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Abstract: Gout is one of the most painful diseases in the world. Accurate classification of gout is
crucial for diagnosis and treatment which can potentially save lives. However, the current methods
for classifying gout periods have demonstrated poor performance and have received little attention.
This is due to a significant data imbalance problem that affects the learning attention for the majority
and minority classes. To overcome this problem, a resampling method called ENaNSMOTE-Tomek
link is proposed. It uses extended natural neighbors to generate samples that fall within the minority
class and then applies the Tomek link technique to eliminate instances that contribute to noise.
The model combines the ensemble ’bagging’ technique with the proposed resampling technique to
improve the quality of generated samples. The performance of individual classifiers and hybrid
models on an imbalanced gout dataset taken from the electronic medical records of a hospital is
evaluated. The results of the classification demonstrate that the proposed strategy is more accurate
than some imbalanced gout diagnosis techniques, with an accuracy of 80.87% and an AUC of 87.10%.
This indicates that the proposed algorithm can alleviate the problems caused by imbalanced gout
data and help experts better diagnose their patients.

Keywords: gout disease; resampling method; machine learning; disease diagnosis; imbalance data;
ensemble learning

1. Introduction

Over the past decade, many researchers have shown significant research interest in
the classification and management of chronic diseases. As a chronic disease, gout can
cause severe pain and has been linked to several health conditions, including heart disease,
kidney damage, and diabetes [1,2]. It is important to diagnose gout in patients, as this can
lead to more effective treatment strategies and reduce the likelihood of disease progression
while alleviating patient suffering. The traditional method for diagnosing gout relies on
the patient’s biochemical indicators and medical images. This approach can be expensive
and financially burdensome for the patient. Fortunately, the use of machine learning saves
a great deal of time and enhances the effectiveness of the diagnosis; it depends on the
availability of clinical data and patient medical records [3]. Computer-assisted diagnosis
has the potential to reduce the dependence on expensive imaging and testing procedures,
resulting in more cost-effective and accessible diagnostic solutions for patients. Previous
work has diagnosed medical conditions by collecting information from electronic medical
records and creating machine learning models.

Based on the clinical record, gout can be classified into four distinct periods: asymp-
tomatic hyperuricemia, acute gouty attack, intercritical period, and chronic tophaceous
gout [4]. However, studies of gout patients have not focused on the four distinct periods of
the disease; instead, they typical categorize patients as having either gout or asymptomatic
hyperuricemia [5]. Additionally, medical diagnoses often involve imbalanced datasets,
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which can lead to biased predictions towards the majority class [6]. The class imbalance
problem (CLP) is the non-uniform distribution of classes in a dataset. The term ‘majority
class’ refers to the class with the highest number of instances, while the term ‘minority
class’ refers to the class with the lowest number of instances [7]. A classifier trained with
imbalanced data tends to be biased towards the majority class and may overlook the more
important minority class. Models often exclude the minority class in order to achieve
higher accuracy, which can lead to biased results. Addressing data imbalance in gout can
improve the model’s ability to learn the features from the minority classes, reducing the
risk of misdiagnosis during gout diagnosis. In medical diagnostics, the SMOTE algorithm,
which creates synthetic examples by interpolating between minority class instances and
their k-nearest neighbors, is the primary method for addressing class imbalance [8]. Never-
theless, SMOTE has some weaknesses. It depends on the parameter k and the quality of
the generated samples; it also has an over-density of synthetic samples. On the other hand,
medical diagnostics often employ separate classifiers that fail to fully extract the dataset’s
features, which reduces the classification’s effectiveness [9].

This study addresses the lack of research for accurately staging gout beyond a simple
diagnosis and aims to address the imbalance in gout data. To address the imbalanced
data problem, this study proposes a new hybrid sampling strategy based on an extended
natural neighbor. And, ensemble learning is then combined to alleviate the problem of
data imbalance. After acquiring and preprocessing data from hospital medical records,
ENaNSMOTE-Tomek link is proposed as a solution to the imbalanced data problem caused
by the gout dataset. ENaNSMOTE-Tomek link uses extended natural neighbors with
SMOTE to generate new samples for the minority class and removes noise with Tomek link,
achieving data balance. The bagging ensemble strategy is used to improve the recognition
accuracy of both the majority and minority classes by addressing the uneven distribution
of the data. Because the study utilized a dataset with an imbalanced distribution of classes
and a relatively high number of features, correlation analysis and random forest are used
to select features that improve the accuracy of the proposed models. Feature selection aims
to identify the features that significantly impact the final prediction results, and random
forest can calculate feature importance and reduce model calculation costs. Also, this
study uses six classifiers—support vector machines (SVMs), decision trees (DTs), k-nearest
neighbors (KNN), gradient boosting (GB), multilayer perceptron (MLP), and extreme
gradient boosting (XGB)—and selects the optimal classifier through a proposed resampling
method and ensemble learning for the diagnosis of gout. This study employs commonly
used classification performance metrics, including accuracy, precision, recall, and F1 score.
Additionally, AUC, a performance metric that captures imbalanced classification, is also
utilized. All experimental results are based on physical examination and clinical laboratory
indicators of real gout patients. Figure 1 illustrates the method and process of this algorithm.
The key contributions of this study are as follows:

(1) A predictive model is proposed for accurately classifying different periods of gout.
Experimental results demonstrate that it outperforms the same type of disease diagnosis
approach for diseases such as heart disease and diabetes.

(2) The ENaNSMOTE-Tomek link algorithm is proposed to address the issue of imbal-
anced data. The algorithm uses the extended natural neighbors to generate reliable samples
for the minority class and employs data cleaning techniques by using Tomek links.

(3) An ensemble model that combines a bagging technique and a hybrid resampling
technique is proposed to handle the CIP in the classification of gout.

(4) This study utilizes correlation analysis and random forests to reduce the number
of attributes and to enhance the performance of classifiers.

The paper is structured as follows: Section 2 presents the literature review. Section 3
provide a comprehensive explanation of the methods used in this study. Section 4 provides
a comprehensive review of the experiment. Section 5 provides an overview of the results.
Section 6 concludes the entire work.
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Figure 1. Algorithm flow diagram

2. Literature Review

The diagnosis of gout patients is primarily based on pathology and pharmacology.
For instance, Xue et al. classified patients with gout and clinical hyperuricemia based on
target serum urate levels [10]. Wang et al. utilized oxylipin biomarkers to differentiate
between gout and hyperuricemia [11]. Shen et al. used potential biomarkers of metabolites
to distinguish between gout and hyperuricemia [12]. Also, some progress has been made
in predicting gout using traditional machine learning. Cheng et al. employed machine
learning and natural language processing techniques to automatically detect gout attacks
from electronic clinical records [13]. Bai et al. introduced neighborhood rough sets into
multivariate variational mode decomposition and used them to construct a method for
classifying potential gout patients [14]. Ma et al. applied deep reinforcement learning to
solve the gout staging task [15].

Research has been conducted in the literature to develop disease diagnostics based on
machine learning models in order to create more accurate prediction models. Rois et al.
used a random forest algorithm, while Bisht et al. employed the k-nearest neighbors
method to predict the factors that contribute to perceived stress [16,17]. Jaques et al.
utilized support vector machines to predict students’ happiness [18]. Chou et al. and
Laila et al. both used machine learning algorithms to predict the onset and early-stage risk
of diabetes, respectively. Chou et al. employed a decision tree, while Laila et al. used a
random forest [19,20]. Nilashi et al. proposed a KNN + SOM + PCA + Fuzzy support vector
machine (SVM) model for diagnosing heart disease [21]. Almazroi et al. used decision trees
to predict heart disease by utilizing clinical records [22]. Ahmad et al. utilized a gradient
boosting classifier to diagnose human heart disease [23].

Resolving imbalanced data can improve predictions and reduce errors in medical
diagnosis. For data balancing in cardiovascular disease, RandomOverSampler has been
used [24]. In order to improve the survival rate of heart failure patients, the extra tree
classifier (ETC) was proposed; it uses SMOTE to balance the data [25]. Also, the authors



Algorithms 2024, 17, 122 4 of 16

used SMOTE to classify diabetes and reliable stress levels [26,27]. Fitriyani et al. proposed
using extreme gradient boosting with SMOTE-ENN to solve the cardiovascular prediction
problem [28]. The use of ensemble methods for classification has gained momentum in
recent years. Ensemble techniques combine the predictions of multiple base classifiers
to produce a final result, resulting in improved accuracy. They are objective and avoid
subjective evaluations, as demonstrated from the following articles. For example, Baker
employed different machine learning methods with majority votes to predict credit card
fraud transactions [29]. In the field of disease diagnosis, Liu utilized DNN, IF, and LR with
ensemble learning to evaluate stroke records [30]. Meanwhile, Mehr employed random
forest, extra tree (ET), AdaBoost, and MLP (multilayer perceptron) with ensemble learning,
along with various feature selection methods, to classify polycystic ovary syndrome [31].
Similarly, Emine used AdaBoost ensemble learning to classify neuromuscular disorders,
while Schreiber developed machine learning models using ensemble methods to identify
patients with VIPN-free survival [32,33]. Asif employed an ensemble voting method to
combine random forest, extreme gradient boosting, and gradient boosting to enhance the
prediction of heart disease [9].

Previous studies have shown that disease diagnosis models perform well. However,
there are still several shortcomings. Classification on imbalanced datasets can result
in biased outcomes, as most standard classification algorithms favor the majority class,
leading to poor prediction accuracy for the minority class. To balance the data distribution,
most prior studies employed the SMOTE method [24–28], which has some disadvantages.
The quality of the samples generated by SMOTE depends on the parameter k, which
is difficult to determine due to the variety of datasets. It is important to consider these
limitations when using SMOTE for data augmentation. Additionally, the new samples
generated by SMOTE use the same number of nearest neighbors without considering
the sample distribution, which may result in noisy examples. Furthermore, SMOTE only
generates synthetic samples along the line segment between two minority samples, which
may cause an over-density of synthetic samples. Currently, models are trained using
simple machine learning algorithms such as DT [16], SVM [15], XGB [28], or KNN [10].
Recent developments in machine learning methodologies have enabled the successful
use of ensemble learning frameworks and deep learning in computational biology and
healthcare. These advancements have led to the development of more reliable and stable
models, enhancing the performance for the diagnosis of gout.

3. Methods

This study aims to classify gout using the proposed resampling and ensemble tech-
niques. These techniques address overfitting and poor generalization issues. By combining
these techniques, the proposed approach provides a useful solution for handling CLP.
The study uses t-SNE visualization to assess the efficiency of the imbalanced dataset before
and after sampling. The dataset consists of majority and minority samples across four
different labels. To address the class imbalance, the ENaNSMOTE-Tomek link resampling
technique is applied to achieve a balanced distribution of the classes. A gout dataset
that is balanced using this technique is utilized to train an ensemble model. The model’s
performance is evaluated on a separate test dataset to optimize it, as shown in Figure 2.
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Figure 2. Flowchart of the proposed approach.

3.1. Random Forest Feature Selection

Random forest is a machine learning method that constructs multiple decision trees
using random resampling bootstrap technology and random node classification technology.
The final classification results are produced through voting. Random forest can analyze
features with complex interactions, is robust to noise and missing data, and has a fast
learning speed. Variable importance measures can be used as feature selection tools for
high-dimensional data [34–36]. The two goals of random forest feature selection are to
find highly correlated feature variables and to find feature variables with relatively fewer
data and better ability to express prediction results. By calculating the importance of each
feature, only the attributes with higher importance are selected to train the final model,
reducing the calculation cost.

3.2. ENaNSMOTE-Tomek Link

Oversampling techniques, such as random repeating minority class instances or
SMOTE, aim to address class imbalance by increasing the number of minority instances.
SMOTE uses existing minority class data to create new synthetic samples instead of du-
plicating them. Minority class samples are often scarce and highly valuable. However,
the nearest neighbors of minority data points may be too far or from different classes due
to the limitations of k-nearest neighbors. SMOTE may discard some minority class samples,
resulting in over-density of synthetic samples. To address this concern, the ENaNSMOTE
technique introduces the concept of extended natural neighbors which are different from
the k-nearest neighbors theory used in SMOTE. ENaNSMOTE is not limited to a specific
parameter k: it searches for the extended natural neighbor of each minority sample to gen-
erate new synthetic samples. This approach ensures that the generated synthetic samples
maintain a similar distribution as and characteristics of the original minority class instances.
ENaNSMOTE enables a flexible and adaptive resampling process, ensuring that no valuable
minority class sample is overlooked and that the resulting synthetic samples accurately
represent the minority class. ENaN is an extension of NaN based on the concept of true
friendship between two individuals [37]. ENaN expands on this concept by incorporating
the ideas of unilateral friendship and true friendship, which are inspired by friendships in
human society, referring to two people who consider each other to be friends. A natural
stable structure holds if everyone has at least one true friend. If example x is one of the
λ-nearest neighbors of example y or y is one of the λ-nearest neighbors of x, then x is called
the extended natural neighbor of y, and vice versa. The definition of the extended natural
neighbor is displayed in the following equation.
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x ∈ ENaN(y) ⇔ x ∈ NNλ(y) ∪ y ∈ NNλ(x) (1)

λ = argminr(∀r ∈ N+)(∀y)(∃x ̸= y), (x ∈ ENaN(y)) (2)

where λ is called the natural neighbor eigenvalue and is the minimum number of searches
r required to build a naturally stable structure. That is, all examples (except noise) have
ENaN until the number of neighbors r increases from 1 to λ. Therefore, the value of λ is
related to the data distribution and varies from one dataset to another. The symbols x and
y denote two examples, and N+ denotes the set 1, 2, 3, · · · .

However, it is important to note that the relationship captured by the extended natural
neighbor may not be robust. Samples generated using the extended natural neighbor may
potentially mislead the classifier and result in incorrect judgments. To address this concern,
the proposed method combines the Tomek link algorithm to undersampling the dataset
after the ENaNSMOTE oversampling step.

The Tomek link algorithm evaluates each sample separately and identifies pairs of
samples that are Tomek links [38]. A Tomek link is when two samples of different classes
are each others’ nearest neighbors. In such cases, the sample that is farther away from
the decision boundary is considered the noisy sample and is subsequently removed. This
removal process is repeated until no further deletions can be made, ensuring that only
reliable and representative samples are retained.

By combining the ENaNSMOTE and Tomek link techniques, this study create a hybrid
sampling algorithm that aims to balance the dataset effectively while minimizing the
introduction of noisy or irrelevant samples. This algorithm selectively oversamples the
minority class using ENaN and undersamples using Tomek link to create a balanced and
high-quality dataset for training a classifier. The pseudocode for the hybrid sampling
algorithm that encompasses both the ENaNSMOTE and Tomek link steps is presented as
Algorithm 1 .

Algorithm 1 The process of the ENaNSMOTE-Tomek link algorithm.

Step 1: Start of ENaNSMOTE : Identification of minority class
Step 2: Identify extended natural neighbors from minority classes for resampling of the
random instances and determine the distances between them.
Step 3: For a synthetically created sample, add the result to the minority class by multi-
plying the difference by a random value between 0 and 1.
Repeat Steps 2 and 3 as necessary to reach the appropriate ratio of obtained minority
class samples.
End of ENaNSMOTE
Step 6: Start of Tomek link: For more in-depth data cleaning, Tomek links will be
applied.
Step 7: First, compute the pairwise distances between all samples.
Step 8: Find each sample‘s k-nearest neighbors based on the computed distances. Check
if any of the nearest neighbors are of a different class. If a Tomek link is found, mark it as
noisy.
Step 9: For each noisy sample, find its Tomek link, which is its nearest neighbor that is
of a different class. If the sample is closer to the decision boundary than its Tomek link,
remove it from the dataset.
Repeat Steps 8 and 9 to reach the appropriate ratio for each class.
End of Tomek link

3.3. Machine Learning Classifiers
3.3.1. Support Vector Machine

The support vector machine (SVM) is a classifier that uses supervised learning to
classify data with a simple structure and strong generalization ability [39]. Its goal is to



Algorithms 2024, 17, 122 7 of 16

find a hyperplane that can correctly separate all samples. In SVM binary classification,
the problem is transformed into determining the hyperplane with the maximum margin in
the feature space. The margin is the maximum width of the flat plate without data points
inside and parallel to the hyperplane.

3.3.2. Decision Trees

Decision trees can be used for both regression and classification problems [40]. The model
is constructed by iteratively splitting the data based on different attributes to form a tree-like
structure. When using a decision tree classifier to make predictions, the process starts at the
root node and compares the attribute values of the input data with the attribute values of
the current node. The algorithm compares attributes and determines the branch to follow,
moving to the next node until it reaches a leaf node, where the final prediction is made.
This iterative attribute comparison is the core of decision tree prediction. The decision
tree captures the relationships between attributes and their corresponding target classes,
enabling accurate predictions for new instances. The decision tree model provides a clear
and understandable representation of how the attributes are related to the target variable.
This makes it especially valuable in scientific applications.

3.3.3. K-Nearest Neighbors

The k-nearest neighbors (KNN) algorithm is a simple yet powerful supervised learning
technique used for classification and regression tasks [41]. It operates by identifying the
k-nearest neighbors of a given data point based on a distance metric, such as the Euclidean
distance. The algorithm then determines the class or predicts the value of the target variable
based on the majority vote or average of the values of these k neighbors. The selection of
the value k, which represents the number of nearest neighbors to consider, is a crucial factor
in KNN. It is important to choose an appropriate value of k to achieve optimal performance.
A smaller value of k may result in a more flexible and sensitive model that captures local
patterns, but it may also be affected by noise or outliers. Conversely, a larger value of k can
provide smoother decision boundaries, but it may lead to oversimplification or loss of finer
details in the data. Overall, the KNN algorithm is versatile and can be applied to various
classification and regression tasks. It offers simplicity, interpretability, and adaptability to
different datasets.

3.3.4. Gradient Boosting

Gradient boosting (GB) is a popular machine learning technique used mainly for
classification problems [42]. It combines multiple weak learners to create a powerful
learning model. The technique works by training a weak learner, such as a decision tree,
on the data and calculating the residuals or errors. It then fits a subsequent weak learner to
the residuals, with the aim of reducing the overall loss. This process is repeated iteratively,
with each additional weak learner used to correct the errors made by the previous learners.
The final model is a more accurate and powerful predictive model. Gradient boosting has
the advantage of being able to effectively handle missing data values, making it robust and
versatile for working with real-world datasets that often contain missing or incomplete
data. To summarize, gradient boosting is a widely used technique for classification tasks. It
involves combining a set of weak learners to create a powerful and precise model.

3.3.5. Multilayer Perceptron

Multilayer perceptron (MLP) is a type of deep artificial neural network that comprises
multiple perceptron layers [43]. Typically, MLP consists of three types of layers: an input
layer that receives input signals, an output layer that makes final predictions, and one or
more hidden layers that serve as the computational mechanism of the MLP. Hidden layers
enable MLP to perform complex computations and capture intricate relationships in the
data. One of the main advantages of MLP is its ability to classify datasets that are not
linearly separable. MLP can capture nonlinear relationships present in the data through its
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hidden layers, enabling it to solve complex classification problems. In summary, MLP is a
deep artificial neural network that consists of multiple perceptron layers. It is capable of
approximating any continuous function and handling non-linearly separable datasets. MLP
is widely used for classification, recognition, and prediction tasks in a variety of domains.

3.3.6. Extreme Gradient Boosting

Extreme gradient boosting (XGB) is a powerful machine learning algorithm that
excels at various classification, regression, and ranking tasks [44]. XGB is an ensemble
model that utilizes a collection of weak predictive models, typically decision trees, to make
accurate predictions. The algorithm constructs an ensemble of decision trees in a sequential
manner, with each tree learning from the mistakes made by the previous one to improve the
overall predictive power of the model. XGB effectively extracts valuable information from
high-dimensional data to enhance the model’s generalization ability and computational
efficiency through feature splitting and selection.

3.4. Bagging Algorithm

Bagging is a technique for homogeneous ensemble learning that involves training
multiple base classifiers on random subsets with replacement from the training set [45].
Each base classifier can be trained using different algorithms, such as support vector
machines (SVMs), decision trees (DTs), k-nearest neighbors (KNN), gradient boosting
(GB), multilayer perceptron (MLP), and extreme gradient boosting (XGB). During the
prediction phase, bagging combines the predictions of these base classifiers through voting
or averaging to obtain the final prediction. By combining the predictions of various base
classifiers, bagging aims to enhance the generalization performance and robustness of
the models.

4. Experiment
4.1. Dataset and Data Preprocessing
4.1.1. Dataset

The dataset used in this study comprises medical records of gout patients who visited
the hospital between 2016 and 2021. The data were manually recorded by doctors and
include various patient information. The dataset on gout comprises 4362 records, consisting
of 4240 male records and 122 female records. Each patient’s record contains 111-dimensional
attribute values, including blood lipid indicators TG, HDL-C, and LDL-C; blood glucose
index GLU; a renal function index that includes urea and Cr; a liver function index that
includes ALT, AST, AST/ALT, GGT, TBIL, DBIL, and ALB; as well as uric acid levels;
gender; smoking history; random urine analysis; age and frequency of onset; past medical
history; family history; gout stones; height and weight; blood pressure; VAS score; exercise
history; etc.

4.1.2. Data Preprocessing

To conduct experiments, the patient dataset was preprocessed due to its large feature
dimensions and numerous irrelevant data for the final prediction results. The data prepro-
cessing process involves handling missing values and normalizing the data. Columns with
more than 50% missing data and some data that could not confirm the patient’s disease
stage were deleted. Blank features were filled in with the average value of the entire column.
And the experiment data were anonymized and did not include any personal information
of the patients.

After preprocessing, the attributes of each instance were ultimately determined,
and the dataset attributes are shown in Table 1. The dataset comprised 4362 patient
samples, with 133 cases of asymptomatic hyperuricemia (Ah), 281 cases of acute gouty
attack (Aga), 1993 cases of intercritical period (Ip), and 1955 cases of chronic tophaceous
gout (Ctg). The model was trained using standardized data and a feature scaling technique
after preprocessing the dataset.
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Table 1. Gout dataset attributes.

No Attributes No Attributes

1 Sex 21 Triglycerides (mg/dL)
2 Age (yrs) 22 Total cholesterol (mg/dL)
3 Smoking history 23 Blood urea nitrogen (mg/dL)
4 VAS score 24 Serum creatinine (mg/dL)
5 Joint tenderness assessment 25 Uric acid (mg/dL)
6 Joint swelling assessment 26 Creatinine clearance (mL/min)
7 Systolic blood pressure (mmHg) 27 Glomerular filtration rate (mL/min/1.73 m × m)
8 Diastolic blood pressure (mmHg) 28 Random urine creatinine
9 Height (cm) 29 Random urine uric acid
10 Weight (Kg) 30 Random urine pH
11 Bmi 31 Fractional excretion of uric acid
12 Heart rate (bpm) 32 Age at onset
13 Uric acid 33 Medical history
14 Alanine transaminase (U/L) 34 Family history
15 Aspartate transaminase (U/L) 35 Frequency of hospital visits
16 AST/ALT ratio 36 Time of follow-up visit
17 Blood glucose (mg/dL) 37 Gout quantification score
18 Sport (before gout) 38 Waist
19 Sport (after gout) 39 Hip
20 Drink alcohol

4.2. Feature Selection

Figure 3 shows the correlation between the dataset features and the final classification.
The analysis revealed that several features had minimal impact on the diagnosis and
could be removed to reduce the calculation load. The feature variables of the dataset were
selected using random forest by calculating the Gini value and OOB value of each variable.
To reduce the computational cost of the model and to improve the final classification
accuracy, we selected the attributes that had the greatest impact on the final result. Figure 4
shows the importance of certain features as calculated using random forest.

Figure 3. Pairwise correlation matrix of proposed features. The color of each pixel in the figure represents
the correlation between the corresponding feature pairs on the horizontal and vertical coordinates.
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Figure 4. The importance of some features in the gout dataset.

4.3. Data Balancing

Dividing the complete dataset into training and testing datasets is crucial to avoid
inefficient model training and poor validation results. After experimenting with different
ratios, we found that a ratio of 80:20 produced the best results. The dataset in this study
consisted of four classes, which were highly imbalanced. The proposed algorithm balances
not only the samples between the minority and majority classes but also eliminates noisy
samples that affect classification. Table 2 shows the samples of each class processed by the
resampling algorithm, as well as the testing data samples.

Table 2. Distribution of gout in train and test datasets before and after resampling.

Class Origin Test Origin Train After Resampling

Asymptomatic hyperuricemia 133 28 105 1585
Acute gouty attack 281 74 207 1672
Intercritical period 1993 408 1585 1473
Chronic tophaceous gout 1955 363 1592 1480
Total 4362 873 3489 6210

4.4. Performance Measures

This study examines five evaluation metrics for comparative analysis of individual
classifiers and ensemble models: accuracy, precision, recall, F1 score, and AUC. Accuracy
and precision are commonly used performance evaluation metrics. However, evaluating
the overall performance of a model based solely on accuracy is impractical because it does
not reflect the efficiency of minority class samples or the accuracy of a specific class sample.
Therefore, to evaluate the performance, F1 score, recall, and AUC are used. Accuracy refers
to the percentage of correctly classified predictions out of the total number of predictions.
Precision indicates the percentage of instances classified as positive that are actually positive.
Recall describes the percentage of correct predictions in the sample with a positive true
value. F1 score is the harmonic average of precision and recall. AUC refers to the area
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under the receiver operating characteristic curve, which indicates the performance of the
classifier [6].

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TN + FP + TP + FN
(5)

F1Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

AUC =
TPrate + TNrate

2
(7)

5. Results

This section presents the classification results between the proposed method and six
basic learners. A comparison between the proposed model and previous works from the
literature is made to highlight the superiority of the proposed model. The proposed method
is evaluated using a confusion matrix and various validation metrics, which are tabulated
for visualization.

5.1. Classification Performance

Table 3 summarizes the evaluation results of different models. The confusion matrix of
the proposed method is shown in Figure 5. The results indicate that the proposed method
outperformed the other classifiers with an accuracy of 80.87%, precision of 84.02%, recall
of 82.53%, F1 score of 82.57%, and AUC value of 87.10%. The algorithm in this study
demonstrates an average improvement of 3% across all metrics when compared to the
sub-optimal algorithm. And models such as XGB, GB, and DT also perform well, indicating
that the tree structure is useful for dealing with high-dimensional features and imbalance
problems. The results indicate that the model can fully learn the minority class features
while also removing noisy samples that can affect classification, which addresses the issue
of data imbalance in gout.

Table 3. Performance of the different models.

Model Accuracy Precision Recall F1 Score AUC

Proposed 80.87 84.02 82.53 82.57 87.10
[28] XGB 79.72 82.80 77.78 80.53 84.41
[15] SVM 71.36 59.51 47.47 49.85 67.25
[10] KNN 65.17 55.21 44.53 46.67 64.62
[17] GB 78.46 83.43 76.98 79.78 83.71
[16] DT 71.36 66.06 67.01 66.53 77.47
[31] MLP 72.96 67.26 55.44 59.00 71.76

(a) (b) (c)

Figure 5. The confusion matrix of the experiments. (a) Imbalanced dataset with features selected.
(b) Balanced dataset with resampling algorithm. (c) Results with resampling and ensemble algorithm.
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In this part, the effectiveness of the proposed method in addressing data imbalances is
discussed. This study evaluates the performance of various resampling methods, including
SMOTE, BorderSMOTE, SMOTE+ENN, SMOTE+Tomek link, RandomOver, and the pro-
posed ENaNSMOTE-Tomek link, using a single XGB model. The results are presented in
Table 4. It is evident that the proposed method outperforms the other resampling methods
in terms of classification performance. SMOTE, BorderSMOTE, and RandomOver achieve
AUCs of 84%, but the proposed method generates higher-quality samples, resulting in an
AUC of 85.98%, accuracy of 80.52%, precision of 82.62%, recall of 81.96%, and F1 score
of 81.08%. The proposed method exhibits the best overall performance, which indicates
the effectiveness of the resampling method proposed in this study for addressing the
imbalance problem.

Table 4. Performance of the different resampling methods with the XGB model.

Class Accuracy Precision Recall F1 Score AUC

Proposed method 80.52 82.62 81.96 81.08 85.98
SMOTEENN 77.31 72.88 80.40 76.04 84.27
SMOTETomek 78.57 80.94 79.31 80.00 84.99
SMOTE 79.61 82.48 79.67 80.98 85.39
BorderSMOTE 79.72 81.85 80.23 81.03 84.68
RandomOver 78.57 81.99 79.05 80.44 84.85

5.2. Ablation Experiment

This section discusses the verification of the proposed method’s generalization ability.
The experiment involved training models on a balanced dataset that was created using
the proposed resampling algorithm. After training, classification tasks were performed on
the test dataset. The confusion matrix of the XGB model on the balanced dataset that was
created using the proposed resampling algorithm is shown in Figure 5. Table 5 presents the
the performance evaluation indicators of the classification results for various models. XGB
has the highest indicators with an accuracy of 80.52%, precision of 81.85%, recall of 80.40%,
F1 score of 81.08%, and AUC value of 85.98%. The model improves accuracy by 0.8%,
recall by 2.62%, F1 score by 0.55%, and AUC by 1.57% compared to the imbalanced data.
Although precision indicators decreased, the overall performance improved. Furthermore,
the results show that other classification models also achieved better performance after
using the proposed resampling algorithm, with most indicators improving. This indicates
that the proposed resampling algorithm has addressed the issue of bias in the model caused
by an imbalanced dataset. T-SNE (t-distributed stochastic neighbor embedding) was used
to visualize high-dimensional data in a three-dimensional space. The scatter plot in the
three-dimensional space represents each class with a different color and pattern. Figure 6
shows imbalanced samples, where classes Ah and Aga have fewer instances than the
other classes. Figure 7 shows that the instances of the four classes are almost the same
after balancing.

Table 5. Performance of the individual classifiers when using the resampling algorithm.

Class Accuracy Precision Recall F1 Score AUC

Proposed 80.87 84.02 82.53 82.57 87.10
XGB 80.52 81.85 80.40 81.08 85.98
SVM 68.49 57.11 63.76 58.45 75.69
KNN 56.24 46.59 54.04 45.50 69.34
GB 77.66 80.58 79.31 79.89 84.79
DT 67.69 63.11 68.57 65.47 77.55
MLP 71.13 61.70 69.53 64.22 78.94
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Figure 6. Distribution of imbalanced gout dataset.

Figure 7. Distribution of gout dataset after resampling.

After conducting experiments on two different datasets, the XGB model was found to
perform the best. To address the issue of data imbalance, the bagging method was employed
to combine different models with the proposed resampling algorithm. Tables 5 and 6 show
the values of different performance measures for the different ensemble models. The results
indicate that XGB with bagging achieved the highest AUC of 87.10% and had enhanced
recall and F1 scores of 82.53% and 82.57%, respectively. The final confusion matrix of the
model is shown in Figure 5. The bagging method improved the performance of different
models slightly, demonstrating its effectiveness compared to a single classifier. Additionally,
the bagging method alleviates the problem of an imbalanced dataset.

Table 6. Performances of the different classifiers when using the bagging method.

Class Accuracy Precision Recall F1 Score AUC

XGB 80.87 82.80 82.53 82.57 87.10
SVM 70.67 57.29 59.83 58.04 74.00
KNN 57.27 46.74 54.64 46.61 69.68
GB 78.57 81.16 80.11 80.58 85.39
DT 71.48 66.46 73.71 69.28 80.92
MLP 71.13 62.40 69.05 64.74 78.64
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6. Conclusions

This paper presents a study on the classification of periods of gout that can aid medical
professionals with diagnosing the disease quickly and accurately. The proposed method
can assist doctors with diagnosing gout. By referring to diagnostic results and exercising
professional judgment, the accuracy of diagnoses can be improved, reducing the economic
burden to patients. Solving the data imbalance problem in medical diagnosis is neces-
sary to improve the accuracy of the model, and this paper proposes a new method that
can solve the medical data imbalance problem. To address data imbalance in medical
datasets, a resampling method ENaNSMOTE-Tomek link was proposed. The proposed
method generates high-quality resampled data using the extended natural neighbor al-
gorithm and filters out synthetic data by assessing pairs of samples that exhibit a Tomek
link. The proposed approach enhances the performance of machine learning models
in dealing with severely imbalanced data by improving the quality of resampled data.
Additionally, a bagging algorithm was utilized for data balancing, which overcomes the
limitations of individual classifiers and provides more accurate classification of gout stag-
ing in noisy and highly imbalanced environments. Six classifiers—SVM, DT, KNN, GB,
MLP, and XGB—were implemented and compared using metrics. The results demonstrate
that the proposed ensemble model, bagging-XGB, with the proposed resampling method
outperforms all other models with an accuracy of 80.87% and an AUC of 87.10%. Although
the proposed method performs well in gout, it is important to note that the study is limited
by the relatively small size of the training dataset in terms of the number of patients. For
future work, the effective use of a small amount of labeled data and a large amount of
unlabeled data for semi-supervised learning or self-supervised learning using unlabeled
data only are important directions for our work.
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