-frequency
drive, allowing for control of the flow and pressure at the pump outlet. The loop passes
through a watertight box (the “sandbox” in Figure 5) that can be filled with different soil
types, in which the pipeline is buried. This segment of pipe is where the leaks will occur.
The pipe loop then returns to the reservoir. A separate pipe loop joins the reservoir to a
controlled heating element, which maintains a constant temperature in the reservoir.

The pipeline comprises three sections, each utilizing pipes of different diameters. A
1-inch segment connects the reservoir to the centrifugal pump. A narrower 0.75-inch section
is attached to the pump outlet and runs through the sandbox to the accelerometer (box
labeled “5”). This is the segment that replicates real-life pipeline behavior (as determined
based on the Reynolds number). The segment itself is instrumented with two pressure
transducers, one temperature transducer, and one accelerometer. After the accelerometer,
a 1.5-inch diameter pipe segment joins back to the reservoir, equipped with one flow
meter and one pressure transducer. This configuration yields good pump power efficiency
by decreasing the fluid resistance by approximately 40%, while maintaining the target
Reynolds number in the “leak” segment [62].

Leaks are simulated via a small hole (2 mm or 3 mm) drilled in the buried part of the
0.75-inch segment. An electromechanical valve in the pipe is used to simulate a rupture
of the pipe (a much larger breach). Leaked fluid will affect the soil’s properties, notably
the temperature and electrical impedance (measured by soil probes). The amount of fluid
leaked is determined by a load cell that measures the weight of the sandbox and the material
held inside it, while pressure transducers before and after the leak measure the resulting
pressure differential. An additional pressure transducer aids in deconfounding transient
signals, while the accelerometer records pipe vibrations. All sensor data are acquired via
LabView 2018. The dataset used in this research includes three leak states: 3 mm leak,
2 mm leak, and no leak. For a more in-depth explanation of the apparatus and the data
acquisition process see [62].
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5.1.2. Methodology

The computer-generated data are split into training and test data, with the training
data consisting of 75% of the observations, all occurring before the leak is introduced. The
test set, on the other hand, is 50% normal data and 50% leaks. We created three different
versions of the computer-generated data, with leaks amounting to 2%, 5%, and 30% of the
flow being simulated.

The lab-generated data are first split as follows: the training dataset consists of 75%
of the “normal” observations (converted to delay embeddings and pooled across all of
the experimental conditions), selected in chronological order beginning with the earliest
observations. The out-of-sample test sets combine either the “2 mm Leak” or “3 mm
Leak” observations with the remaining normal examples (similarly embedded and pooled).
A validation set consisting of 10% of the training data is split off for use in parameter
exploration for the normal model. Once the best parameter set is found, the normal model
is re-trained using those parameters on the full training set. The anomaly detector is then
trained on the full training set (again, consisting only of normal data), and its performance
is finally measured using the out-of-sample test sets.

Based on the existing literature, the candidate deep architectures for the normal
model were narrowed down to 1-dimensional Convolutional Neural Networks (1-D CNNs)
and the Long Short-Term Memory (LSTM) architecture. These are well-known as highly
accurate models in time-series forecasting. The 1-D CNN model consists of two Conv1D
layers with 32 and 64 filters, strides equal to 1, and the same padding. BatchNormalization
and Maxpooling1D are performed after each layer; dropout is performed on the last layer
before the fully-connected output layer. Regarding the LSTM model, it includes 2 LSTM
layers each containing 20 units and a fully connected output layer. The validation set error
is measured in terms of the Root-Mean-Square-Error (RMSE).

The Isolation Forest [63] and One-Class SVM [61] are our candidate Anomaly Detector
components. Parameter exploration was again performed, but this time, the training classi-
fication error was used to determine the best parameterization (the goal being to classify
the training set as normal, with no errors). The AD’s performance based on the final out-of-
sample dataset is measured in terms of the True Positive Rate (TPR) and the False Positive
Rate (FPR). Define True Positives (TPs) as the number of leaking observations correctly
classified as leaks, False Positives (FPs) as the number of no-leak observations erroneously
classified as leaks, True Negatives (TNs) as the number of no-leak observations correctly
classified, and False Negatives (FNs) as the number of leaky observations erroneously
classified as no-leak. TPR and FPR are given by the following:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

5.2. PVA Detection
5.2.1. Dataset

In our study, breath metadata come from 5 distinctive patients who received ventila-
tion in the ICU at University of California Davis Medical Center. Each row of metadata
represents an intact breath, containing 16 columns of clinically relevant data, such as the
breath number (BN), tidal volume inhaled (TVi), tidal volume exhaled (TVe), and so on. All
data were completely anonymized before the dataset was provided. Further details on this
dataset may be found in [39].

Raw ventilator data need to be reformatted into a two-variable time-series representing
the flow and pressure waveforms. We employed the ventmap open-source multi-purpose
ventilator analysis library ([64], also used in [39]), which amongst other features, will con-
vert raw breath metadata into a 2-column waveform PB-840 (Puritan Bennett 840, Covidien,
U.S.) format. (Note that every breath in a waveform may contain a variable number of data
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points.) After the initial classification based on heuristic rules and visual inspections by
clinicians, there are 5862 normal breaths and 1835 breaths containing asynchronies in the
dataset. To train our normal model and anomaly detector, we combine these files together
into a training set and out-of-sample test set. The training set contains 3862 normal breaths,
and the out-of-sample set contains the remaining 2000 normal breaths and 1835 breaths
containing asynchonies.

5.2.2. Methodology

As with the leak-detection data, we first train the normal model using the training
dataset. The training data is split 70-20-10 into a training set, a validation set and test set,
respectively. The training and validation sets are used to tune the hyperparameters of the
normal model, with the test set then providing an unbiased measure of the normal model’s
forecast accuracy.

We will again examine multiple candidates for the normal model architecture. Our
first candidate is the 1D CNN, for the same reasons as in Section 4.1. Given the fact that
ventilator waveforms are complex time-series signals, recurrent neural networks, such as
LSTM, are again also sensible candidates. However, it is known that LSTM is relatively slow
compared to some more recent architectures [53]. Hence, we will instead explore the more
recent Gated Recurrent Unit (GRU) networks [65], both with and without dropout [66]. In
addition, bidirectional recurrent networks have shown considerable promise, as learning
both a sequence and its reversal has the potential to highlight key invariants in the data
(much as image reversals are used in data augmentation for modern image classifiers). They
are commonly used in natural language processing, for example. Our final normal model
candidate is thus a bi-directional GRU [53]. All of these candidate models are implemented
in Tensorflow using the Keras libraries.

The OC-SVM algorithm is selected as our AD component. As an unsupervised algo-
rithm, it is trained using the full training set obtained from the normal model (3862 actual
vs. predicted observations). We will also explore adding synthetic data produced by our
resampling algorithm (a further 3862 actual vs. synthetic observations). The algorithm is
then evaluated using the test data from the normal model (i.e., this is a single-split design).
We evaluate our AD with the traditional measures of sensitivity and specificity. Sensitivity
is another name for the True Positive Rate (TPR) of Equation 3. Specificity is also known as
the True Negative Rate (TNR) and is computed as follows:

TNR =
TN

TN + FP
(5)

using the symbols of Equations (3) and (4). Specificity can also be computed as 1-FPR
for binary classification problems. In this case, the Positive class is defined as a breath
exhibiting PVA.

6. Results and Discussion
6.1. Pipeline Leak Detection

We begin with the performance of the normal models, which are presented in
Tables 1 and 2. Plainly, both models demonstrated very similar performances, with the
exception of the training time. The time required to train the LSTM model is roughly
20 times the 1-D CNN model, which can be very significant depending on the size of the
dataset. We thus select the 1-D CNN model over the LSTM model as our normal model,
and these are the forecasts we provide to the AD component.
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Table 1. Normal model for computer-generated data.

Model RMSE Training Time

1-D CNN 0.01 30 s

LSTM 0.01 600 s

Table 2. Normal model for laboratory data.

Model RMSE Training Time

1-D CNN 0.09 70 s

LSTM 0.09 1200 s

Our initial AD experiments do not employ any resampling, in order to determine
a performance baseline for our algorithm. The performances of our AD candidates are
reported for the computer-generated data in Tables 3–5 and for the laboratory data in
Tables 6 and 7. Across all leak scenarios in each dataset, both models were able to reach
very high accuracy. All accuracy and TPR values are well above 0.99, while the FPR is less
than 0.005. The Isolation Forest AD does seem to perform better than OC-SVM in the 2 mm
scenario using the laboratory dataset; we thus performed a statistical test to check whether
or not the difference is significant.

Table 3. Anomaly detectors, computer-generated data, 2% leak.

Model Accuracy TPR FPR

Isolation Forest 0.9956 0.9945 0.0003

OC-SVM 0.9955 0.9946 0.0014

Table 4. Anomaly detectors, computer-generated data, 5% leak.

Model Accuracy TPR FPR

Isolation Forest 0.9997 0.9999 0.0006

OC-SVM 0.9999 1.0 0.0006

Table 5. Anomaly detectors, computer-generated data, 30% leak.

Model Accuracy TPR FPR

Isolation Forest 0.9968 0.9962 0.0011

OC-SVM 0.9966 0.9966 0.0036

Table 6. Anomaly detectors, laboratory data, 3 mm leak.

Model Accuracy TPR FPR

Isolation Forest 0.9994 1.0 0.0014

OC-SVM 0.9997 1.0 0.0007

Table 7. Anomaly detectors, laboratory data, 2 mm leak.

Model Accuracy TPR FPR

Isolation Forest 0.9995 1.0 0.0014

OC-SVM 0.9984 0.999 0.0042
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Demšar advises using non-parametric tests when comparing learning algorithms. The
Wilcoxon signed ranks test is most suitable in this case, as two machine learning algorithms
are being compared [67]. Defining the null hypothesis as both algorithms performing
similarly with an insignificant difference, the Wilcoxon signed ranks test will reject the
null hypothesis if the computed p-value is less than the chosen significance α (we adopt
the common choice of α = 0.05). The test resulted in a p-value of 1.9381 × 10−18, and so
the null hypothesis is rejected, and the Isolation Forest AD does significantly outperform
OC-SVM based on the 2 mm data. Additionally, to evaluate the effect size, we compute
Cliff’s delta [68], obtaining a value of 0.4489, indicating a moderately strong effect.

We next compare our completed architecture based on our dataset against anomaly
detectors from the literature. For both the computer-generated and lab-generated data we
pool the different leak scenarios together (this seems reasonable since performances for
all of them were extremely high). The comparators we selected are the soft-bound and
one-class Deep SVDD, OC-NN, and OCAN. We conducted a parameter exploration for
each algorithm following the same procedures as our AD. The out-of-sample accuracy, TPR,
and FPR for each algorithm based on the computer-generated data are given in Table 8,
with the lab-generated data in Table 9. What we find is that, overall, our design using the
Isolation Forest AD is as sensitive as any of the other algorithms (TPR = 1.0), while the
False Positive Rate is somewhat lower than any other comparator for this dataset.

Table 8. Computer generated data: comparison against the literature.

Model Accuracy TPR FPR

Isolation Forest (proposed) 0.9959 0.9949 0.0006

OC-SVM (proposed) 0.9927 0.9911 0.0012

Soft-bound Deep SVDD 0.9859 0.9885 0.0239

Once-class Deep SVDD 0.9826 0.9843 0.0239

OC-NN 0.9923 0.9914 0.0047

OCAN 0.7826 0.6859 0.1208

Table 9. Laboratory data: comparison against the literature.

Model Accuracy TPR FPR

Isolation Forest (proposed) 0.9995 1.0 0.0014

OC-SVM (proposed) 0.9990 0.9999 0.0040

Soft-bound Deep SVDD 0.9981 1.0 0.0080

Once-class Deep SVDD 0.9989 1.0 0.0043

OC-NN 0.9780 0.9780 0.0222

OCAN 0.9990 1.0 0.0041

6.2. PVA Detection

We again begin with the normal model. Table 10 presents the RMSE for each normal
model candidate based on the test partition within the training data (the final 10%). The 1D
CNN is substantially superior, and so we again select it as the normal model.

Table 10. Out-of-sample test error for the normal model candidates.

GRU Dropout GRU Bidirectional 1D CNN

Test error (RMSE) 0.1691 0.2406 0.1697 0.0970



Algorithms 2024, 17, 114 17 of 20

We next examine the OC-SVM AD. The first column of Table 11 presents our clas-
sification results without resampling. The overall accuracy of 87.6% is not competitive
with current machine-learning approaches to PVA. Examining the results, we see that the
specificity (true negative rate) of our AD is strong, but the sensitivity is low. This is what we
expect to find when the class boundary for OC-SVM is drawn too narrowly. Accordingly,
we apply our proposed resampling technique, obtaining the results in the second column.

Table 11. Anomaly detector, with and without resampling.

OC-SVM OC-SVM with Resampling

Sensitivity 0.8103 0.9729

Specificity 0.9433 0.9519

Accuracy 0.8763 0.9624

In Table 12, we compare our results against existing PVA-diagnosis algorithms. Note
that these latter examples are all based on supervised classification, rather than semi-
supervised anomaly detection, meaning that examples of both normal and asynchronous
breaths were presented to the learning algorithm. This is in keeping with the objective
of a diagnosis, which is a multi-class problem that seeks identification of the particular
form of PVA being presented. Our algorithm, as an anomaly detector, only identifies
the presence of PVA. In addition, except for [39] (reported in the first row and marked by
an ‘*’) the experiments were conducted based on different PVA datasets collected from
different locations and using different equipment. The results for the algorithms were
usually reported as sensitivity and specificity for individual PVA types, as well as the
“normal” class. We reconstruct the sensitivity and specificity of detecting PVA in general by
reversing the sensitivity and specificity from the “normal” class in Table 12.

Table 12. Comparison against PVA detection in the literature.

Algorithm Sensitivity Specificity

Ensemble (ERTC, GBA, MLP) [39] * 0.98 0.97

Random Forest [56] 0.93 0.97

1D CNN [69] 1.0 0.94

Proposed AD Algorithm 0.97 0.95

What we find from Table 12 is that our semi-supervised AD approach, when combined
with oversampling, is competitive with the existing supervised techniques, even though
we are training the AD only on normal data. In addition, while Chong et al. [69] build their
model directly from the flow and pressure data streams, the other two extract additional
metadata from it, in the form of derived quantities (tidal volume, etc. [39]) or shape features
extracted from the waveforms [56]. Ref. [39] also used SMOTE resampling to further
improve the performance of their supervised algorithm. Thus, our semi-supervised AD
approach is competitive with supervised algorithms using far more information.

7. Conclusions

In this article we have proposed a novel algorithm for the semi-supervised contextual
anomaly detection problem. Our algorithm combines a deep 1-D CNN as a normal model
with a shallow one-class anomaly detector in a meta-classification design. We further
propose a novel resampling algorithm that leverages the normal model, in order to improve
anomaly-detection performance. Experiments based on two contextual anomaly datasets
(leak detection, patient-ventilator asynchrony detection) indicate that this approach is
highly accurate, competitive with state-of-the art approaches, and potentially useful well
beyond the two different cases studied.
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In future work, we will explore two major directions. Firstly, we will evaluate how
precisely our PVA detection algorithm can identify the onset of a PVA during a single breath
and whether interventions based on that information might improve patient outcomes. Sec-
ondly, we will investigate the application of our AD design to more challenging condition
monitoring problems. Specifically, fault diagnosis is a multi-class problem (as opposed to
the binary fault-detection problem), and remaining-life prediction is a forecasting problem.
We suspect that a multi-stage design, in which our AD first screens for the presence of
anomalies, would improve the performance of the diagnosis and remaining-life stages
compared to the state-of-the-art. As a part of this, a characterization of the synthetic data
points created by our algorithm versus the original data might yield further insights.
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