
Citation: Krivovichev, G.V.;

Sergeeva, V.Y. Analysis of a Two-Step

Gradient Method with Two

Momentum Parameters for Strongly

Convex Unconstrained Optimization.

Algorithms 2024, 17, 126. https://

doi.org/10.3390/a17030126

Academic Editors: Sona Taheri,

Kaisa Joki and Napsu Karmitsa

Received: 24 February 2024

Revised: 14 March 2024

Accepted: 15 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Analysis of a Two-Step Gradient Method with Two Momentum
Parameters for Strongly Convex Unconstrained Optimization
Gerasim V. Krivovichev * and Valentina Yu. Sergeeva

Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg 199034, Russia; st086985@student.spbu.ru
* Correspondence: g.krivovichev@spbu.ru

Abstract: The paper is devoted to the theoretical and numerical analysis of the two-step method,
constructed as a modification of Polyak’s heavy ball method with the inclusion of an additional
momentum parameter. For the quadratic case, the convergence conditions are obtained with the
use of the first Lyapunov method. For the non-quadratic case, sufficiently smooth strongly convex
functions are obtained, and these conditions guarantee local convergence.An approach to finding
optimal parameter values based on the solution of a constrained optimization problem is proposed.
The effect of an additional parameter on the convergence rate is analyzed. With the use of an
ordinary differential equation, equivalent to the method, the damping effect of this parameter on
the oscillations, which is typical for the non-monotonic convergence of the heavy ball method,
is demonstrated. In different numerical examples for non-quadratic convex and non-convex test
functions and machine learning problems (regularized smoothed elastic net regression, logistic
regression, and recurrent neural network training), the positive influence of an additional parameter
value on the convergence process is demonstrated.

Keywords: convex optimization; gradient descent; heavy ball method

1. Introduction

Nowadays, many problems in machine learning [1], optimal control [2], applied linear
algebra [3], system identification [4], and other applications lead to the problems of uncon-
strained convex optimization. The theory of convex optimization is well-developed [5–7],
but methods that can be additionally analyzed or improved exist. A typical example
of an improvement of the standard gradient descent method is the heavy ball method
(HBM), proposed by B.T. Polyak in [7,8], which is based on the inclusion of a momen-
tum term. The local convergence of this method for functions from F 2,1

l,L (twice contin-
uously differentiable, l-strongly convex functions with Lipschitz gradient) was proved
in [7]. Recently, Ghadimi et al. [9] formulated the conditions of global linear convergence.
Aujol et al. [10] analyzed the dynamical system associated with the HBM in order to obtain
optimal convergence rates for convex functions with some additional properties, such as
quasi-strong and strong convexity.

In the last few decades, extended modifications of the HBM have been developed,
and interesting results on their behavior have been obtained. Bhaya and Kaszkuremicz [11]
demonstrated that the HBM for minimization of quadratic functions can be considered
a stationary version of the conjugate gradient method. Recently, Goujand et al. [12] pro-
posed an adaptive modification of the HBM with Polyak stepsizes and demonstrated that
this method can be considered a variant of the conjugate gradient method for quadratic
problems, having many advantages, such as finite-time convergence and instant optimality.
Danilova et al. [13] demonstrated the non-monotonic convergence of the HBM and analyzed
the peak effect for ill-conditioned problems. In order to carry out the damping of this effect
in [14], an averaged HBM was constructed. A global and local convergence of momentum
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method for semialgebraic functions with locally Lipschitz gradients was demonstrated
in [15]. Wang et al. [16] used the theory of PID controllers for the construction of momentum
methods for deep neural network training. A quasi-hyperbolic momentum method with
two parameters, momentum and parameter, which performs a sort of interpolation between
gradient descent and the HBM, was presented in [17]. A complete analysis of such algo-
rithms for deterministic and stochastic cases was performed in [18], where the influence of
parameters on stability and convergence rate was analyzed. Sutskever et al. [19] proposed
a stochatic version of Nesterov’s method, where the momentum was included bilinearly
with the step. An improved accelerated momentum method for stochastic optimization
was presented in [20].

In [21], the authors investigated the ravine method and momentum methods from
dynamical system perspectives. A high-resolution differential equation describing these
methods was proposed, and the damping effect of the additional term driven by the
Hessian was demonstrated. Similar results for Hessian damping were obtained in [22]
for the proximal methods.A continuous system with damping for primal-dual convex
problems was constructed in [23]. Alecsa et al. [24] investigated a perturbed heavy ball
system with a vanishing damping term that contained a Tikhonov regularization term. It
was demonstrated that the presence of a regularization term led to a strong convergence of
the descent trajectories in the case of smooth functions. An analysis of momentum methods
from the positions of Hamiltonian dynamical systems was presented in [25].

Yan et al. [26] proposed a modification of the HBM with an additional parameter and
an additional internal stage. In [27], a method with three momentum parameters (the
so-called triple momentum method) was presented. This method has been classified as
the fastest known globally convergent first-order method. In [28], the integral quadratic
constraint method used in robust control theory was applied to the construction of first-
order methods. A method with two momentum parameters was introduced. In [29], this
scheme was analyzed for a strongly convex function with a Lipschitz gradient, and the
range of the possible convergence rate was presented.

Despite the results obtained for different methods with momentum mentioned above,
there is a lack of correct understanding of the roles of parameters in computational schemes
with momentum. As mentioned by investigators, understanding the role of momentum
remains important for practical problems. For example, in [19], the authors demonstrated
that momentum is critical for good performance in deep learning problems. However,
in another modification of the HBM, Ma and Yarats [17] demonstrated that momentum
in practice can have a minor effect, which is insufficient for acceleration of convergence.
Therefore, additional theoretical analysis of methods with momentum is important in
our time.

The presented paper is devoted to the analysis of a method with two momentum pa-
rameters, as proposed in [28]. For the functions from F 1,1

l,L (l-strongly convex L-smooth func-
tions), this method was analyzed in [29], where global convergence for the special choice of
parameters was proven. In the presented paper, we try to focus our attention on the case of
quadratic functions from F 1,1

l,L , in order to obtain the inequalities for parameters that guar-
antee global convergence, to obtain optimal values of the parameters, and to understand
the effect of an additional momentum parameter on the convergence rate. Convergence
conditions are obtained, and corresponding theorems are formulated. The constrained
optimization problem for obtaining optimal parameters is stated. As demonstrated in
numerical experiments, in the quadratic case, the inclusion of an additional parameter
does not improve the convergence rate. The role of this parameter is demonstrated with
the use of the ordinary differential equation (ODE), which is equivalent to the method.
This parameter provides an additional damping effect on the oscillations, typical for the
HBM, according to its non-monotonic convergence, and can be useful in practice. In the
numerical experiments for non-quadratic functions, it is demonstrated that this parameter
also provides damping of the oscillations and leads to faster convergence to the mini-



Algorithms 2024, 17, 126 3 of 21

mum in comparison with the standard HBM. Additionally, the effect of this parameter is
demonstrated for the non-convex function that arises in recurrent neural network training.

The paper has the following structure: Section 2 is devoted to the theoretical analysis
method in application to strongly convex quadratic functions. The effect of an additional
momentum parameter is analyzed. The results of the numerical experiments for non-
quadratic, strongly convex, and non-convex functions are presented in Section 3. Some
concluding remarks are made in Section 4.

2. Analysis of Two-Step Method

Let the scalar function f : Rd → R from F 1,1
l,L be considered. We try to find its

minimizer x∗. So the unconstrained minimization problem is stated:

f (x) → min
x∈Rd

. (1)

The gradient descent method (GD) for numerical solution of (1) is written as

xk+1 = xk − h∇ f (xk), (2)

where h > 0 is a step. If we additionally propose that f (x) ∈ F 2,1
l,L , the optimal step and

convergence rate for (2) are presented as in [7]

hopt =
2

l + L
, ρopt =

κ − 1
κ + 1

,

where κ = L/l is the condition number and L, l can be associated with the minimum and
maximum eigenvalues of a Hessian of f (x).

Polyak’s heavy ball method is presented as in [7,8]

xk+1 = xk − h∇ f (xk) + β(xk − xk−1), (3)

where β ∈ [0, 1) is the momentum. The optimal values in the case of strongly convex
quadratic function are written as in [7]

hopt =
4

(
√

L +
√

l)2
, βopt =

(√
κ − 1√
κ + 1

)2

, ρopt =

√
κ − 1√
κ + 1

.

Lessard et al. [28] proposed the following method with an additional momentum
parameter:

xk+1 = xk − h∇ f (yk) + β1(xk − xk−1), yk = xk + β2(xk − xk−1). (4)

As can be seen, for the case of β2 = 0, method (4) leads to (3). In [29], the global conver-
gence of this method for f (x) ∈ F 1,1

l,L with the convergence rate ρ ∈
[
1 − 1√

κ
, 1 − 1

κ

]
is

demonstrated for the following specific choice of parameters:

h =
κ(1 − ρ)2(1 + ρ)

L
, β1 =

κρ3

κ − 1
, β2 =

ρ3

(κ − 1)(1 − ρ)3(1 + ρ)
.

In the theoretical part of the presented paper, we try to analyze the influence of param-
eter β2 on the convergence of method (4) for the case of a quadratic function, written as

f (x) =
1
2
(x, Ax)− (b, x), (5)

where b ∈ Rd, A is a positive definite and symmetric matrix with eigenvalues 0 < l = λ1 ≤
λ2 ≤ . . . ≤ λd = L. The gradient of this function is computed as ∇ f (x) = Ax − b, and x∗ is
treated as the solution of the linear system Ax = b. The obtained results can be considered
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as the results of the local convergence of method (4), applied to f (x) ∈ F 2,1
l,L , because in the

neighborhood of x∗ f (x) from this class can be presented as (5) with A = ∇2 f (x∗). This
approach for obtaining local convergence conditions and optimal parameters values is
widely used in literature [7,18].

Method (4), when applied to (5), leads to the following difference system:

xk+1 = (E − hA)xk + (β1E − β2hA)(xk − xk−1)− hb, (6)

where E is the unity matrix.

2.1. Convergence Conditions

The following theorem on the convergence of an iterative method, as presented by (6),
can be formulated

Theorem 1. For h > 0, β1 ∈ [0, 1) and β2 ≥ 0, the following inequality takes place:

h <
2(1 + β1)

(1 + 2β2)L
. (7)

Then, method (6) converges to x∗ for any x0.

Proof of Theorem 1. (1) Let the new variable zk = (xk − x∗, xk−1 − x∗)T be introduced.
Then, method (6) can be rewritten as a single-step method:

zk+1 = Tzk,

where matrix T is written as

T =

(
(1 + β1)E − h(1 + β2)A hβ2 A − β1 E

E 0d×d

)
.

This method converges if, and only if, r(T) (spectral radius of matrix T) is strictly less
than unity [3].
Matrix A can be represented by the spectral decomposition A = SΛST , where Λ is the
diagonal matrix of eigenvalues of A, S is a matrix of eigenvectors, and SST = STS = E.
The following transformation of T can be introduced: T = ΣTTΣ, where

Σ =

(
S 0d×d

0d×d S

)
, T =

(
(1 + β1)E − h(1 + β2)Λ hβ2Λ − β1 E

E 0d×d

)
.

Matrix T has the same eigenvalues, as matrix T.
Let us demonstrate that T has the same spectrum as the following matrix:

T̃ =


T1 02×2 . . . 02×2

02×2 T2 . . . 02×2
. . . . . . . . . . . .

02×2 02×2 . . . Td

.

where Ti are 2 × 2 matrices, which are presented as

Ti =

(
1 + β1 − h(1 + β2)λi hβ2λi − β1

1 0

)
.

Matrix T − ζE is presented as

T − ζE =

(
T11 T12
T21 T22

)
,
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where T11 = (1 + β1)E − h(1 + β2)Λ − ζE, T12 = hβ2Λ − β1E, T21 = E, T22 = −ζE.
The determinant of this matrix is computed by the following rule [30]:

det(T − ζE) = det(T11)det(T22 − T21T−1
11 T12) =

det(T11)det


−ζ + β1−hβ2λ1

1+β1−h(1+β2)λ1−ζ
0 . . . 0

0 −ζ + β1−hβ2λ2
1+β1−h(1+β2)λ2−ζ

. . . 0
. . . . . . . . . . . .
0 0 . . . −ζ + β1−hβ2λd

1+β1−h(1+β2)λd−ζ

 =

(β1 − hβ2λ1 − ζχ1) . . . (β1 − hβ2λd − ζχd),

where χi = 1 + β1 − h(1 + β2)λi − ζ, i = 1, d.
The determinant of the block-diagonal matrix T̃ − ζE is written as

det(T̃ − ζE) = det(T1 − ζE2×2)det(T2 − ζE2×2) . . . det(Td − ζE2×2),

and, as can be seen, it is equal to det(T − ζE). So, both matrices have the same
eigenvalues ζk, k = 1, 2d and these eigenvalues are computed as eigenvalues of
matrices Ti.

(2) According to the result presented above, the analysis of eigenvalues of T leads to the
analysis of roots of an algebraic equation:

ζ2 − (1 + β1 − h(1 + β2)λ)ζ + β1 − hβ2λ = 0. (8)

In order to guarantee convergence, parameters should be chosen in a way which
guarantees that |ζ1,2| < 1. For obtaining these conditions, we perform conformal
mapping of the interior of the unit circle {ζ : |ζ| < 1} to the set Q = {q : Re(q) < 0}
with use of the following function:

ζ =
q + 1
q − 1

. (9)

After substitution of (9) into (8), the following equation is obtained:

hλq2 + 2(1 − β1 + β2λh)q + 2(1 + β1 − β2λh)− hλ = 0. (10)

The conditions on coefficients of (10) guarantee roots qi ∈ Q are provided by the
Routh–Hurwitz criterion [30,31]. The Hurwitz matrix for (10) is written as(

2(1 − β1 + β2λh) hλ
0 2(1 + β1 − β2λh)− hλ

)
.

The conditions of the Routh–Hurwitz criterion lead to two inequalities:

1 − β1 + β2λh > 0, (11)

2(1 + β1 − β2λh)− hλ > 0. (12)

Inequity (11) is valid ∀λ ∈ [l, L], ∀h > 0 according to the ranges of values of βi stated
in the conditions of the theorem. Inequity (12) is rewritten as

h <
2(1 + β1)

λ(1 + 2β2)
,

and it is valid for values of h chosen from Inequity (7). This, condition (7) guarantees
that qi ∈ Q, and as a consequence that |ζi| < 1 under the stated conditions. This leads
to the convergence of (6) for any x0 ∈ Rd.
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2.2. Analysis of Convergence Rate

Let us analyze the convergence rate of method (6). At first, let us obtain the expression
for the spectral radius of matrix T. Let s = (h, β1, β2) and the spectral radius be presented
as the function r(s, λ), where λ ∈ [l, L]. The expression for r can be obtained with the use
of an expression for the roots of (8):

ζ1,2 =
1
2

(
A1 ±

√
D
)

,

where D = A2
1 − 4A2, A1 = 1 + β1 − h(1 + β2)λ, A2 = β1 − hλβ2 and is written as

r(s, λ) =
1
2

max(|ζ1|, |ζ2|). (13)

If r(s, λ) is considered a function of λ, the following theorem on its extremal property
can be formulated:

Theorem 2. The maximum value of r(s, λ) as a function of λ ∈ [l, L] takes place for λ = l or
λ = L.

Proof of Theorem 2. (1) Let us obtain the expression for r(s, λ). For D > 0 in the case
of A1 > 0, the following inequality takes place: A1 +

√
D > 0 and |A1 −

√
D| =

A1 −
√

D if A1 >
√

D, and in this case A1 +
√

D > A1 −
√

D > 0. If A1 −
√

D < 0,
we obtain that |A1 −

√
D| =

√
D − A1 and A1 +

√
D >

√
D − A1. So, if D > 0 and

A1 > 0, we have that r(s, λ) = 1
2 (A1 +

√
D).

If D > 0 and A1 < 0, we have that |A1 −
√

D| =
√

D − A1, and for |A1 +
√

D|
we have that if A1 +

√
D > 0, then

√
D − A1 > A1 +

√
D. If A1 +

√
D < 0, then

|A1 +
√

D| = −A1 −
√

D and
√

D − A1 > −A1 −
√

D. So if A1 < 0 and D > 0, we
obtain that r(s, λ) = 1

2 (
√

D − A1).
For D < 0, it is easy to see that r(s, λ) =

√
A2. The case of D = 0 and case A1 = 0 are

trivial to analyze. Thus, it is demonstrated that

r(s, λ) =


1
2 (A1 +

√
D), A1 ≥ 0, D ≥ 0,

1
2 (
√

D − A1), A1 < 0, D ≥ 0,
√

A2, D < 0.

(2) Let us analyze the behavior of r(s, λ) for λ ∈ [l, L]. The expression for D is written as

D = (1 + β2)
2λ2h2 − 2((1 + β1)(1 + β2)− 2β2)λh + (1 − β1)

2.

So, the non-negative values of D are associated with the solutions of the
following inequality:

(1 + β2)
2t2 − 2((1 + β1)(1 + β2)− 2β2)t + (1 − β1)

2 ≥ 0.

The corresponding discriminant is equal to 16(β1 + β2(β1 − 1)). As can be seen,
solutions to this inequality exist, when

β2 ≤ β1

1 − β1
. (14)

The opposite inequality guarantees that it is valid for all λ > 0. For analysis of the
general situation of the sign of D this restriction is too strict, so we consider the case
of condition (14).
The case of D < 0 leads to the investigation of function ψ(λ) =

√
A2(λ) =

√
β1 − λhβ2.

Condition A2(λ) > 0 leads to the restriction λ < β1
hβ2

, which is valid for h < β1
Lβ2

. It
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should be noted that this condition correlates with (7) for values of β1 ∈ [0, 1), β2 ≥ 0
under condition β2 > β1

2 . The derivative of ψ(λ) is written as

ψ′(λ) =
−hβ2

2
√

A2(λ)

and for β2 > 0, it is strictly negative, so ψ decreases on the considered interval and its
maximum is equal to ψ(l) < ψ(0) =

√
β1 < 1.

For D = 0, we obtain that r = 1
2 |A1(λ)| = 1

2 |1 + β1 − h(1 + β2)λ|. The case A1 > 0

corresponds to the interval λ ∈
(

0, 1+β1
h(1+β2)

]
, where r decreases, and case A1 < 0

corresponds to λ > 1+β1
h(1+β2)

, where r increases. So, the maximum of r in this situations
is realized in point λ = l or λ = L.
For D > 0, two situations should be considered. For A1 ≥ 0, the behavior of
function φ1(λ) =

1
2 (A1(λ) +

√
A2

1(λ)− 4A2(λ)) should be analyzed. Its derivative is
written as

φ′
1(λ) =

1
2

A′
1(λ) +

A′
1(λ)A1(λ)− 2A′

2(λ)√
A2

1(λ)− 4A2(λ)


and according to A′

1(λ) = −h(1 + β2) < 0, we can see that if A′
1 A1 − 2A′

2 ≤ 0, φ′
1(λ)

will be negative, so φ1 decreases. Let us determine where this inequality is valid:

A′
1 A1 − 2A′

2 ≤ 0 ⇔ −(1 + β1)(1 + β2) + hλ(1 + β2)
2 + 2β2 ≤ 0,

so

λ ≤ η(β1, β2) =
(1 + β1)(1 + β2)− 2β2

h(1 + β2)2 .

Function η is strictly positive, when

β2 <
1 + β1

1 − β1
. (15)

As can be seen, this inequality is valid when condition (14) is realized on values of β2.
So, in the interval (0, η], function φ1(λ) decreases.
Positive values of φ′

1(λ) can be realized when the following inequality is valid:

A′
1

√
A2

1 − 4A2 + A′
1 A1 − 2A′

2 > 0, (16)

which leads to A′
1 A1 − 2A′

2 > −A′
1

√
A2

1 − 4A2. According to A′
1 = −h(1 + β2) < 0,

this leads to the evident inequality A′
1 A1 − 2A′

2 > 0, which takes place for λ >
η(β1, β2) under condition (15).
Let us demonstrate that (16) correlates with (14): Inequity (16) leads to −A′

1 A′
2 A1 +

A′2
2 > −A2 A′2

1 , which leads to the following inequality:

−(1 + β2 + β1 + β1β2)β2 + β2
2 > −β1 − 2β1β2 − β1β2

2,

which is equivalent to

β2 + β1β2 < β1 + 2β1β2,

which is equivalent to (14).
It is easy to see that

(1 + β1)(1 + β2)− 2β2

(1 + β2)2 <
1 + β1

1 + β2
, (17)
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so, when λ ∈
(

0, (1+β1)
h(1+β2)

]
(corresponds to A1 ≥ 0), r decreases when λ ∈ (0, η(β1, β2)]

and increases when λ > η(β1, β2) and its maximum is realized in the boundary point.

The case A1 < 0 leads to the analysis of function φ2(λ) = 1
2 (
√

A2
1(λ)− 4A2(λ)−

A1(λ)) on the interval, defined by inequality (see case D = 0)

λ >
1 + β1

h(1 + β2)
. (18)

The first derivative of φ2(λ) is written as

φ′
2(λ) =

1
2

A′
1(λ)A1(λ)− 2A′

2(λ)√
A2

1(λ)− 4A2(λ)
− A′

1(λ)

.

According to −A′
1 = h(1 + β2) > 0, we obtain that if A′

1 A1 − 2A′
2 > 0 (this takes

place when λ > η(β1, β2)), this derivative is strictly positive. According to (17), it
is valid for the interval defined by (18), so φ2(λ) and, as a consequence, function r
increases in the case of A1 < 0 corresponding to (18) and its maximum takes place in
the right boundary point λ = L, if intervals [l, L] and (18) have an intersection.
Thus, for all values of D, we can see that r reaches its maximum value at the boundaries
of interval [l, L].

Notation 1. Formulated theorems for the case of function (5) provide the conditions that guarantee
global convergence [7]:

||xk − x∗|| ≤ (ρ + ε)k||x0 − x∗||, ∀ε ∈ (0, 1 − ρ), ∀k ≤ 0,

where ρ = max(r(s, l), r(s, L)).
If the non-quadratic f (x) ∈ F 2,1

l,L is considered, then these conditions provide a local conver-
gence (see Theorem 1 from subsection 2.1.2 in [7]). Any sufficiently smooth function f (x) in the
neighborhood of x∗ can be presented as

f (x) ≈ f (x∗) +
1
2
(∇2 f (x∗)(x − x∗), x − x∗),

and according to the following property:

f (xk)− f (x∗) ≤ L
2
||xk − x∗||2,

we can see that if ∃ δ > 0, ||x0 − x∗|| ≤ δ, then for method (4) the following inequality is obtained
∀k ≥ 0:

f (xk)− f (x∗) ≤ L
2

δ2(ρ + ε)2k, ∀ε ∈ (0, 1 − ρ).

Notation 2. Theorem 2 provides an approach to obtain optimal parameters with the solution of the
following problem for obtaining an optimal convergence rate:

ρopt = min
s∈Σ⊂R3

max(r(s, l), r(s, L)), (19)

where Σ is defined as:

Σ =

{
(β1, β2, h) : β1 ∈ [0, 1), β2 ≥ 0, h ∈

(
0,

2(1 + β1)

L(1 + 2β2)

]}
. (20)
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Similar minimax problems arise in the theory of the standard HBM (3) [7] and multiparametric
method in [18].

2.3. Optimal Parameters

In this subsection, we discuss the solution of minimization problems (19) and (20) and
the following problem, which is stated in order to analyze the effect of parameter β2:

F(β1, h) = max(r(h, β1, β2, l), r(h, β1, β2, L)) → min
∆

, (21)

where

∆ =

{
(β1, h) : β1 ∈ [0, 1), h ∈

(
0,

2(1 + β1)

L(1 + 2β2)

]}
.

So in (21) β2 is treated as an external parameter, which can be varied. In our computations,
problem (21) is solved using the following approach: in the first stage, we obtain three
’good’ initial points in ∆ by random search, and in the second stage, we apply the Nelder–
Mead method in order to obtain the optimal point more precisely than in the first stage.
For computations at any value of β2, we use 105 random points in ∆ and the accuracy 10−5

for the Nelder–Mead method. The use of a large number of random points provides the
possibility of obtaining the initial points in the small neighborhood of the optimal point,
and the points obtained with the Nelder–Mead method do not leave ∆. This approach
to solving the problem is very simple to realize and eliminates the need to use methods
of unconstrained optimization. All computations were realized with the use of codes
implemented in Matlab 2021a.

In Figure 1, the plots of optimal values of F are presented for the cases of interval
β2 ∈ [0, 1] (Figure 1a) and β2 ∈ [0, 100] (Figure 1b) for four values of κ: 10, 102, 103, and
105. As can be seen, for both intervals and all considered values of κ, the minimum values
of Fopt takes place for β2 = 0. The value of Fopt becomes smaller at smaller values of κ.
The last feature is also mentioned for the multi-parametric method of [18].
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Figure 1. Plots of the dependence of optimal values of F on the value of β2: (a) β2 ∈ [0, 1];
(b) β2 ∈ [0, 100].

In addition, we try to compare the optimal convergence rate as a function of κ for
method (4) with the optimal rates for the GD method (2), the HBM (3), and the following
Nesterov methods:

(1) Nesterov’s accelerated gradient method for f ∈ F 1,1
l,L (Nesterov1) [6,28]:

xk+1 = yk − h∇ f (yk), yk = xk + β(xk − xk−1),
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hopt =
1
L

, βopt =

√
κ − 1√
κ + 1

, ρopt = 1 − 1√
κ

.

(2) Nesterov’s accelerated gradient method for a strongly convex quadratic function
(Nesterov2) [28]:

xk+1 = yk − h∇ f (yk), yk = xk + β(xk − xk−1),

hopt =
4

3L + l
, βopt =

√
3κ + 1 − 2√
3κ + 1 + 2

, ρopt = 1 − 2√
3κ + 1

.

The numerical solution to problem (19) is realized using the same method as for
problem (21), but for the Nelder–Mead method, four ’good’ points are obtained with
a random search. The interval on β2 ≥ 0 is bounded by 0.5, according to the behavior,
illustrated in Figure 1.

Plots of ρopt are presented in Figure 2. As can be seen, the minimum values of ρopt
took place for methods (3) and (4), and they were very close. So, from the results of the
computations, the following conclusion can be drawn: for the quadratic function f (x),
parameter β2 does not provide an additional acceleration effect in comparison with the
standard HBM (3).
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Figure 2. Plots of the dependence of the optimal convergence rate on logarithm of κ.

2.4. Equivalent ODE

For an additional analysis of the influence of β2 on the convergence of (4), we consider
an approach based on the ODE, which is constructed as a continuous analogue of the
iterative method. At present, this approach is widely used for the analysis of optimization
methods [7,21–24,32,33].

Let method (4) for quadratic function f (x) = a
2 x2, where x ∈ R, a > 0, be considered.

This function can be treated as a quadratic approximation of the arbitrarily smooth function,
which has its minimum zero value in point x = 0. Application of (4) leads to the following
difference equation:

xk+1 = xk − ha(xk + β2(xk − xk−1)) + β1(xk − xk−1). (22)
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Let us introduce function x(t), where t is defined as t = k
√

h, so x(t) ≈ x
t√
h = xk and

x(t +
√

h) ≈ xk+1, x(t −
√

h) ≈ xk−1. Equation (22) can be rewritten as

xk+1 − xk
√

h
= −

√
haxk + (β1 − haβ2)

xk − xk−1
√

h
. (23)

Let the new parameters γ1 > 0, γ2 ≥ 0 be introduced: β1 = 1 − γ1
√

h, γ2 =
√

hβ2 and the
following new variable is considered:

mk+1 =
xk+1 − xk

√
h

.

So, (23) is rewritten as

mk+1 − mk
√

h
= −axk − (γ1 + aγ2)mk. (24)

For h → 0, we find that (24) is rewritten as ṁ = −ax − (γ1 + aγ2)m and with the use
of m = ẋ, we obtain the following second-order ODE:

ẍ = −ax − (γ1 + aγ2)ẋ. (25)

The case of HBM corresponds to γ2 = 0 [7] and the ODE describes the dynamics of a
material point with unit mass under a force with a potential represented by f (x) and under
a resistive force with coefficient γ1. Thus, if γ2 ̸= 0, we have the following mechanical
meaning of β2: this presents an additional damping effect on the solution of the ODE (25)
and, as a consequence, on the behavior of method (4). With the use of proper values of β2,
we can realize the damping of oscillations related to the non-monotonic convergence of the
method. This is typical for the case of κ ≫ 1 [13]. In Section 3, this will also be illustrated
for the minimization of non-quadratic convex and non-convex functions.

3. Numerical Experiments and Discussion

In this section, we tried to apply method (4) to the minimization of non-quadratic
functions that arise in test problems for optimization solvers and in machine learning.
The main purpose of these numerical experiments was to demonstrate the effect of β2 on
the convergence of method (4) in comparison with the standard HBM (3). The initial point
for all test examples (except the RNN) was chosen as a fixed (not random) point, for better
illustration of the convergence process. It was chosen far from the minimum points, but not
so far that the method had a large number of iterations.

For the numerical examples, only a comparison of method (4) with the HBM (3) was
realized, because (4) was treated as an improvement of the HBM, so it was decided to only
perform a comparison with this method, in order to demonstrate the practical effect of such
an improvement.

3.1. Rosenbrock Function

Let the 2D Rosenbrock function be considered:

f (x1, x2) = (1 − x2
1)

2 + 100(x2 − x2
1)

2.

This function has a minimum at the point x∗ = (1, 1). For the numerical simulation, we used
the following values: x0 = (1, 3), h = 2 × 10−4, β1 = 0.97, β2 = 1. The descent trajectories
for the methods (3) and (4) are presented in Figure 3a. The plots of the dependence of the
logarithm of error, computed as f (xk)− f (x∗) on the iteration number are presented in
Figure 3b. From both figures, it can be seen that the inclusion of β2 led to the damping of
oscillations typical for the HBM, and, as a consequence, to a faster entry of the trajectory in
the neighborhood of the minimum point.
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The Rosenbrock function considered in this example can be classified as a ravine
function, so the traditional gradient methods (without the application of the ravine method)
converge slowly to the minimum point and they need many iterations. As can be seen from
Figure 3b, both methods converged in the neighborhood of the minimum point with good
accuracy, but method (4) converged faster according to the damping of the oscillations.
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Figure 3. Plots of the descent trajectories (a) and dependence of the error logarithm on iteration
number (b) for the minimization of the 2D Rosenbrock function. Blue line corresponds to the HBM,
red line—to method (4).

3.2. Himmelblau Function

For the minimization of the non-convex Himmelblau function

f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2,

which has four local minima, the following parameters were used: h = 0.01, β1 = 0.95,
β2 = 1. For the initial point x0 = (0, 0) both methods converged to the local minimum
x∗ = (3, 2). The trajectories are presented in Figure 4a, and the plots of the error logarithm
are presented in Figure 4b. As can be seen, the damping effect realized with the proper
choice β2 led to a faster convergence in comparison with the standard HBM.
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Figure 4. Plots of the descent trajectories (a) and dependence of the error logarithm on iteration
number (b) for the minimization of the Himmelblau function. Blue line corresponds to the HBM, red
line—to method (4).
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3.3. Styblinski–Tang Function

Let the following non-convex function be considered:

f (x) =
1
2

d

∑
i=1

(x4
i − 16x2

i + 5xi),

which has a local minimum at x∗ = (−2.903534, . . . ,−2.903534) and f (x∗) = −39.16599 · d.
For the case of d = 2, we used x0 = (−1,−4), h = 0.02, β1 = 0.99, β2 = 1. The trajectories
for both methods are presented in Figure 5a and plots of the logarithms of error are
presented in Figure 5b. As can be seen, for this situation, parameter β2 ̸= 0 had a positive
influence on the convergence. For d = 100, we used the initial vector x0 = (−1, . . . ,−1)
and the parameters h = 0.03, β1 = 0.95, β2 = 1. Plots of the dependence of error on
iteration number in log–log scale are presented in Figure 6. As can be seen, method (4) for
β2 = 1 converged to x∗ faster than the HBM.
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Figure 5. Plots of the descent trajectories (a) and dependence of the error logarithm on iteration
number (b) for the minimization of the Styblinski–Tang function. Blue line corresponds to the HBM,
red line—to method (4).
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Figure 6. Plots of the dependence of error on iteration number for minimization of Styblinski–Tang
function for d = 100 in log–log axes. Blue line corresponds to the HBM, red line—to method (4).
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3.4. Zakharov Function

This convex function is presented as

f (x) =
d

∑
i=1

x2
i +

(
d

∑
i=1

0.5ixi

)2

+

(
d

∑
i=1

0.5ixi

)4

.

It has a unique minimum point x∗ = 0. For d = 2, we chose x0 as (4, 2) and performed
computations with the following parameter values: h = 10−4, β1 = 0.985, β2 = 15.
The trajectories are presented in Figure 7a and plots of the error logarithm dependence
on the iteration number are presented in Figure 7b. As can be seen, the selected value
of β2 led to a damping of oscillations typical for the HBM and led to a faster entry of the
trajectory into the neighborhood of x∗. For d = 10, computations were performed for x0,
selected as the vector of units, h = 10−6, β1 = 0.99, β2 = 4. Plots of the dependence of
error on the iteration number in log–log axes are presented in Figure 8. As can be seen,
the value of β2 led to the damping of oscillations, as in the 2D case.
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Figure 7. Plots of the descent trajectories (a) and the dependence of the error logarithm on the
iteration number (b) for the minimization of the Zakharov function. Blue line corresponds to the
HBM, red line—to method (4).
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Figure 8. Plots of the dependence of the error on iteration number for the minimization of the
Zakharov function for d = 10 in log–log axes. Blue line corresponds to the HBM, red line—to
method (4).
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3.5. Non-Convex Function in Multidimensional Space

Let the following function be considered:

f (x) =
106

∑
i=1

x2
i

1 + x2
i

. (26)

This function has a unique minimum point x∗ = 0. We performed computations with x0 chosen
as a vector of units and for h = 0.1, β1 = 0.95, β2 = 1. Plots of the error’s dependence on
the iteration number in log–log axes are presented in Figure 9. As in the previous examples,
the inclusion of β2 led to a faster convergence in comparison with the standard HBM.
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Figure 9. Plots of the dependence of error on iteration number for minimization of function (26) in
log–log axes. Blue line corresponds to the HBM, red line — to method (4).

3.6. Smoothed Elastic Net Regularization

The following function that arises in machine learning was considered [34]:

f (x) =
1
2
||Ax − b||22 + αντ(x) +

γ

2
||x||22,

where x ∈ Rd, b ∈ Rd is the vector of values, dim(A) = m × d is a matrix of features, α > 0,
γ > 0 are the regularization parameters, function ντ(x), τ > 0 is the smooth approximation
of ℓ1-norm (so-called pseudo-Huber function [35]):

ντ(x) =
d

∑
i=1

(√
τ2 + x2

i − τ

)
.

As mentioned in [34,35] f (x) ∈ Fl,L, where l = γ + min(eig(A)), L ≈ (1 +
√

m/d)2 + γ +
α/τ. Datasets, represented by A and b at various values of m and d were simulated using
the function randn() in Matlab: matrix A was simulated as a random matrix from the
Gaussian distribution normalized by

√
d, and b was simulated as a random vector from the

same distribution. Computations were performed with the following parameter values:
τ = 10−4, α = γ = 10−2. Steps h and β1 were computed as optimal values for the quadratic
case, and β2 was chosen to as equal to 0.5. Condition number κ for all model datasets
was approximately equal to 104. The error was computed as f (xk)− f (x∗), where x∗ was
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the benchmark solution, obtained by method (4) for 2 × 104 iterations. For all cases, x0

was chosen as a vector of units. In Figure 10, the plots of the dependence of error on the
iteration number are presented in log–log axes. As can be seen, the presence of β2 led to
an improvement in convergence.
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Figure 10. Plots of the dependence of the error on the iteration number for the regression problem
with smoothed elastic net regularization in log–log axes for different model datasets. Blue line
corresponds to the HBM, red line—to method (4).

3.7. Logistic Regression

For the binary classification, the following convex function related to the model of
logistic regression is widely used:

f (x) =
m

∑
i=1

log(1 + exp(−yiξ
T
i x)),

where ξi represents the rows of matrix Ξ, dim(Ξ) = m × d and yi ∈ {−1, 1}, i = 1, d.
Matrix Ξ and vector y represent the training dataset.

For the computations, we used two datasets: SONAR (m = 208, d = 60) and CINA0
(m = 16, 033, d = 132). The first was used for a comparison of different methods in [36].
The second is a well-known test dataset, which can be downloaded from https://www.
causality.inf.ethz.ch/challenge.php?page=datasets (accessed on 14 March 2024). The error
was computed as f (xk)− f (x∗). For the SONAR dataset, the values h = 0.1, β1 = 0.9999,
and β2 = 10 were used, and a benchmark solution was obtained with method (4) in the case
of 2 × 104 iterations. For CINA0, the following parameters were used: h = 10−6, β1 = 0.99,
β2 = 2 and a benchmark solution was obtained for 5 × 103 iterations of method (4). For
both datasets, x0 was chosen as a vector of zeroes.

In Figure 11, plots of the dependence of error on the iteration number in log–log axes
are presented. As can be seen, the adding of β2 ̸= 0 led to the damping of oscillations
typical for the standard HBM.

https://www.causality.inf.ethz.ch/challenge.php?page=datasets
https://www.causality.inf.ethz.ch/challenge.php?page=datasets
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Figure 11. Plots of the dependence of error on the iteration number for the logistic regression problem
in log–log axes for datasets SONAR (a) and CINA0 (b). Blue line corresponds to the HBM, red
line—to method (4).

3.8. Recurrent Neural Network

Let us consider the model recurrent neural network (RNN) used for the analysis of
phrase tone. For details of its architecture and realization, see https://python-scripts.com/
recurrent-neural-network (accessed on 16 March 2024). This RNN was realized using the
following recurrent relations:

hs = tanh(Wxhxs + Whhhs−1 + bh), s = 1, M, y = WhyhM + by,

where M is the number of words of vocabulary in the phrase; xs is a vector, which rep-
resents the s-th word in the phrase; hs is a vector used for iterations in the hidden layer;
y is the output vector; Wxh,Whh, Why are the matrices of weights; and bh and by are the
vectors of biases. The vector of probabilities of the ’good’ or ’bad’ tone of the phrase was
computed as softmax(y). The training dataset consisted of 67 phrases from the vocabulary,
with 19 unique words. The following dimensions of vectors were used: dim(x) = 19,
dim(y) = 2, the dimension of h was chosen as 64 (the maximum number of words from
vocabulary in the phrase; this number can be varied).

As a result of forward propagation, we obtained a 2D vector of probabilities for the
phrase tone, computed with the use of the softmax function. The loss function used for the
training of this RNN was computed as

L(X, θ) = Hµ(µ, p(X; θ)),

where X is a matrix of vectors x1, . . . , xM, which represents the phrase with M words,
µ ∈ {0, 1} is a label of phrase; represented by X; p(X) = softmax(y(X)) is the probability
of the phrase tone; Hµ is a proper component of a cross-entropy function

H(ν, p) = −(ν log(p) + (1 − ν) log(1 − p));

and θ ∈ Rd is a vector of parameters of RNN. The objective function is written as

f (θ) =
1
N

N

∑
i=1

L(Xi, θ),

where N = 67 is the size of the training dataset (number of phrases). With all considered
dimensions, we minimized the function of d = 5506 variables.

For minimization, we applied deterministic methods, as was considered in the theoret-
ical part of the presented paper and despite the use of stochastic methods in most works on
the training of neural networks. The computations were performed with h = 0.05, β1 = 0.9

https://python-scripts.com/recurrent-neural-network
https://python-scripts.com/recurrent-neural-network
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and we tried to vary the value of β2 in order to analyze its effect on the convergence. We
realized a numerical experiment for 250 random initializations of weights and biases and
performed computations for 3 × 103 epochs. In Figure 12, the plots of the dependence of
the objective function value on the epoch number averaged at all random initializations are
presented for the standard GD (2), HBM (3), and method (4) in the case of β2 = 1. As can
be seen, methods with momentum led to a faster convergence in comparison with the
standard GD, as mentioned by many authors (e.g., see [19]), and the presence of β2 led
to a faster convergence to the minimum in practice. In Figure 13, the plots obtained for
different values of β2 are presented. As can be seen, the value of β2 had an effect on the
convergence of method (4).
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Figure 12. Plots of the dependence of the objective function value on the epoch number for the
problem of RNN training.
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Figure 13. Plots of the dependence of the objective function value on epoch number for the problem
of RNN training for method (4) at different values of β2.
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4. Conclusions

In the presented paper, we tried to perform an analysis of the properties of method (4)
in theory and practice. Despite the results of the investigations presented in [28,29], this
method requires further analysis, so we tried to realize this in the presented paper.

The following new results were obtained:

1. It was demonstrated that, in the case of the quadratic function, method (4) can be
easily investigated using the first Lyapunov method. As a result of its application,
the convergence conditions presented in Theorem 1 were obtained. Such conditions
led to the conditions for the HBM (3) in the case of β2 = 0 (see [7]). For functions from
F 2,1

l,L , such conditions can be treated as the conditions of local convergence.
2. In comparison with the HBM, optimal parameters for method (4) can only be obtained

numerically by the solution of the 3D constrained problems (19) and (20). As demon-
strated, for the quadratic case, the optimal value of β2 was equal to zero, so method (4)
did not provide additional acceleration in comparison to the standard HBM.

3. The ’mechanical’ role of β2 was demonstrated by the consideration of the ODE (25),
which is equivalent to (4) in the 1D case. This ODE describes the descent process
in the neighborhood of x∗. As can be seen from (25), the presence of β2 realized an
additional damping of oscillations associated with non-monotone convergence of
the HBM [13].

4. In numerical examples from different applications, it was demonstrated that, with the
use of proper values of β2, a decrease in oscillation amplitudes typical of the HBM
can be realized.

The following remarks on future investigations can be made:

1. In this paper, a local convergence analysis was presented. For f (x) ∈ F 1,1
l,L , global

convergence for a specific choice of the parameters was demonstrated in [29]. It is
imperative to obtain the general conditions for the parameters that guarantee global
convergence.As is known for the HBM (e.g., see [28]), the convergence conditions ob-
tained for strongly convex quadratic functions can lead to a lack of global convergence
for f (x) ∈ F 1,1

l,L .
2. An analysis of method (4) was performed for the case of constant values of β1 and β2.

But as known [18], it is effective to use methods with adaptive momentum, whose
value is dependent on k in order to improve the convergence. Thus, the construction
of extensions of method (4) to the case of adaptive parameters is a perspective for
future research.

3. In this paper, all methods were considered in their deterministic formulations. How-
ever, in modern problems, especially those arising in machine learning, stochastic
gradient methods are used according to the size of the datasets. Therefore, the exten-
sion of method (4) and its modifications for stochastic optimization has potential for
future investigation, especially for applications in machine learning.
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