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Abstract: DC microgrids play a crucial role in both industrial and residential applications. This
study focuses on minimizing output voltage ripple in a DC microgrid, including power supply
resources, a stochastic load, a ballast load, and a stabilizer. The solar cell serves as the power
supply, and the stochastic load represents customer demand, whereas the ballast load includes
a load to safeguard the boost circuits against the overvoltage in no-load periods. The stabilizer
integrates components such as electrical vehicle batteries for energy storage and controlling long-time
ripples, supercapacitors for controlling transient ripples, and an over-voltage discharge mechanism
to prevent overcharging in the storage. To optimize the charging and discharging for batteries
and supercapacitors, a multi-objective cost function is defined, consisting of two parts—one for
ripple minimization and the other for reducing battery usage. The battery charge and discharge
are considered in the objective function to limit its usage during transient periods, providing a
mechanism to rely on the supercapacitor and protect the battery. Particle swarm optimization is
employed to fine-tune the fuzzy membership function. Various operational scenarios are designed to
showcase the DC microgrid’s functionality under different conditions, including scenarios where
production exceeds and falls below consumption. The study demonstrates the improved performance
and efficiency achieved by integrating a PSO-based fuzzy controller to minimize voltage ripple in a
DC microgrid and reduce battery wear. Results indicate a 42% enhancement in the integral of absolute
error of battery current with our proposed PSO-based fuzzy controller compared to a conventional
fuzzy controller and a 78% improvement compared to a PI controller. This translates to a respective
reduction in battery activity by 42% and 78%.

Keywords: DC microgrid; fuzzy controller; particle swarm optimization; electric vehicles; voltage
ripple minimization

1. Introduction

In the dynamic landscape of technology, microgrids play a crucial role in efficient
energy management. DC microgrids, known for minimal losses and seamless integration
with energy storage [1–3], are at the forefront. These systems, encompassing sources,
control systems, loads, and energy storage, work collaboratively to mitigate the risk of
power outages [4]. In [5], a method based on the battery state of charge (SOC) was em-
ployed to determine the power generated or consumed within a DC microgrid. The study
incorporated battery management and switching control strategies to regulate the energy
level of the DC microgrid. The authors of [6] emphasize the potential of DC microgrids to
address challenges in coordinating distributed renewable energy, especially in mitigating
adverse effects. However, integrating diverse power sources and storage presents chal-
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lenges in voltage control and power-sharing, requiring effective control techniques, as
highlighted in [4].

In the realm of microgrids, a key research focus lies in controlling and stabilizing their
operation and performance. Dutta et al. [7] introduce a stabilizing controller for DC micro-
grids, employing a decentralized approach to enhance efficiency by considering various
distributed energy resources (DERs) and energy storage elements such as EVs. Xia et al. [8]
proposed a nonlinear decoupling method to address transient stability challenges in low-
inertia DC microgrids. In [9], a bi-directional interlinking DC–AC converter utilized the AC
frequency as a reference value for DC voltage and employed current feedforward control
to align the DC voltage with the AC frequency, enhancing stability and controllability in
low-inertia DC microgrid systems. The study by [10] focuses on the design and analysis of
controlling and optimizing the operation of a DC microgrid with DERs such as photovoltaic
(PV). It examines efficiency improvements through a bi-directional DC/DC converter, con-
trasts various maximum power point tracking (MPPT) techniques, and reports the results of
stability analysis using the Lyapunov function, discussing a variety of controllers including
fuzzy, MPC, and Robust [11]. Recent studies have increasingly focused on fuzzy logic, PSO,
and their combination [12–14]. The study explains how DERs like diesel engines, micro
turbines, fuel cells, photovoltaics (PVs), and small wind turbines are utilized in microgrids.
Effectively managing microgrids involves controlling and operating these DERs along with
adjustable loads and storage devices such as flywheels, energy capacitors, and batteries.
This coordination is crucial for the overall functioning of a microgrid.

Leveraging DERs like PV technology presents a viable and economically efficient
solution to mitigate pollution and warming, especially in microgrid applications [15,16].
Authors in [17–19] emphasize the significance of these energy sources for microgrid ap-
plications. The authors of [20] highlight the potential superiority of photovoltaic-based
DC microgrids over traditional AC grids. Due to the unpredictable nature of renewable
resources, effective storage solutions like batteries and energy storage systems play a
crucial role in enhancing microgrid efficiency [21,22]. Additionally, [23] emphasizes the
significance of energy storage systems, especially EVs, in distributed systems to conserve
energy and address the unpredictability of renewable energy sources, while integrating EVs
into microgrids is proposed to strengthen energy storage, concerns about battery lifespan
exist [24]. Ref. [25] presented a technique, called Integrated Battery Life Loss Modeling
and Anti-Aging Energy Management (IBLEM), to handle battery aging in battery energy
storage systems (BESSs) like EV batteries. The authors of [26] proposed a PV-embedded
series DC electric spring (PVES) to reduce battery storage in DC microgrids with signifi-
cant PVs. IBLEM quantifies aging costs and optimizes energy management strategies to
tackle challenges and support the advancement of transportation electrification. Given
the unpredictable nature of DERs (especially photovoltaic sources), nondeterministic load,
and energy storage (e.g., EVs), DC microgrids incorporating these energy production units
are prone to experiencing ripples. The imperative approach in such systems is the crucial
task of minimizing these ripples, as emphasized by Fazal et al. [27].

The integration of renewable energy sources in microgrids introduces ripples, posing
challenges to power quality (PQ), which is crucial for energy efficiency and equipment
operation [28,29]. Various methods for ripple minimization exist. Chaturvedi et al. [30]
propose an adaptive voltage-tuning-based load-sharing strategy for DC microgrid ripple
minimization. Ferahtia et al. [31] introduce an adaptive droop-based control strategy to
efficiently minimize ripples. Sekhar et al. [32] investigate voltage control strategies, em-
phasizing the impact of voltage control devices on distribution system ripples. Addressing
voltage stabilization and ripple minimization challenges, refs. [33,34] highlights the role of
microgrid components, including energy storage, in stabilizing bus voltage during black-
outs and minimizing ripples under challenging grounding conditions, while certain studies
address ripple minimization in DC microgrids with energy storage systems like EVs and
DERs such as PVs [35,36], there is untapped potential for investigating fuzzy optimization
controllers to minimize ripples and improve power quality in the DC microgrids.
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This research aims to simulate a DC microgrid comprising stochastic renewable energy
resources (e.g., PV), stochastic load, ballast load, and a stabilizer. The fuzzy controller
regulates the switching rate of stabilizer components, enabling efficient control of the
system. This work improves the fuzzy controllers in microgrids [35,36] by training the
fuzzy membership functions using PSO. This training improves the performance of the
traditional fuzzy controller by considering the goals defined in the objective function. Addi-
tionally, unlike other papers that used EV batteries as energy storage in DC microgrids [37],
this study considers the battery charge and discharge to lower its wear and tear. This
consideration plays a crucial role in increasing battery lifetime, addressing a limitation
overlooked in prior research involving EV batteries.

2. Problem Formulation

The study is dedicated to minimizing ripples and extending the lifespan of EV batteries.
Achieving these objectives involves simulating a system with four essential components:
the power source, stochastic load, ballast load, and stabilizer. Figure 1 visually represents
the microgrid structure. In this paper, we introduce an optimized controller based on the
PSO algorithm to overcome the limitations of previous research in reducing battery activity
frequency. This represents a significant advantage of using the PSO algorithm in our study.
The main difference lies in optimizing the rules of the fuzzy controller to minimize the
number of battery activities and reduce voltage ripples. Subsequent sections will clarify
detailed explanations of each part of this DC microgrid, outlining the diverse components
within each.

Figure 1. Simplified microgrid model [35,38].

2.1. Model of Stochastic Power Source

The efficient operation of each solar system necessitates maximum power point track-
ing (MPPT). This paper assumes that the maximum power points of a photovoltaic system
have been monitored. The DC microgrid receives its power from the photovoltaic system’s
maximum power output, which is a random number. The term “random" is employed
due to the unpredictable nature of weather and the inherently random power generation
by solar cells. The power generated may vary, sometimes falling short of consumption
and occasionally exceeding it. To simulate variability and randomness, a pseudo-random
number generator is employed to supply power, and simultaneously, a boost converter
tracks these changes, generating the output power of these PVs. The duty cycle of the
transistor in the structure of the boost converter, shown in Figure 2, is set by a random
number matched with the maximum output power of PVs. This ensures that the boost
converter can follow the maximum power points generated by the PV system.
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Figure 2. Power source model, where R is the boost converter resistor, L is the boost converter
inductance, C is the DC link capacitor, Rh is the connection resistor, and VBus is the DC microgrid
bus voltage [35].

2.2. Model of Stochastic Load

The load model includes a buck converter that demonstrates the customer’s usage
pattern by dissipating power. The stochastic load model is illustrated in Figure 3. At the
coupling point between the load and the DC microgrid, there is a capacitor that charges
from the main bus. Once it is fully charged, it discharges into the buck converter, which
serves to model the load of the system.

Figure 3. Load model, where RLoad is the stochastic load model, R is the buck converter resistor, L is
the buck converter inductance, C is the DC link capacitor, Rh is the connection resistor, and VBus is
the DC microgrid bus voltage [35].

2.3. Stabilizer Model

The DC microgrid’s stabilizer model includes three main parts: the EV battery, super-
capacitor, and over-voltage discharge. An EV battery and a supercapacitor are connected
to the DC microgrid through a buck–boost converter. The boost converter is active during
charging, and the buck converter is active during discharging. However, the role of the
overvoltage discharge unit, which only has a buck converter, is to waste excess voltage.
The over voltage discharge (OVD) unit engages when batteries and supercapacitors are
fully charged, preventing overcharging. It is linked to a buck converter, managing surplus
PV generation by dissipating extra voltage. Each stabilizer converter has one transistor,
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controlled by a controller discussed in the following section. The stabilizer unit structure is
demonstrated in Figure 4.

Figure 4. Stabilizer model, where R is the buck–boost converter resistor, L is the buck–boost converter
inductance, C is the DC link capacitor, Rh is the connection resistor, and VBus is the DC microgrid
bus voltage [35].

2.4. Ballast Load

Given the presence of boost converters in the grid, ensuring a minimal load on the DC
microgrid is essential at all times. An unloaded boost converter can cause voltage spikes,
leading to instability and potential damage. Hence, a large-value resistor is incorporated
into the grid as a ballast load to safeguard the DC microgrid circuits.

3. Methodology

This paper has two primary objectives: reducing output voltage ripple and minimizing
the charging and discharging cycles of EV batteries. To achieve these goals, an objective
function is utilized. The first part of this function focuses on minimizing the square value
of the ripple, guiding the controller to generate signals that activate the EV battery and
supercapacitor, assisting the source of the DC microgrid in tracking the reference output
bus voltage. The primary controller is a fuzzy controller, discussed in the next subsection.
The second objective aims to minimize the number of charge and discharge cycles of the EV
battery to extend its lifespan, as the lifespan is directly related to these cycles. The second
part of the objective function reduces the square sum of the EV battery current, thus
minimizing the charging and discharging cycles. This objective is achieved by activating
the supercapacitor to handle short-time ripples and engaging the battery only in cases of
longer-time ripples in the output voltage. Consequently, the objective function is defined
as follows:

OF =
∫ τ

0
(vRipple)

2dt + 0.1
∫ τ

0
I2
batterydt (1)

vRipple = vbus − 100 (2)

vbus : The voltage of DC microgrid bus voltage;

Ibattery : The battery current;

vRipple : The difference between bus voltage and reference voltage.

The optimization and adjustment of the controller to meet these goals will be explained
in the following subsections.
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3.1. Control Design

Our proposed controller in this work is a fine-tuned version of the fuzzy controller
using particle swarm optimization (PSO). More specifically, our approach merges fuzzy
logic and PSO, optimizing both the expectation and standard deviation of the fuzzy con-
troller’s membership functions. The fuzzy controller incorporates four inputs: bus voltage
error, integral of bus voltage error, battery state of charge (SoC), and supercapacitor state of
charge (SoC). From these inputs, the fuzzy controller generates current references for the
battery, supercapacitor, and overvoltage discharge (OVD). Three low-level PI controllers
process reference values and generate duty cycles for stabilizer components based on actual
component currents.

The controller generates the duty cycle to change the switching rates of the EV’s
battery, supercapacitor, and OVD in the following manner.

• Duty cycle signals initiate battery or supercapacitor discharge into the DC microgrid
when production is lower than consumption, providing additional electrical energy.

• When the battery and supercapacitor are fully charged and the production exceeds
consumption, these signals discharge overvoltage on the OVD component to prevent
overcharging, ensuring safety.

• Alternatively, these duty cycles can be applied to the boost converters of the battery or
supercapacitor to charge them when their charge is below the full amount.

Figure 5 illustrates the overall architecture of the proposed fuzzy controller.

Figure 5. Configuration of fuzzy controller, where IB is battery current, IUC is supercapacitor current,
IOVD is OVD current, IRB is battery reference current, and IRUC is supercapacitor reference current.

Similar to [35,36], the primary fuzzy controller’s membership functions are initially
untrained. However, in the trained version, they undergo fine-tuning via PSO to achieve
the objectives of ripple minimization and battery lifetime expansion. Figure 6 shows the
membership function of the bus voltage error and the membership function of the inte-
grated bus voltage error. Two membership functions, negative (NEG) and positive (POS),
are considered for each input. The NEG is designed to manage negative voltage ripple,
whereas the POS is employed to address positive voltage ripple. It is worth mentioning that
the currents and voltages are normalized before feeding into the fuzzy inference system.
The fuzzy controller functions effectively by taking two parameters as inputs: the integral
of voltage error and the voltage error itself. This enables the algorithm to discern alterations
that could influence the bus voltage, aiding in the preservation of the nominal voltage
level. The input associated with the voltage error promptly reacts to rapid fluctuations,
whereas the integral term identifies prolonged changes. Consequently, the fuzzy con-
troller initiates responses to counteract and rectify any deviations in the bus voltage. This
dual-response mechanism empowers the DC microgrid to address both swift and gradual
alterations, thereby widening its bandwidth and enhancing its ability to promptly adapt to
varying conditions.

Moreover, Figure 7 shows the membership functions associated with the state of
charge (SOC) of the battery and supercapacitor, respectively. The SOC of the battery and
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ultracapacitor are treated differently since they have two distinct objectives: “low” and
“high”. Although it may seem that these functions do not cover certain sections of the axis,
it is essential to note that the “NOT” operation of each membership function is considered
in the rule base so it can cover the entire range between 0 and 1.

Figure 6. The membership function for the bus voltage error and its integral [35].

Figure 7. The membership functions for state of charge of battery and supercapacitor [35].

To minimize the usage of the EV battery, a low charge condition is defined as 0.3, while
a high charge condition is set to 0.7. These conditions are strategically established to reduce
the overall engagement of the EV battery. Figure 7 clearly illustrates the distinction between
high and low battery charge levels. Furthermore, the boundaries for the supercapacitor,
Figure 7, are extended to ensure its activation during nearly all short-time ripples. This
deliberate extension is designed to prevent the EV battery from being active during such
ripples, ultimately contributing to the extension of the EV battery’s lifespan.

Figure 8 illustrates the membership functions representing the reference currents for
the battery, ultracapacitor, and over voltage discharge (OVD). The current is normalized
and constrained between −1 and 1. A positive value indicates that the current is injected
into the grid (energy storage discharges into the DC microgrid), while a negative value
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represents the opposite. The battery’s output current is characterized by five Gaussian
membership functions, while the ultracapacitor features four membership functions. It is
noteworthy that a zero-membership function is specified for the EV battery, reflecting its
heightened sensitivity to activation.

Figure 8. Membership functions for the EV’s battery, ultracapacitor, and OVD.

Fuzzy Rules

The input and output specifications for the fuzzy inference system are listed in Table 1.
It is noteworthy that the voltage error in Table 1 is defined as follows:

Voltage Error = Vnominal − VMG, (3)

where Vnominal denotes the reference voltage level in the microgrid, and VMG denotes the
actual measured voltage. In this equation, when the voltage of the DC microgrid exceeds
the reference voltage, the error is negative; conversely, when the DC microgrid falls below
the reference voltage, the error is positive. This distinction is pivotal in delineating the
operational state of the microgrid and will inform the formulation of fuzzy rules.

Table 1. Input and outputs of the fuzzy interface system.

Input and Output Term

Bus voltage error e
Integrated bus voltage error

∫
e dt

Battery voltage vb
Ultracapacitor voltage vu

Battery current ib
Ultracapacitor current iu

Over-voltage discharge current io

A total of 20 rules have been defined to map the inputs to the outputs, as shown in
Table 2. Rules 1 through 6 establish relationships between the battery voltage and the bus
voltage. For instance, Rule 1 indicates that when vb is “not high”, vu is “high”, and both
e and

∫
e dt are “negative”, then ib should be “very neg”, suggesting that the bus voltage

is higher than the nominal value and the battery is not fully charged, allowing it to store
excess energy. Rules 7 to 10 define the relationships between the ultracapacitor and the bus
voltage. Rules 11 to 16 represent the overvoltage discharge (OVD) phase, and rules 17 to 20
determine the energy transfer between the battery and the ultracapacitor.
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Table 2. Rules of the fuzzy controller.

Rules vb vu e
∫

e dt Then ib iu io

1 Not high High Negative Negative then Very
Neg - -

2 Not high Not low Negative - then Neg - -

3 Not low Not high Positive - then Pos - -

4 Not low Low Positive Positive then Very Pos - -

5 - Not Low Positive - then Zero - -

6 - Not high Negative - then Zero - -

7 - Not high Negative Negative then - Very
Neg -

8 - Not high Negative - then - Neg -

9 - Not low Positive - then - Pos -

10 - Not low Positive - then - Very Pos -

11 High High Negative - then - - Low

12 High High Negative Negative then - - High

13 Not high - - - then - - Off

14 - Not high - - then - - Off

15 - - Not Pos - then - - Off
16 - - - Not Pos then - - Off

17 High Low - - then Pos - -

18 High Low - - then - Neg -

19 Low High - - then Neg - -

20 Low High - - then - Pos -

3.2. Optimization Method

The optimization method employed in this study is the particle swarm optimiza-
tion (PSO) algorithm [39,40], a widely recognized metaheuristic algorithm known for its
rapid convergence. In this research, the PSO algorithm seeks the optimal values for the
expectations and standard deviation of Gaussian membership functions to determine the
best references for the current of the battery, supercapacitor, and OVD components. The
algorithm operates by searching for optimal values that minimize the objective function.
This function, as explained earlier in (1), comprises two components: one for ripple mini-
mization and another for reducing the number of EV battery activations. The proposed
PSO-based fuzzy controller is implemented based on the Algorithm 1.

Algorithm 1 Algorithm of the PSO-based fuzzy controller:

1. Determine the PSO parameters.
2. Define boundaries for the expectation and standard deviation of each

membership function.
3. Initialize the fuzzy inference system (FIS).
4. PSO updates the positions and velocities of each population.
5. PSO executes DC microgrid model and provides it with a new FIS. After simulation,

PSO calculates the objective function value.
6. If the results from this new FIS can minimize the cost function more effectively than

the results from other populations, it should be saved as the best solution among all
population results.

7. If the stop condition is not met, go to step 4.
8. Print the results.
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4. Simulation Results

In this section, we present simulation results of our proposed PSO-based fuzzy con-
troller on a DC microgrid, comparing it with two conventional controllers to demonstrate
its efficiency.

4.1. Initialization and Fuzzy Optimization

To start simulating the DC microgrid, we require the values of the parameters of this
system. Initially, a model of the DC microgrid is implemented in MATLAB/Simulink 2022,
and the associated parameters are as follows:

C = 20 × 10−6 (Used in ballast)

R = 50 (Used in ballast)

L = 0.001

RBi = 0.2 (Battery resistor)

LB = 0.0011 (Inductance for battery converter)

RBb =
0.4
4

(Resistor of inductance for battery converter)

VBBase = 47.2 (Battery base voltage)

CB = 3000 (Capacitor capacity for the battery)

CC = 150 (Ultra capacitor (UC) capacity)

LC = 0.0011 (Inductance of converter of UC)

RCL = 0.4 (Resistor of converter of UC)

RO = 5.6 (OVD resistor as a load)

ROL = 2 (OVD resistor of converter)

LO = 0.0006 (Inductance of converter of OVD)

RHI = 0.2 (Output resistor of stabilizer)

CM = 0.001018 (Stabilizer output capacity)

RHigh = 0.2 (Stabilizer output resistor)

RLow = 0.2

To design the PSO-based fuzzy controller, we utilized the PSO algorithm to optimize
the parameters of the fuzzy controller. The convergence diagram of the PSO algorithm is
plotted in Figure 9 to illustrate how effective the algorithm is at optimizing fuzzy controller
parameters. To provide a comparison between the fuzzy membership functions before and
after optimization through PSO algorithm, these results are shown in Figures 8 and 10.

We conducted testing and evaluation on three different types of controllers, namely
PI (implemented according to [35]), fuzzy, and PSO-based fuzzy controllers. To compare
the results of our proposed controller, the PSO-based fuzzy controller, with the other
two controllers, we require a load and power benchmark. The information regarding the
load and source power used in our system is provided in Figure 11. In the subsequent
sections, we compare the results of our proposed controller in this paper with the other
two controllers.
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Figure 9. Convergence of objective function.

Figure 10. Membership functions for the EV’s battery, ultracapacitor, and OVD after optimization.

Figure 11. The value for load consumption and resource production.
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4.2. Ripple Minimization

One of the main objectives of this research is to minimize the voltage ripple in the main
bus. In this section, we will explain this objective further to demonstrate the effectiveness
of our proposed controller compared to the two other controllers. The voltage ripples of
the system in the presence of three introduced controllers are shown in Figure 12. As can
be seen from this figure, the regular fuzzy controller is the most inefficient in ripple
minimization. By comparing the performance of the two other controllers with the dashed
black line, which represents a 100-volt reference, it becomes apparent that our proposed
controller performs better. Furthermore, we will report the integral of absolute error for
these three methods in Table 3 to quantitatively compare their effectiveness in minimizing
voltage ripples.

Figure 12. The output voltage of the DC microgrid: a comparison for all scenarios.

Table 3. Integral of absolute error (IAE) for voltage ripple of the DC microgrid bus.

Methods IAE

PI controller 33.5499

Fuzzy controller 37.3996

PSO-based fuzzy controller 18.768

4.3. Battery Current Minimization

Our proposed controller aims to optimize the utilization of the EV battery by re-
ducing its activity. This approach leverages the supercapacitor’s shorter charging and
discharging times, allowing it to compensate for most short-term changes in system load
and voltage ripples. As a result, the system bandwidth is significantly enhanced due to
the fast responses to the effects of load and source changes on the bus voltage of the DC
microgrid. Moreover, this strategy reduces the wear and tear on the battery from frequent
use compared to the supercapacitor. The supercapacitor is also more cost-effective and
easier to replace within the system than the EV battery. The flow of current for the battery,
supercapacitor, and stabilizer are important, and have been shown in Figure 13. In this
figure, by comparing the middle figure with the bottom one, we can determine when the
battery, supercapacitor, or both are charging and when they are discharging. To illustrate
how the system achieves this process, it is important to consider the total value of the
battery current during operation, as shown in Figure 14. Although it may not be evident in
the Figure 14, when employing the PSO-based fuzzy controller, the current drawn by the
battery is substantially lower than the total value of the two other controllers, as shown in
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Table 4. This reduction in current drawn by the battery demonstrates the effectiveness of
our approach.

Table 4. Integral of absolute error (IAE) for the battery current.

Methods IAE

PI controller 304.5562

Fuzzy controller 118.5752

PSO-based fuzzy controller 67.1039

As shown in Figure 15, the value of the supercapacitor current increases due to its
operation in attenuating most of the ripples in the DC microgrid. To determine which
controller performs better, it is essential to consider both Figures 14 and 15. This comparison
helps identify which controller contributes more to reducing the battery current while also
minimizing ripple in the DC microgrid bus voltage.

Figure 13. The current of power source, load, and stabilizer.

Figure 14. The current of battery in three scenarios.
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Figure 15. The current of the ultracapacitor in three scenarios.

4.4. Energy Transfer between Battery and Supercapacitor

Another innovative aspect explored in this study is the ability to transfer energy
between the battery and supercapacitor, as illustrated in Figure 16. This capability is
highlighted due to the rapid charge and discharge times of the supercapacitor compared
to the battery. There are two notable advantages to this energy transfer between the
two components. Firstly, it helps prevent battery damage by avoiding discharge below
the undercharge level. Secondly, it reduces the frequency of battery usage for ripple
minimization. These advantages will be further elucidated in the subsequent discussion.
Even if in Figure 16 there is a small difference between two scenarios, this small variation
helped the system to reduce the battery current drawn because of charge and discharge.

Figure 16. Energy transfer between battery and supercapacitor.

The rapid energy transfer between critical components is demonstrated in Figure 16,
facilitating swift recharge and reducing the risk of undercharging and damage, especially
to the battery. Notably, this process does not significantly alter the charge level of the com-
ponents. Conversely, when the battery is fully charged and the supercapacitor is depleted,
energy redirection occurs, effectively reducing system ripples through supercapacitor oper-
ation and lowering battery activation frequency; while immediate outcomes may not be
evident, a comparison of total current drawn from the battery across controllers highlights
the approach’s efficacy in achieving objectives.
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5. Conclusions

This paper has introduced a novel method for controlling DC microgrids utilizing a
fuzzy controller with four input variables: bus voltage error, integrated error of bus voltage,
state of charge (SOC) of the battery, and SOC of the ultracapacitor. The fuzzy controller
generates three current references for the EV battery, supercapacitor, and OVD. These
references are compared with the actual values of the currents of these three components.
The resulting values are fed as inputs to a PI controller, which produces the duty cycle
to control the switching rate of these components. The switching and energy exchange
between the stabilizer, power source, and load collaboratively reduce the ripples in the
output voltage and minimize the battery activation frequency to enhance the battery’s
lifespan. Simulation results affirm the successful minimization of bus voltage ripple
through this method. The optimized signals in the output of the fuzzy controller for the
three elements of the stabilizer fulfill both objectives. To summarize, the core findings of
this paper are as follows:

1. Development of a new PSO-based fuzzy controller designed to minimize the ripple of
DC microgrid bus voltage and reduce battery activation frequency.

2. Implementation of energy transfer between the supercapacitor and the battery to
minimize ripple and increase battery lifespan.

Future work will explore other types of energy resources, such as wind and fuel cells,
and provide conditions for droop control. Additionally, implementing state space equations
and integrating a linear quadratic tracker to track the reference voltage are noteworthy
avenues for further exploration.
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