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Abstract: In this paper, we propose a new numerical scheme based on a variation of the standard for-
mulation of the Runge–Kutta method using Taylor series expansion for solving initial value problems
(IVPs) in ordinary differential equations. Analytically, the accuracy, consistency, and absolute stability
of the new method are discussed. It is established that the new method is consistent and stable
and has third-order convergence. Numerically, we present two models involving applications from
physics and engineering to illustrate the efficiency and accuracy of our new method and compare it
with further pertinent techniques carried out in the same order.
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1. Introduction

Numerical analysis is the area of mathematics that deals with computational tech-
niques for studying and finding solutions to math problems. It is an offshoot of computer
science and mathematics that develops, analyzes, and generates algorithms for numerically
solving mathematical problems. Numerical methods are typically centered on the imple-
mentation of numerical algorithms. The goal of these numerical methods is to provide
systematic procedures for numerically solving mathematical problems. The ordinary differ-
ential equation (ODE) is a mathematical equation that is used in natural physical processes,
chemistry, engineering, and other sciences. Ordinary differential equations are notoriously
difficult to approximate analytically, so the numerical treatment is crucial because it offers
a powerful alternate solution method for resolving the differential equation.

We frequently use initial value problems (IVPs), such that

y′ = f (x, y(x)), y(x0) = y0 (1)

where x is the independent variable, which might also indicate time in physical problems,
and y(x) is the solution. Furthermore, because y(x) can be a vector-valued function with
N-dimensions, the domain and range of f and the solution y are given by

f : R×R N → R

y : R→ R N

Furthermore, Equation (1), in which f is a function both of x and y, is known as
a “non-autonomous” equation. However, by simply adding an extra variable, which is
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always equal to x, it can be easily rewritten in an equivalent “autonomous” form below, in
which f is a function of y only:

y′ = f (y(x)), y(x0) = y0 (2)

There are numerous well-known numerical methods that can be used to solve the
IVP in Equation (1). One category of these is third-order methods, like Ralston’s third-
order Runge–Kutta method (Ralston’s scheme) [1], the third-order Runge–Kutta method
(RK3 scheme) [2], the third-order Runge–Kutta method based on the arithmetic mean
(ARK3 scheme) [3], the third-order Heun’s method (Heun’s scheme) [4], and several other
methods. These numerical methods have been constructed to solve Equations (1) and (2)
using different techniques such as the Taylor series expansion technique, homotopy analysis
technique, quadrature formulas technique, and Adomian decomposition technique; for
more details, see [5–7].

In this study, we construct a new numerical method based on a variation of the
standard formulation of the Runge–Kutta method using Taylor series expansion. The rest
of this paper is divided into the following sections. In Section 2, we recall some definitions
and auxiliary results that we will use in our work. The derivation of the new method is
described in Section 3. Section 4 provides details on the local truncation error. Section 5
discusses the stability analysis of the suggested technique. The consistency of the new
method and its convergence are detailed in Section 6. Several numerical models are shown
in Section 7 to show the efficiency of this method and compare it with other relevant
methods. Finally, Section 8 offers the discussion and the conclusions.

2. Preliminaries

Theorem 1 ([8]). (Existence and Uniqueness Theorem).

Let f (x, y) and ∂ f
∂y be continuous functions of x and y at all points (x, y) in some

neighborhood of the initial point (x0, y0). Then, there is a unique function y(x) defined on
some interval [x0 − ε, x0 + ε] satisfying

y′ = f (x, y(x)), y(x0) = y0, x ∈ [x0 − ε, x0 + ε], ε > 0 (3)

Definition 1 ([9]). A Taylor sum or Taylor series is a mathematical function representation in
the form of a series consisting of terms calculated using the values of the function’s derivation at a
specific point and given by

ψT(xn, yn; h) =
∞

∑
r=0

hr

(r + 1)!

(
∂

∂x
+ f

∂

∂y

)r
f (x, y) (4)

Definition 2 ([10]). Let I ⊆ R be an open interval and f : I → R be a n-times differentiable
function at α ∈ I. The Taylor polynomial Tα

n f of degree n at a point α of f is the polynomial

Tα
n f (α) = f (α) + (x− α) f ′(α) + (x− α)2

2!
f ′′(α) +

(x− α)3

3!
f ′′′(α) + · · ·+ (x− α)n

n!
f (n)(α) (5)

Definition 3 ([11]). The difference between the numerical solution

yn+1 = yn + hψ(xn, yn; h) (6)

and the exact solution y(xn+1) is called the local truncation error (L.T.E.) for a one-step method xn
with step size h is given by

L.T.E. = y(xn+1)− yn+1 (7)
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Definition 4 ([12]). The numerical method is said to be stable if there exists h > 0 for each
differential equation such that changing the initial values by a fixed amount produces a bounded
change in the numerical solution for all h

Definition 5 ([13]). A numerical method is said to be consistent when all step sizes h→ 0 , as it
will converge to the differential equation. In other words, we say the method is consistent if and
only if

Lim
h→0

L.T.E.
h

= 0 f or h =
b− a

N
(8)

3. Construction of the New Scheme

In order to construct new single-step methods to solve the IVP Equation (1), we rely
on a variant of the standard form of the Runge–Kutta method given by

yn+1 = yn + hψ(xn, yn; h)

where

ψ(xn, yn; h) =
2m

∑
i=1

wiki+1

and

k1 = f (xn, yn), ki = f

xn + cih, yn + h∑i−1
j=1
j 6=i

aijk j

, i = 2, 3, . . . , 2m + 1

and
i−1

∑
j=1

aij = ci, i = 2, 3, . . . , 2m + 1

By using the Taylor series expansion of any arbitrary function ψ(xn, yn; h) for the
non-autonomous Equation (1), we have

ψT(xn, yn; h) =
∞

∑
r=0

1
(r + 1)!

(
∂

∂x
+ f

∂

∂y

)r
f (x, y)

and in the autonomous case Equation (2), ψT(xn, yn; h) becomes

ψT(yn; h) =
∞

∑
r=0

1
(r + 1)!

(
f

∂

∂y

)r
f (y)

We now start with the numerical method by using the family of explicit Runge–Kutta
methods listed below to solve the mentioned problem in (2).

yn+1 = yn + h(w1k2 + w2k3) (9)

with

k1 = f (xn, yn)
k2 = f (xn + c2h, yn + a1hk1)

k3 = f (xn + c3h, yn + h(a2k1 + a3k2))

 (10)
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where a1= a21, a2 = a31 , and a3 = a32. We must first calculate the unknowns a1, a2,
a3 , w2 and w3. Using Taylor series expansion around f (y), we obtain

k1 = f (yn) (11)

k2 =
∞

∑
r=0

1
r!

(
ha1k1

d
dy

)r
f (yn) (12)

k3 =
∞

∑
r=0

1
r!

(
h(a2k1 + a3k2)

d
dy

)r
f (yn) (13)

By expanding k1, k2, and k3 in Equations (11)–(13), we have

k1 = f
k2 = f + ha1 f fy +

h2

2!
(

f 2a1
2 fyy

)
+ h2

3!
(
a1

3 f 3 fyyy
)
+ · · ·

k3 = f + h(a2 + a3) f fy +
h2

2!

((
a2

2 + 2a2a3 + a3
2) f 2 fyy + 2a1a3 f fy

2
)

+h3
((

1
2 a2a3

3 + a2
2a3 +

1
6 a3

3 + 1
6 a2

3
)

f 3 fyyy + a1a2a3 f 2 fy fyy +
1
2 a1

2a3 f 2 fy fyy

)
+ · · ·

 (14)

Substituting Equation (14) into Equation (9) yields

yn+1 = yn + (w1 + w2) f h + ((a2 + a3) w2 + a1 w1) f fy h2 +
1
2

((
(a2 + a3)

2 w2 + a1
2 w1

)
f fyy + 2 w2a1a3 fy

2
)

f h3 + · · · (15)

The Taylor series expansion of an exact solution y(xn+1) is given by

y(xn+1) = y(xn) + f h +

(
1
2

f f y

)
h2 +

1
6

(
f 2 fyy + f fy

2
)

h3 +
1

24

(
f 3 fyy + 4 f 2 fy fyy + f fy

3
)

h4 + . . . (16)

The following system of equations is obtained by expressing k1, k2, and k3 in the
Taylor expansion, ignoring terms with powers of h higher than 3, and then substituting
them into formula (15) and comparing them to Equation (16):

h f : w1 + w2 = 1

h2 f fy : (a2 + a3)w2 + w1a1 =
1
2

h3 f
2

fyy : (a2 + a3)
2w2 + a1

2w1 =
1
3

h3 f fy
2 : w2a1a3 =

1
6

This is a system with an infinite number of solutions comprising four equations and
five unknowns. Assuming that w1 = 3

7 , we obtain the optimal solution listed below:

w1 =
3
7

, w2 =
4
7

, a1 =
1
6

, a2 = −1, a3 =
7
4

Additionally, from Equation (6), we obtain c2 = 1
6 and c3 = 3

4 .
Thus, substituting the above results in Equations (9) and (10), we present the new

method, and we call it the variation Runge–Kutta method of order three (VRK3), given
as follows:

yn+1 = yn +
h
7
(3k2 + 4k3) (17)

with
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k1 = f (xn, yn)

k2 = f
(

xn +
h
6 , yn +

h
6 k1

)
k3 = f

(
xn +

3h
4 , yn + h

(
−k1 +

7
4 k2
))
 (18)

4. Accuracy of the New Scheme

Here, the local truncation error of the proposed scheme is investigated as follows.
The set of Equation (18), when expanded using Taylor expansion, yields

k1 = f (19)

k2 = f +
h
6

f fy +
h2

72
f 2 fyy +

h3

1296
f 3 fyyy + · · · (20)

k3 = f +
3h
4

f fy + h2
(

9
32

f 2 fyy +
7

24
f fy

2
)
+ h3

(
9

128
f 3 fyyy −

77
288

f 2 fy fyy

)
+ · · · (21)

Now, substituting Equations (19)–(21) into Equation (17) yields

yn+1 = yn + h f +
1
2

h2 f fy +

(
1
6

f 2 fyy +
1
6

f fy
2
)

h3 +

(
35
864

f 3 fyyy −
11
72

f 2 fy fyy

)
h4 + . . .

Hence, from Definition 3, we have

L.T.E. = (
1

864
f ( f 2 fyyy + 276 f fy fyy + 36 fy

3))h4 + O(h5) (22)

As per Equation (22), our proposed method (VRK3) is of third order, with an L.T.E. of
fourth order.

5. Stability Analysis of New Scheme

To test the absolute stability of the presented scheme (VRK3), we use the set of
Equations (18) to derive the following:

k1 = λyn (23)

k2 = λyn

(
1 +

hλ

6

)
(24)

k3 = λyn

(
1 +

11hλ

4
+

7h2λ2

24

)
(25)

By substituting Equations (23)–(25) into (17) and allowing z = hλ, we obtain

yn+1 = yn

[
1 + z +

Z2

2
+

z3

6

]
(26)

Then, from Equation (26), the stability polynomial is

R(z) =
yn+1

yn
=

[
1 + z +

Z2

2
+

z3

6

]
+ o
(

z4
)

(27)

Utilizing the MATLAB program, Figure 1 below graphically illustrates the absolute
stability region of the Formula (27):
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Figure 1. The absolute stability region of the VRK3 method.

6. Consistency of the New Scheme

To explain the consistency property of the newly proposed scheme, we adopt Definition 5.
Therefore, by substituting Equation (22) into Equation (8), we obtain

Lim
h→0

L.T.E.
h

= Lim
h→0

( 1
864 f ( f 2 fyyy + 276 f fy fyy + 36 fy

3))h4 + O(h5)

h
= 0 (28)

According to Lambert [13], a numerical method is consistent if the order is bigger than
one. Therefore, our new method is consistent since it is of order three.

Lambert also defines a numerical method as convergent if it is consistent and stable.
Following from Equations (27) and (28), this method is consistent and stable. We con-
clude that the new method (VRK3) is convergent because it satisfies the consistency and
stability properties.

7. Numerical Examples

In this section, we introduce two models of IVPs with varying step sizes h to compare
the efficiency and the accuracy of the proposed new method (VRK3 scheme) with other
third-order methods, like Ralston’s scheme, RK3 scheme, ARK3 scheme, and Heun’s
scheme. Here, all calculations and figures are performed using MATLAB (R2022a) software.
The numerical results are presented in Tables 1–8, and the error analysis is illustrated in
Figures 2–7.

7.1. Problem 1 [14]

Take into consideration the first order IVP y′ = y− x2 + 1, y(0) = 0.5, with the exact
solution y = x2 + 2x− 0.5ex + 1, 0 ≤ x ≤ 1. Tables 1–3 show the results that were obtained.
The graphs of absolute errors are shown in Figures 2–4. The comparison of CPU time
between the VRK3 scheme and other relevant third-order schemes is shown in Table 7.
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Table 1. Comparison of the absolute errors among third-order schemes in Problem 1, for h = 10−1.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 6.2076 × 10−6 6.2076 × 10−6 8.9854 × 10−6 3.4299 × 10−6 6.5207 × 10−7

0.2 1.2845 × 10−5 1.2845 × 10−5 1.8692 × 10−5 6.9968 × 10−6 1.1492 × 10−6

0.3 1.9932 × 10−5 1.9932 × 10−5 2.9173 × 10−5 1.0692 × 10−5 1.4515 × 10−6

0.4 2.7492 × 10−5 2.7492 × 10−5 4.0482 × 10−5 1.4502 × 10−5 1.5125 × 10−6

0.5 3.5546 × 10−5 3.5546 × 10−5 5.2680 × 10−5 1.8412 × 10−5 1.2781 × 10−6

0.6 4.4113 × 10−5 4.4113 × 10−5 6.5826 × 10−5 2.2399 × 10−5 6.8563 × 10−7

0.7 5.3212 × 10−5 5.3212 × 10−5 7.9987 × 10−5 2.6437 × 10−5 3.3777 × 10−7

0.8 6.2861 × 10−5 6.2861 × 10−5 9.5229 × 10−5 3.0492 × 10−5 1.8762 × 10−6

0.9 7.3074 × 10−5 7.3074 × 10−5 1.1162 × 10−4 3.4524 × 10−5 4.0265 × 10−6

1 8.3864 × 10−5 8.3864 × 10−5 1.2925 × 10−4 3.8482 × 10−5 6.9006 × 10−6

Table 2. Comparison of the absolute errors among third-order schemes in Problem 1, for h = 5× 10−2.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 7.9184 × 10−7 7.9184 × 10−7 1.1480 × 10−6 4.3572 × 10−7 7.9594 × 10−8

0.2 1.6379 × 10−6 1.6379 × 10−6 2.3876 × 10−6 8.8818 × 10−7 1.3848 × 10−7

0.3 2.5408 × 10−6 2.5408 × 10−6 3.7254 × 10−6 1.3561 × 10−6 1.7141 × 10−7

0.4 3.5031 × 10−6 3.5031 × 10−6 5.1684 × 10−6 1.8377 × 10−6 1.7229 × 10−7

0.5 4.5273 × 10−6 4.5273 × 10−6 6.7240 × 10−6 2.3307 × 10−6 1.3400 × 10−7

0.6 5.6159 × 10−6 5.6159 × 10−6 8.3997 × 10−6 2.8321 × 10−6 4.8292 × 10−8

0.7 6.7710 × 10−6 6.7710 × 10−6 1.0204 × 10−5 3.3383 × 10−6 9.4375 × 10−8

0.8 7.9947 × 10−6 7.9947 × 10−6 1.2144 × 10−5 3.8448 × 10−6 3.0504 × 10−7

0.9 9.2884 × 10−6 9.2884 × 10−6 1.4231 × 10−5 4.3460 × 10−6 5.9642 × 10−7

1 1.0653 × 10−5 1.0653 × 10−5 1.6472 × 10−5 4.8351 × 10−6 9.8318 × 10−7

Table 3. Comparison of the absolute errors among third-order schemes in Problem 1, for h = 25× 10−3.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 9.9973 × 10−8 9.9973 × 10−8 1.4505 × 10−7 5.4894 × 10−8 9.8153 × 10−9

0.2 2.0675 × 10−7 2.0675 × 10−7 3.0165 × 10−7 1.1185 × 10−7 1.6954 × 10−8

0.3 3.2066 × 10−7 3.2066 × 10−7 4.7062 × 10−7 1.7070 × 10−7 2.0745 × 10−8

0.4 4.4202 × 10−7 4.4202 × 10−7 6.5283 × 10−7 2.3121 × 10−7 2.0405 × 10−8

0.5 5.7114 × 10−7 5.7114 × 10−7 8.4920 × 10−7 2.9308 × 10−7 1.5023 × 10−8

0.6 7.0830 × 10−7 7.0830 × 10−7 1.0607 × 10−6 3.5592 × 10−7 3.5422 × 10−9

0.7 8.5378 × 10−7 8.5378 × 10−7 1.2883 × 10−6 4.1926 × 10−7 1.5261 × 10−8

0.8 1.0078 × 10−6 1.0078 × 10−6 1.5331 × 10−6 4.8250 × 10−7 4.2799 × 10−8

0.9 1.1705 × 10−6 1.1705 × 10−6 1.7962 × 10−6 5.4492 × 10−7 8.0702 × 10−8

1 1.3422 × 10−6 1.3422 × 10−6 2.0787 × 10−6 6.0565 × 10−7 1.3084 × 10−7Algorithms 2024, 17, 123 8 of 13 
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7.2. Problem 2 (Mixture Model)

We consider here the IVP proposed in [15], which was a model of a storage tank in an oil
refinery that holds 2000 gal of gasoline with 100 lb of an additive mixed within it. To prepare
for winter weather, 40 gal/min of gasoline that contains 2 lb of additive per gallon is pumped
into the storage tank. The well-mixed solution is pumped out at a rate of 45 gal/min. Let
y be the amount of additive (in pounds) in the tank at time x. When x = 0, we know that
y = 100. The mixture process is modeled by the IVP, y′ = 80− 45

(2000−5x) y , y(0) = 100, and

the analytic solution, y(x) = (2000− 5x){2− 3900
(2000)9 (2000− 5x)8}, 0 ≤ x ≤ 1.

Tables 4–6 show the absolute errors among third-order methods and the VRK3 scheme,
with different step sizes of h = 0.1, h = 0.05, and h = 0.025. Figures 5–7 depict the graphical
analysis used to support the numerical results in Tables 4–6. A comparison of CPU time
between the new method and other third-order schemes is shown in Table 8.
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Table 4. Comparison of the absolute errors among third-order schemes in Problem 2, for h = 10−1.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 3.7246 × 10−9 4.1133 × 10−9 3.8694 × 10−9 3.3207 × 10−9 3.1607 × 10−9

0.2 7.4366 × 10−9 8.2127 × 10−9 7.7257 × 10−9 6.6303 × 10−9 6.3109 × 10−9

0.3 1.1136 × 10−8 1.2298 × 10−8 1.1568 × 10−8 9.9282 × 10−9 9.4499 × 10−9

0.4 1.4821 × 10−8 1.6367 × 10−8 1.5397 × 10−8 1.3214 × 10−8 1.2577 × 10−8

0.5 1.8494 × 10−8 2.0424 × 10−8 1.9213 × 10−8 1.6488 × 10−8 1.5694 × 10−8

0.6 2.2154 × 10−8 2.4466 × 10−8 2.3015 × 10−8 1.9752 × 10−8 1.8800 × 10−8

0.7 2.5801 × 10−8 2.8493 × 10−8 2.6804 × 10−8 2.3003 × 10−8 2.1895 × 10−8

0.8 2.9435 × 10−8 3.2507 × 10−8 3.0579 × 10−8 2.6243 × 10−8 2.4979 × 10−8

0.9 3.3057 × 10−8 3.6506 × 10−8 3.4342 × 10−8 2.9472 × 10−8 2.8053 × 10−8

1 3.6665 × 10−8 4.0491 × 10−8 3.8090 × 10−8 3.2689 × 10−8 3.1114 × 10−8

Table 5. Comparison of the absolute errors among third-order schemes in Problem 2, for h = 5× 10−2.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 4.6501 × 10−10 5.1354 × 10−10 4.8308 × 10−10 4.1457 × 10−10 3.9459 × 10−10

0.2 9.2889 × 10−10 1.0258 × 10−9 9.6499 × 10−10 8.2821 × 10−10 7.8832 × 10−10

0.3 1.3910 × 10−9 1.5361 × 10−9 1.4451 × 10−9 1.2403 × 10−9 1.1805 × 10−9

0.4 1.8506 × 10−9 2.0437 × 10−9 1.9225 × 10−9 1.6499 × 10−9 1.5704 × 10−9

0.5 2.3096 × 10−9 2.5506 × 10−9 2.3994 × 10−9 2.0592 × 10−9 1.9600 × 10−9

0.6 2.7670 × 10−9 3.0556 × 10−9 2.8745 × 10−9 2.4671 × 10−9 2.3482 × 10−9

0.7 3.2222 × 10−9 3.5584 × 10−9 3.3474 × 10−9 2.8729 × 10−9 2.7345 × 10−9

0.8 3.6763 × 10−9 4.0598 × 10−9 3.8191 × 10−9 3.2778 × 10−9 3.1199 × 10−9

0.9 4.1288 × 10−9 4.5595 × 10−9 4.2892 × 10−9 3.6813 × 10−9 3.5040 × 10−9

1 4.5789 × 10−9 5.0566 × 10−9 4.7568 × 10−9 4.0826 × 10−9 3.8859 × 10−9

Table 6. Comparison of the absolute errors among third-order schemes in Problem 2, for h = 25× 10−3.

xi Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

zero zero zero zero zero zero
0.1 5.7938 × 10−11 6.4006 × 10−11 6.0197 × 10−11 5.1628 × 10−11 4.9127 × 10−11

0.2 1.1617 × 10−10 1.2828 × 10−10 1.2069 × 10−10 1.0360 × 10−10 9.8595 × 10−11

0.3 1.7408 × 10−10 1.9220 × 10−10 1.8083 × 10−10 1.5525 × 10−10 1.4776 × 10−10

0.4 2.3087 × 10−10 2.5497 × 10−10 2.3985 × 10−10 2.0580 × 10−10 1.9583 × 10−10

0.5 2.8851 × 10−10 3.1858 × 10−10 2.9971 × 10−10 2.5724 × 10−10 2.4477 × 10−10

0.6 3.4589 × 10−10 3.8193 × 10−10 3.5934 × 10−10 3.0846 × 10−10 2.9351 × 10−10

0.7 4.0254 × 10−10 4.4454 × 10−10 4.1820 × 10−10 3.5894 × 10−10 3.4157 × 10−10

0.8 4.5941 × 10−10 5.0736 × 10−10 4.7731 × 10−10 4.0967 × 10−10 3.8989 × 10−10

0.9 5.1622 × 10−10 5.7003 × 10−10 5.3629 × 10−10 4.6035 × 10−10 4.3809 × 10−10

1 5.7196 × 10−10 6.3162 × 10−10 5.9421 × 10−10 5.0994 × 10−10 4.8530 × 10−10
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Table 7. Comparisons of CPU time in Problem 1, for different step sizes h.

Step Size
CPU Time

Ralston’s Scheme RK3 Scheme ARK3 Scheme Heun’s Scheme VRK3 Scheme

h = 0.1 0.003325 0.003508 0.004631 0.005653 0.001558

h = 0.05 0.003407 0.004827 0.003017 0.005066 0.001027

h = 0.025 0.003655 0.003144 0.005021 0.004364 0.001273

Table 8. Comparisons of CPU time in Problem 2, for different step sizes h.

Step Size
CPU Time

Ralston’s Scheme RK3 Scheme ARK3 Scheme HEUN’S SCHEME VRK3 Scheme

h = 0.1 0.004160 0.003116 0.004698 0.004627 0.001358

h = 0.05 0.003328 0.004782 0.004879 0.003469 0.001003

h = 0.025 0.003506 0.004392 0.003230 0.004234 0.001296
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8. Discussion and Conclusions

In this study, we introduced an innovative third-order method designed for solving
initial value problems (IVPs). Our approach is rooted in a novel adaptation of the standard
formulation employed in Runge–Kutta methods, incorporating Taylor series expansion. To
validate the effectiveness of this new method, we employed two distinct numerical models,
effectively showcasing its fundamental capabilities. It is important to underscore that all our
numerical findings, including the accompanying tables and figures, were calculated using
MATLAB (R2022a) software on a dedicated computer system operating with Windows 11
Pro. The system uses an 11th Generation Intel(R) Core (TM) i7-11800H processor running
at 2.30 GHz, backed by 16.0 GB of RAM (15.7 GB usable).

A comprehensive numerical assessment was conducted using Tables 1–6, which
present an intricate comparison of absolute errors across various step sizes, specifically
h = 10−1, h = 5× 10−2, and h = 25× 10−3. Through the graphical representations
found in Figures 2–7, we were able to discern that our novel method, referred to as VRK3,
consistently outperformed several benchmark techniques including Ralston’s scheme,
RK3 scheme, ARK3 scheme, and Heun’s scheme. This superiority primarily stems from
the reduced local truncation error of VRK3. Additionally, our investigation revealed
a significant insight regarding the impact of step size on accuracy. As we decreased
the step size, the error progressively approached zero, strongly indicating that precision
increased with smaller step sizes. This observation reinforces the importance of carefully
selecting step sizes to achieve higher levels of accuracy in numerical solutions. Turning
our attention to computational efficiency, Tables 7 and 8 provided valuable insights. The
VRK3 scheme consistently demonstrated reduced CPU time compared to its counterparts,
further validating its utility in practical applications. Furthermore, Figure 1 depicts the
stability region of our third-order VRK3 scheme, establishing its equivalence to similar
methodologies. Importantly, we substantiated the convergence of our VRK3 scheme, as it
satisfies both the consistency and stability criteria.

In conclusion, our newly proposed third-order method exhibits a commendable blend
of efficiency and reliability. The method’s stability and high accuracy render it partic-
ularly robust for a wide range of applications. This research contributes to the field of
numerical methods for IVPs by presenting an innovative approach that holds promise for
improving computational accuracy and efficiency. Future research directions might explore
the extension of this method to more complex problems or its integration into broader
computational frameworks.
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