
Citation: Gheibi, S.; Banerjee, T.;

Ranka, S.; Sahni, S. Path Algorithms

for Contact Sequence Temporal

Graphs. Algorithms 2024, 17, 148.

https://doi.org/10.3390/a17040148

Academic Editors: Frank Werner and

Chris Walshaw

Received: 27 February 2024

Revised: 24 March 2024

Accepted: 29 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Path Algorithms for Contact Sequence Temporal Graphs †

Sanaz Gheibi *, Tania Banerjee , Sanjay Ranka and Sartaj Sahni *

Department of Computer and Information Sciences and Engineering, University of Florida,
Gainesville, FL 32611, USA; tmishra@ufl.edu (T.B.); sranka@ufl.edu (S.R.)
* Correspondence: gheibi101@gmail.com (S.G.); sahni@ufl.edu (S.S.)
† This paper is an extended version of our paper published in IEEE Symposium on Computers and

Communication, ISCC 2021 (Athens, Greece, 5–8 September 2021).

Abstract: This paper proposes a new time-respecting graph (TRG) representation for contact sequence
temporal graphs. Our representation is more memory-efficient than previously proposed representa-
tions and has run-time advantages over the ordered sequence of edges (OSE) representation, which is
faster than other known representations. While our proposed representation clearly outperforms
the OSE representation for shallow neighborhood search problems, it is not evident that it does
so for different problems. We demonstrate the competitiveness of our TRG representation for the
single-source all-destinations fastest, min-hop, shortest, and foremost paths problems.

Keywords: data structures; graphs and networks; optimization

1. Introduction

This paper extends our previous paper on contact sequence temporal graphs [1]. We
have extended our previous work mainly by adding two path-finding algorithms to our
proposed TRG data structure. Also, we have considered the case when the TRG graph is
acyclic and proposed path-finding algorithms that can further benefit from that property.

Temporal graphs are graphs that change over time. Therefore, temporal information
is incorporated in the edges or vertices. In this paper, we are only concerned with graphs
in which the temporal information is incorporated in the edges. Temporal graphs have
applications in modeling a wide range of phenomena, such as communication networks,
computational biology, transportation networks, the spread of viruses, social networks,
etc. [2–6].

In a contact sequence temporal graph G = (V, E), each edge e ∈ E has the format
(u, v, t, w) where u and v are the source and target vertices, respectively, of the edge; t is its
time stamp and w (w ≥ 0) is the time it takes to get from u to v along this edge. We may
begin traveling from u only at the time indicated by the timestamp t. We arrive at v at the
time = t + w. Contact sequence temporal graphs may have multiple edges with the same
source and target vertices, each with a different time stamp and possibly different weight.

An example of a real-life application of contact sequence temporal graphs is trans-
portation networks such as the flight network of a particular airline. The nodes of the
contact sequence temporal graph represent airports, and the edges model scheduled flights.
Each flight can be described with (source, destination, start time and duration). There
can be multiple flights between any two airports, each departing at a different time and
possibly having a different duration.

Another model for describing temporal graphs is the interval temporal graph, G = (V, E).
This model has at most one edge between any pair of vertices (u and v). Each edge is
labeled with a set of triplets of the form (s, f , w) where s and f denote the start and the end
of a time interval when we are allowed to commence travel from u (i.e., one can begin to
travel on this edge at any time T, s ≤ T ≤ f). Like the contact sequence model, w is the
weight and denotes the travel time.

Algorithms 2024, 17, 148. https://doi.org/10.3390/a17040148 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17040148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4737-0001
https://orcid.org/0000-0003-4886-1988
https://doi.org/10.3390/a17040148
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17040148?type=check_update&version=2

Algorithms 2024, 17, 148 2 of 19

One can easily verify that every contact sequence temporal graph has an equivalent
interval temporal graph and that the reverse is also true when time is discrete. To make it
clear, assume in a contact sequence temporal graph G, we have the edges e1 = (u, v, t1, w1)
and e2 = (u, v, t2, w2). In the equivalent interval temporal graph, we will have only one
edge between the nodes u and v and that edge is labeled with the following sequence
of intervals: {(t1, t1, w1), (t2, t2, w2)}. Similarly, consider an interval temporal graph G′

(assume time is restricted to integer values) containing an edge e′ between nodes u′ and
v′ which is labeled with the following interval {(s′, f ′, w′)} where f ′ = s′ + d′. In the
equivalent contact sequence temporal graph, we will have the d′ + 1 edges between u′ and
v′: ei = (u′, v′, s′ + i, w′) where 0 ≤ i ≤ d′. Whether we use contact sequence temporal
graphs or interval temporal graphs depends on the nature of the application at hand [4].

A time-respecting path is defined as a path in which the departure time from each
vertex is ≥ the arrival time at the same vertex. We note that the terms “path” and “time-
respecting path” may be used interchangeably in this paper. Our focus is on four types of
time-respecting paths: “earliest arrival” (also known as “foremost”) paths, “fastest” paths,
“shortest” paths and “min-hop” paths. Examples of the different types of time-respecting
paths used in the literature can be found in [7,8]. The input of a typical path-finding
problem is an interval [tstart, tend]. Here, tstart is the earliest time we can start from the
source and tend is the latest time we are allowed to arrive at the destination. Let u be the
source and v the destination vertices, respectively. The feasible paths from u to v are defined
as time-respecting paths that leave u at or after tstart and arrive at v at or before tend. The
paths we study in this paper should all be feasible. The earliest arrival or foremost path
minimizes the arrival time at v. The fastest path minimizes the difference between the
arrival time at v and the departure time from u. A shortest path minimizes the sum of the
weights of the edges on the path, and a min-hop path minimizes the number of edges on the
path. A Time Respecting Graph (TRG) is a graph in which all the paths are time respecting.

Wu et al. [8] propose two models to represent contact sequence temporal graphs. The
first is a time-ordered sequence of edges (i.e., non-decreasing order of timestamps), which
we call OSE in this paper, and the second is a model based on the time-respecting nature
of the graph, which we call TRG_Wu. They develop algorithms for finding single-source,
all-destinations optimal paths for both models. Their proposed algorithms based on the
contact sequence temporal graph modeling are more efficient than those proposed in [7],
which are based on the interval temporal graph models. Moreover, they show that their
OSE algorithms are faster than their TRG_Wu algorithms for all considered path-finding
problems, except for the fastest paths problem, where each model was faster on some
datasets and slower on others.

Although it has been shown that the OSE-based algorithms are faster than those based
on the TRG_Wu model for a specific group of path-finding problems, they are certainly
slower on other problems. One group of those problems depends on the local properties
of the graph. An example is the problem of finding the existence of a one-hop or two-
hop path between two vertices. Therefore, developing a model superior to TRG_Wu on
shallow-neighborhood-search problems and competitive with or more efficient than OSE
on single-source all-destinations path-finding problems is very beneficial. We note that
the OSE algorithms of Wu et al. [8] require that all edges of the temporal contact sequence
graph have a strictly positive weight. Zschoche et al. [9] propose an alternative TRG
data structure, TRG_Zchoche, for contact sequence temporal graphs. This data structure
requires all edge weights to be integer and >0. They develop a linear-time algorithm
based on the topological ordering of vertices for the single-source all-destinations shortest
paths problem.

In this paper, we propose a new model for TRGs that we call TRG_Ours. Our proposed
model is more memory-efficient than both TRG_Wu and TRG_Zschoche. We develop
algorithms for the single-source all-destinations fastest, minhop, shortest and foremost
path problems and use them to show the effectiveness of our model relative to TRG_Wu.

Algorithms 2024, 17, 148 3 of 19

We also propose algorithms for the case when the TRG graphs are acyclic and demonstrate
the effectiveness of our algorithms using the same path problems.

The outline of this paper is as follows. Related work is reviewed in Section 1. The
TRG models TRG_Wu, TRG_Zschoche, and TRG_Ours are described in Section 2.1, and
the memory requirements of each are analyzed. Our algorithms for general TRG_Ours
are described in Section 2.2, and our algorithms for acyclic TRG_Ours are described in
Section 2.3. Experimental results are presented in Section 3.1. We conclude in Section 4.

Related Work

We have already mentioned the models proposed by Wu et al. [8] in Section 1. Due to
the closeness of their work to ours, we will discuss their method in detail in the following
sections. Their work improves on the work of Xuan et al. [7] for interval temporal graphs.

Finding optimal paths in the presence of constraints is the focus of another group of
methods. Examples are the works of [10,11] for finding approximate optimal paths. In the
problems studied by Hassan et al. [12], edge labels are used for classification purposes.
Examples of edge labels are family/friend relationships in social networks.

Himmel et al. [13] propose a model that allows adding min and max wait times to
each vertex. Their proposed model can be used to optimize a linear combination of criteria
(e.g., fastest, shortest, foremost). They show the median runtime of their algorithm to be
comparable with those proposed in [8]. However, the average runtime of their algorithm is
around 10 times greater than those used in [8] (the average is taken over all the optimization
criteria). The work by Bentert et al. [14] is an extension of this work which considers more
optimization criteria, provides the missing proofs, and presents extended experimental
results. Casteigts et al. [15] use a TRG similar to that of [9] with the main difference that they
connect an edge to a node only if the timestamp of the edge is within δ of the timestamp of
the node (where δ is an upper bound on the time one could remain in a node).

When the edge updates are not known in advance, another group of methods can
be used, such as the ones in [16–18]. They form Shortest Path Trees (SPTs) rooted at each
vertex. The trees are updated after each temporal evolution of the graph.

Some methods choose a group of vertices as the landmark nodes. They then run a
pre-processing step to calculate the distances from each vertex to those landmark nodes.
These partial distances are combined to calculate the distances between each pair of vertices
and are updated each time the graph evolves. Different types of landmark nodes have been
considered in the literature. Examples are the hub nodes [19], nodes in a radius of K from
a given node [20] and nodes for which the triangle equality holds for a sample subset of
paths [21]. These methods are appropriate for problems in which edge updates are not
known in advance.

Wu et al. [22] show that TRG_Wu is acyclic for contact sequence temporal graphs
with no edge weight equal to 0. They develop an indexing scheme to efficiently answer
reachability and time-based fastest and shortest paths queries for acyclic TRG_Wu. They
allow for the contact sequence graph and hence its TRG_Wu to change over time by adding
edges. The algorithms developed by Dean [23] also benefit from the topological ordering of
nodes in the acyclic transformation of dynamic graphs. Their transformed graph is divided
into different temporal snapshots. The minimum cost paths algorithm uses dynamic
programming on the topologically sorted vertices in reverse chronological order.

A graph model has been used in [24] in which the geographic locations of the nodes
determine their distances, and the nodes can be added or removed dynamically with
time. The temporal evolution of the vertices has also been studied in other work such
as [25]. We may need to calculate the upper bounds on the length of the optimal paths. An
example application is the mobile ad-hoc networks in which flooding time can be used to
compute the upper bound on the length of the fastest path. The search space for finding
a semi-optimal path can be reduced by putting an upper bound of the flooding time [26].
Differential equations have been used in self-adapting methods that converge to the optimal
paths for a fixed source node and edge updates that are not known in advance [27].

Algorithms 2024, 17, 148 4 of 19

Path algorithms largely depend on the specific problem requirements. Different mod-
els and algorithms have been developed, each with emphasis on a particular requirement
such as query response time [28], security [29], path difference between two consecutive
graph snapshots [30] and number of destination nodes [31]. Akrida et al. [32] consider
stochastic temporal graphs in which the probability of an edge existing in time t depends
on its existence in the previous k time steps. Brunelli et al. [33] find Pareto-optimal paths in
temporal graphs for cases when the start time is fixed.

Distributed algorithms for finding shortest paths are developed in [34–36], and surveys
of the general area of temporal graphs appear in [37–39].

2. Materials and Methods
2.1. TRG Data Structures

A sample contact sequence temporal graph G = (V, E) is shown in Figure 1a. Each
edge is labeled with <t, w> (timestamp and weight). For this graph, |V| = 3 and |E| = 4.
Each contact sequence temporal graph has a corresponding static graph generated by
removing the (t, w) labels and coalescing the edges with the same source and destination to
a single edge. In the example graph of Figure 1a, the corresponding static graph will have
only one edge from vertex A to vertex B. Edge activity is defined as the ratio |E|/|Es| where
|Es| is the number of edges in the static graph. Our example graph has |Es| = 3 and edge
activity equal to 1.33. Some paths in the graph of Figure 1a are time-respecting (e.g., the
ABC path that uses the edge (A, B, 4, 1)), and others are not (e.g., the ABC path that uses
the edge (A, B, 3, 4)).

0

0

0

(a) (b)

(e) (d)

(c)

A

C B

<6,1>

<A,B,3,4>

<A,B,4,1>

<B,C,6,1>

<A,C,8,1>

A,3 B,5 B,6

A,4 B,7 C,9

C,7

A,8

 Vout(A) Vin(B) Vout(B) Vin(C)

0

0

4

0 1

0

1

0
 1

A,3

A,4

A,8

B,5 B,6

C,9 C,7

A,3

B,7

A,3

B,6

A,8

A,4

A,3

B,7

C,9

1
0

1

0 0
1

0

1

4

1 0

1

1

0

0

0

0

 Bn,4 Bn,6

1

Figure 1. Ref. [1] (a) A temporal graph G, (b) OSE(G), (c) TRG_Wu(G), (d) TRG_Zschoche(G), and
(e) TRG_Ours(G). For (d,e), as all the nodes belong to sets ϕ(u) and Vout(u), respectively. Therefore,
we have not labeled them with the set memberships as we have conducted for (c).

Figure 1b demonstrates the OSE representation of our example graph. Each edge in
Figure 1a is represented by a quadruple (u, v, t, w) (source, destination, timestamp and
weight). Using this representation, one needs to examine all the edges regardless of whether
the objective is to find a time-respecting path from u to v or to find the one-hop neighbors
of u. OSE-based time-efficient, one-pass algorithms have been developed in [8] for several
single-source all-destinations optimal paths.

Algorithms 2024, 17, 148 5 of 19

We already mentioned in Section 1 that all the paths are time-respecting in a time-
respecting graph (TRG). We first describe the TRGs of [8,9] and then describe our pro-
posed TRG.

2.1.1. TRG_Wu

Consider the edge (u, v, t, w) in a contact sequence temporal graph. One can use this
edge to depart vertex u at time t and arrive at vertex v at time t + w. Let Tout(u) be the
set of distinct times one can depart from u and Tin(u) be the set of distinct times one can
enter u. Equivalently, Tout(u) and Tin(u) can be defined as the sets of distinct timestamps
on the edges of the forms (u, ∗, t, w) and (∗, u, t, w), respectively. Given a graph G = (V, E),
Wu et al. [8] define a transformed graph G′ = (V′E′). For each vertex u in G, there are two
sets of vertices in G′

Vin(u) = {u′ = (u, t)|t ∈ Tin(u)},

Vout(u) = {u′ = (u, t)|t ∈ Tout(u)}.

So, V′ =
⋃

u{Vin(u) ∪ Vout(u)}. The process by which the edge set E′ is formed is
described below.

1. For each u ∈ V, sort the vertices in Vin(u) in ascending order of the in-time (arrival
time). Connect each vertex to the next one (in the sorted order) using a zero-weight
directed edge. Similarly, sort the vertices in Vout(u) in ascending order of the out-time
(departure time) and link each vertex to the next one using a zero-weight directed edge.

2. For each u ∈ V iterate over Vin(u) in descending order of t. For each (u, t1) ∈ Vin(u),
determine the minimum time-stamp t2 in Tout(u) for which the inequality t2 ≥ t1
holds. Check for an already existing edge from any vertex in Vin(u) to (u, t2) ∈ Vout(u).
If such an edge does not exist, add a directed one from (u, t1) to (u, t2) with a weight
equal to 0.

3. For each edge e = (u, v, t, w) ∈ E, add a directed edge with weight w from (u, t) ∈
Vout(u) to (v, t + w) ∈ Vin(v).

Figure 1c gives the TRG_Wu transformation of the graph in Figure 1a. We can easily
see that for every time-respecting path in G, there is a path in G′ and vice versa. Therefore,
we can use the classic graph algorithms such as depth-first and breadth-first search on G′ to
easily solve a group of problems in G. An example is finding all nodes v that are reachable
from u using time-respecting paths. Moreover, using TRG_Wu(G) over OSE(G) results in
faster solutions (especially when the number of reachable vertices is much less than |V|).
From the described construction for G′, we see that

|V′| = ∑
u∈V

(|Tin(u)|+ |Tout(u)|) ≤ 2|E| (1)

and

|E′| ≤ ∑
u∈V

(|Tin(u)| − 1) + ∑
u∈V

(|Tout(u)| − 1)

+ ∑
u∈V

min{|Tin(u)|, |Tout(u)|}+ |E|

= ∑
u∈V

(|Tin(u)|+ |Tout(u)|+ min{|Tin(u)|, |Tout(u)|})

−2|V|+ |E| ≤ 4|E| − 2|V|.

(2)

2.1.2. TRG_Zschoche

Similar to TSG_Wu, TRG_Zchoche [9] removes the temporal information from the
edges and adds them to the vertices. Here, the authors assume that all edge weights are
integer and strictly positive. In TRG_Zchoche, for each u ∈ V, the Vin(u) and Vout(u)
vertices are put into a single directed chain in increasing order of time rather than into two

Algorithms 2024, 17, 148 6 of 19

separate chains as in TRG_Wu and that is the main difference between the two models. Let
G′′ = (V′′, E′′) be the TRG_Zscoche transformation of G. The following describes how to
construct G′′ from G.

1. The first step is to construct an intermediate graph G1 = (V1, E1), in which each edge
(u, v, t, w) with w > 1 is replaced by two edges (u, vNew, t, 1) and (vNew, v, t+w− 1, 1).
It is guaranteed that every path in G that uses the original (u, v, t, w) gets to v at time
t + w in G1.

2. For each vertex u ∈ V1, let Φ(u) = Tin(u) ∪ Tout(u). For each t ∈ Φ(u) add a vertex
(u, t) to V′′.

3. For each u ∈ V1, sort the vertices (u, ∗) in ascending order of time and make a chain
by connecting each vertex to the next one using a directed zero-weight edge.

4. For each edge (u, v, t, w) ∈ E1 add a directed edge of weight = w from (u, t) ∈ V′′ to
(v, t + w) ∈ V′′.

The TRG_Zschoche transformation of Figure 1a is shown in Figure 1d. Nodes (Bn, ∗)
are the Bnew nodes added to the graph in step 1. TRG_Zschoche can be shown to have the
same time-respecting properties as TRG_Wu. Bounds on |V′′| and |E′′| are computed below.

1. |V1| = |V|+ D and |E1| = |E|+ D where D ≤ |E| is the number of edges in G with
weight > 1.

2. |V′′| = Σu∈V1 |Φ(u)| = Σu∈V1(|Tin(u) ∪ Tout(u)|) ≤ 2|E1| = 2|E|+ 2D ≤ 4|E|.
3. The number of chain edges is Σu∈V1(|Φ(u)| − 1) = Σu∈V1((|Tin(u) ∪ Tout(u)|)− 1) ≤

2|E1| − |V1| = 2|E|+ 2D− |V| − D ≤ 3|E| − |V|.
The number of other edges in E′′ is |E1| ≤ 2|E|. So, |E′′| ≤ 5|E| − |V|.
In TRG_Zschoche, all edge weights are either 0 or 1. We have shown that there are

higher bounds on the number of vertices and edges in TRG_Zschoche than in TRG_Wu.
However, that does not necessarily mean that the number of nodes and edges is always
higher for TRG_Zschoche. As shown by our experimental datasets (Section 3.1) there are
contact sequence temporal graphs for which TRG_Wu has more vertices and edges than
TRG_Zschoche and vice-versa.

We look closer at the special case when all edge weights are 1. This special case is
of interest because the experimental datasets used in [8] were derived from real-world
temporal sequence graphs by setting all weights to 1 (the original weights were 0 as the
original graphs modeled instantaneous communication); we use 11 of these datasets in
our experiments of Section 3.1. When all edges have w = 1, D = 0. Hence, |V1| = |V| and
|V′′| = Σu∈V(|Tin(u) ∪ Tout(u)|) ≤ Σu∈V(|Tin(u)|+ |Tout(u)|) = |V′|. Also, |E1| = |E| and
|E′′| = |E|+ Σu∈V((|Tin(u)∪ Tout(u)|)− 1) ≤ |E| − |V|+ Σu∈V(|Tin(u)|+ |Tout(u)| ≤ |E′|,
whenever ∑ min{|Tin(u)|, |Tout(u)| ≥ |V|}. For most temporal graphs, we expect the sum
of the minimums of the in and out degrees to exceed |V|. So, when all edges have w = 1,
TRG_Zschoche never has more vertices than TRG_Wu and almost always has fewer edges.
This conclusion is borne out by the vertex and edge counts reported in Section 3.1.

Note, however, that in the more general case when edge weights are not restricted to
1, either data structure may have a lower vertex and/or edge count, and the upper bound
on these counts is higher for TRG_Zschoche than for TRG_Wu.

2.1.3. TRG_Ours

Our TRG data structure improves over TRG_Wu by using fewer vertices and edges.
Let G′′′ = (V′′′, E′′′) denote our TRG transformation of G = (V, E). Let Vout(u) have
the same definition as in TRG_Wu. We define tm = max{t : t ∈ Tin(u)}. Let V′out(u) =
Vout(u) ∪ {(u, tm)} in case Tout(u) = ∅ or tm > max{t : t ∈ Tout(u)}. V′out(u) is equal to
Vout(u) otherwise. We only use the Vout nodes in our transformation. Therefore, we need to
add the helper nodes (i.e., (u, tm)), or otherwise, there will be the possibility of erroneously
eliminating some nodes and edges. The set of nodes in TRG_Ours is constructed as follows

Algorithms 2024, 17, 148 7 of 19

V′′′ =
⋃

u∈V
V′out(u).

For each edge (u, v, t, w) in E, E′′′ has a directed edge from (u, t) ∈ V′′′ to (v, t′) ∈ V′′′

such that t′ is the smallest time≥ t+w in {t̄ : (v, t̄) ∈ V′out(v)}. The weight of this edge is w.
Additionally, for every vertex v, the vertices in V′out(v) are chained in ascending timestamp
order. The weight of a chain edge is 0. From this point on, we use the term “chain neighbors”
of node (u, t) to refer to all nodes in V′out(v). Also, by the term “‘immediate chain neighbor”
of node (u, t), we mean the node that follows (u, t) in the sorted list of Vout(u) nodes.
Figure 1e shows TRG_Ours for the example graph of Figure 1a. We have highlighted
the “helper nodes”. If we omit the helper nodes, then the algorithms on the resulting
graph will work as if node C ∈ V and both its incoming edges and edge (A, B, 3, 4) have
been removed from the original graph G = (V, E). Again, one may verify that TRG_Ours
has the same time-respecting properties as does TRG_Wu. Bounds on |V′′′| and |E′′′| are
computed below.

|V′′′| ≤ ∑
u∈V

(|Vout(u)|+ 1) ≤ |E|+ |V| (3)

|E′′′| ≤ |E|+ ∑
u∈V
|Tout(u)| ≤ |E|+ |E| = 2|E| (4)

It is easy to see that TRG_Ours will never have more vertices or more edges than either
TRG_Wu or TRG_Zschoche.

2.2. Algorithms for General TRG_Ours

This section describes our single-source all-destinations algorithms for unconstrained
instances of TRG_Ours. We also refer to these algorithms as cyclic algorithms. Algorithms
specific to acyclic TRGs (acyclic algorithms) are described in Section 2.3. Notably, while our
algorithms only find the length (duration) of the optimal paths, they can be easily modified
to find the actual paths. Also, as mentioned in Section 1. The time complexities of the
fastest and minhop paths algorithm are both O(n + e), where n and e are the number of
vertices and edges in the TRG_Ours graph, respectively.

2.2.1. Shortest Paths Algorithm for TRG_Ours

Our shortest paths algorithm is a modification of the well-known Dijkstra’s algo-
rithm. The main difference is that we need to account for chain neighbors. Whenever
the distance to a TRG node (u, t) is fixed, the distance to all non-distance fixed nodes
(u, t′) ∈ Vout(u), t′ ≥ t should be fixed to the same value. The neighbors of those chain
neighbors should be updated in turn.

Algorithm 1 shows our shortest path algorithm. The input is the TRG_Ours represen-
tation of the temporal graph, the source node (in the original graph), and the start and end
times. The output is a vector of the shortest distances from the source node to the nodes
in the original graph (the shortest[] vector). A local vector (distance[]) keeps track of the
TRG graph’s node distances. We initialize the shortest distance for the source node to 0 and
for all the other nodes to infinity. Lines 6 to 28 implement the modified Dijkstra’s function
using a min priority queue (pq). The main modification over Dijkstra’s algorithm happens
in the for loop in lines 16–27. This loop traverses the chain neighbors of (u, t) (including
itself) whose distances are not fixed yet and for each chain neighbor (u, t′), updates the
shortest distance to its neighbors (u′′, t′′).

The time complexity is O(n + elogn), where n and e are the number of nodes and
vertices in the transformed graph, respectively.

Algorithms 2024, 17, 148 8 of 19

Algorithm 1 Shortest paths algorithm for TRG_Ours
1: function SHORTESTPATHS(G, s, tstart, tend) ▷ G = (V, E) is TRG_Ours graph and s is

the source node
2: return Array shortest[] of shortest path costs
3: Initialize shortest[s] = 0, all other distances to infinity
4: Let pq be a priority queue ▷ Nodes with lower distance have higher priority
5: Sort nodes in Vout(s) in increasing order of time
6: Place the first node in Vout(s) with t ≥ tstart in pq
7: while pq is not empty do
8: Let (u, t) be head of pq
9: Remove (u, t) from pq

10: if (u, t) is distance_fixed then
11: continue
12: end if
13: if shortest[u] equals infinity then
14: shortest[u]← distance[(u, t)]
15: end if
16: for all non_distance_fixed (u, t′) ∈ Vout(u) with t ≤ t′ ≤ tend do
17: if t′ ̸= t then
18: distance[(u, t′)]← distance[(u, t)]
19: end if
20: Mark (u, t′) as distance_fixed
21: for (u′′, t′′) ∈ neighbors((u, t′)) do
22: Let wlink be the weight of the link from (u, t′) to (u′′, t′′)
23: if t′′ ≤ tend and distance[(u, t′)] + wlink < distance[(u′′, t′′)] then
24: distance[(u′′, t′′)]← distance[(u, t′)] + wlink
25: end if
26: end for
27: end for
28: end while
29: end function

2.2.2. Foremost Paths Algorithm for TRG_Ours

For our foremost paths algorithm, we modify Breadth First Search (BFS). As we only
use Vout nodes, a node can be visited and its distance updated multiple times, but it can
be expanded only once. By expanding a node, we mean putting it into the BFS queue and
checking/updating its neighbors.

Algorithm 2 is our foremost paths algorithm. The inputs are the same as for the
shortest paths algorithm. The output is a vector of foremost path distances for each node in
the original graph (f oremost[]). We initialize the foremost distance to 0 for the source node
and to infinity for the other nodes. Lines 4–26 implement the body of the BFS algorithm.
Our main modification over the conventional BFS happens at lines 21–25 when we process
the immediate chain neighbor of node (u, t). For two reasons, we have separated the
immediate chain neighbor (u, t) from the other neighbors process in lines 9–20. First,
in our implementation, we do not add the chain neighbors to the adjacency list of our
nodes. Second, when we visit (u, t), we do not need to update f oremost[u] as it was already
updated when we put (u, t) in Q.

The time complexity is O(n + e) where n and e are the number of nodes and edges in
the transformed graph, respectively.

Algorithms 2024, 17, 148 9 of 19

Algorithm 2 Foremost paths algorithm for TRG_Ours
1: function FASTESTPATHS(G, s, tstart, tend) ▷ G = (V, E) is TRG_Ours graph and s is the

source node
2: return Array f oremost[] of foremost path durations
3: Initialize f oremost[s] = 0, all other distances to infinity
4: Let Q be a queue
5: Initialize Q with nodes in Vout(s) with tstart ≤ t ≤ tend
6: while Q is not empty do
7: Let (u, t) be the head of Q
8: Remove (u, t) from Q
9: for (u′, t′) ∈ neighbors((u,t)) do

10: Let wlink be the weight of link between (u, t) and (u′, t′)
11: arrival_time← t + wlink
12: if arrival_time > tend then
13: continue
14: end if
15: f oremost[u′]← min(f oremost[u′], arrival_time)
16: if (u′, t′) is not visited and t′ ≤ tend then
17: Mark (u′, t′) as visited
18: Add (u′, t′) to Q
19: end if
20: end for
21: Let (u, t) be the next node in sorted order of Vout(u) ▷ sorted in increasing order

of time
22: if (u, t) is not visited and t ≤ tend then
23: Mark (u, t) as visited
24: Add (u, t) to Q
25: end if
26: end while
27: end function

2.2.3. Fastest and Minhop Paths Algorithms for TRG_Ours

The fastest paths and the minhop paths algorithms for TRG_Ours have been demon-
strated in detail in our earlier work [1]. Using a modified version of the standard DFS
(depth first search) for the fastest paths algorithm and a modification of the standard BFS
(breadth first search) for the minhop paths algorithm, we can obtain the time complexity of
O(n + e) for both where n and e are, respectively, the number of vertices and the number
of edges in the transformed graph (TRG_Ours).

2.3. Algorithms for Acyclic TRG_Ours

Simpler and faster TRG algorithms for the considered path problems are possible
when the TRGs for the contact sequence temporal graphs are acyclic. TRGs are acyclic, for
example, when no edge of the original temporal graph has a weight that is 0.

As noted earlier, Wu et al. [22] have shown that TRG_Wu is acyclic when no edge in
the contact sequence graph has a weight that is 0. The construction of TRG_Zschoche and
TRG_Ours shows that these TRGs are also acyclic under the same condition. TRG_Zschoche
requires all weights to be integer and >0. TRG_Wu and TRG_Ours may be acyclic even
when the contact sequence graph has 0-weight edges. The simpler and faster algorithms for
path problems on acyclic TRGs employ a topological ordering on the TRG vertices. Such an
ordering is assured for acyclic TRGs. In this section, we describe path algorithms for acyclic
TRG_Ours. The algorithms for acyclic TRG_Wu and acyclic TRG_Zschoche are similar.

Algorithms 2024, 17, 148 10 of 19

2.3.1. Fastest Paths Algorithm on Acyclic TRG_Ours

For the fastest path algorithm on the acyclic TRGs, we iterate the nodes in topological
order. When we visit a node, we update the fastest distance to its neighbors. For computing
the fastest distance, we need to keep track of the time a path exited from the source node.

Algorithm 3 describes our Fastest Path algorithm for acyclic TRGs. The inputs are
the same as our previous algorithms with the addition of “tp_list” which contains the
topological order of the vertices in TRG. The output is a vector of the fastest paths in the
original graph (f astest[]). We also use a local distance[] vector to keep track of the local
distances to nodes (u, t) in the TRG graph. We set f astest[] to 0 for the source node s and
infinity for all other nodes. The local distances for nodes in Vout are also initialized to 0
(and all others to infinity). We use a vector latest[] to keep track—for each node (u, t) − f
the latest time we exited a node in Vout(s) but could still arrive at (u, t).

Algorithm 3 Fastest paths algorithm for acyclic TRG_Ours
1: function ACYCLICFASTESTPATHS(G, s, tp_list, tstart, tend) ▷ G = (V, E) is TRG_Ours

graph, s is the source node and tplist is the list of nodes in topological order
2: return Array f astest[] of fastest path durations
3: Initialize f astest[s] = 0, all other distances to infinity
4: for (us, ts) ∈ Vout(s) where tstart ≤ ts ≤ tend do
5: latest[(us, ts)]← ts
6: distance[(us, ts)]← 0
7: end for
8: for (u, t) ∈ tp_list do
9: if distance[(u, t)] equals infinity then

10: continue
11: end if
12: f astest[u]← min(f astest[u], distance[(u, t)])
13: if t > tend then continue
14: Let (u, t) be the next node in sorted order of Vout(u)
15: if t ≤ tend and latest[(u, t)] < latest[(u, t)] then
16: latest[(u, t)]← latest[(u, t)]
17: distance[(u, t)]← min(distance[(u, t)], distance[(u, t)])
18: end if
19: for (u′, t′) ∈ neighbors((u,t)) do
20: Let wlink be the weight of link between (u, t) and (u′, t′)
21: arrival_time← t + wlink
22: if arrival_time > tend then
23: continue
24: end if
25: if distance[(u′, t′)] > arrival_time − latest[(u, t)] then
26: distance[(u′, t′)]← arrival_time − latest[(u, t)]
27: end if
28: if latest[(u′, t′)] < latest[(u, t)] then
29: latest[(u′, t′)] = latest[(u, t)]
30: end if
31: end for
32: end for
33: end function

The main body of the code is implemented in lines 8–32 where we iterate over the
nodes in the topological order and update the distance[] and latest[] vectors for the neigh-
bors of the visited nodes. Line 12 computes f astest[u] as mint∈tout(u)distance[(u, t)]. Again,
for each node (u, t) we treat its immediate neighbor (u, t) in a different manner than the
other neighbors. There are two reasons for that: first, as mentioned before, in our implemen-
tation, we don’t add the chain neighbors to the adjacency list of the TRG graph. Moreover,

Algorithms 2024, 17, 148 11 of 19

for the immediate chain neighbor (u, t), we only update it if latest[(u, t)] is greater than
that of (u, t). If it were not for the if statement in lines 9–11, we would only need to update
latest[(u, t)] and not distance[(u, t)]. However, as we bypass nodes with a distance equal
to infinity, distance[(u, t)] may remain equal to infinity, and its neighbors may never get
updated (the immediate chain neighbor is processed in lines 14–18 and the other neighbors
in lines 19–31).

2.3.2. Minhop Paths Algorithm on Acyclic TRG_Ours

Similar to the algorithm for fastest paths on acyclic TRGs, here again, we iterate over
the nodes in their topological order. Meanwhile, we also keep track of the number of hops,
and as we visit the nodes, we update their neighbors.

Algorithm 4 is the minhop algorithm for TRG_Ours. The inputs are the same as those
for Algorithm 3 and similar to that algorithm, we use the vector minhop[] to record the
distances in the original graph and distance[] to record the distances in the TRG graph.
We initialize the minhop[s] and distance[(us, ts)] for (us, ts) ∈ Vout(s) to 0 and all the other
distances to infinity. The for loop in lines 5–23 iterates over the nodes of TRG in their
topological order. Lines 11–14 go through the immediate chain neighbor of (u, t), namely
(u, t). Here, we treat this node a little differently from the other neighbors. We only update
distance[(u, t)] if t ≤ tend. The reason is that (u, t) is only useful if it can update the distance
of its neighbors, and that is only possible if the arrival time at its neighbors is within the
pre-defined range. The for loop in lines 15–22 iterates over the non-chain neighbors of (u, t)
and updates the distance of each neighbor.

Algorithm 4 Minhop paths algorithm for acyclic TRG_Ours
1: function ACYCLICMINHOPPATHS(G, s, tp_list, tstart, tend) ▷ G = (V, E) is TRG_Ours

graph, s is the source node and tplist is the list of nodes in topological order
2: return Array minhop[] of minhop path durations
3: Initialize minhop[s] = 0, all other distances to infinity
4: Initialize distance[(us, ts)] to 0 for all (us, ts) ∈ Vout(s) where tstart ≤ ts ≤ tend
5: for (u, t) ∈ tp_list do
6: if distance[(u, t)] equals infinity then
7: continue
8: end if
9: minhop[u]← min(minhop[u], distance[(u, t)])

10: if t > tend then continue
11: Let (u, t) be the next node in sorted order of Vout(u)
12: if t ≤ tend then
13: distance[(u, t)]← min(distance[(u, t)], distance[(u, t)])
14: end if
15: for (u′, t′) ∈ neighbors((u,t)) do
16: Let wlink be the weight of link between (u, t) and (u′, t′)
17: arrival_time← t + wlink
18: if arrival_time > tend then
19: continue
20: end if
21: distance[(u′, t′)]← min(distance[(u, t)] + 1, distance[(u′, t′)])
22: end for
23: end for
24: end function

Algorithms 2024, 17, 148 12 of 19

2.3.3. Shortest Paths Algorithm on Acyclic TRG_Ours

Our shortest paths algorithm differs from our minhop algorithm for acyclic TRGs_Ours
only in that distances are incremented by the edge weight rather than by 1. More specifically,
line 21 of Algorithm 4 should be changed to

distance[(u′, t′)]← min(distance[(u, t)] + wlink, distance[(u′, t′)]). (5)

2.3.4. Foremost Paths Algorithm on Acyclic TRG_Ours

Our foremost paths algorithm for acyclic TRG_Ours is very similar to Algorithm 4;
the only difference is line 21, where the distance is updated using arrival time. This means
that line 21 in Algorithm 4 should be replaced with

distance[(u′, t′)]← min(arrival_time, distance[(u′, t′)]). (6)

The time complexity of all the algorithms presented in this section is O(n + e) where
n and e are the number of nodes and vertices in the acyclic TRG graph, respectively.

2.4. Complexity of Algorithms

In this section, we perform a complexity comparison between OSE, TRG_Wu and
TRG_Ours. The time complexities for the OSE algorithms and the TRG_Wu algorithms
(except for minhop) are taken from [8]. Note, that in their complexity analysis, Wu et al. [8]
assume that |V| < |E|, and therefore, drop all the |V| terms. We do not make such an
assumption and add the |V| terms to their complexities. As noted earlier, the algorithms
for acyclic TRG_Wu are similar to those used for acyclic TRG_Ours and have similar time
complexities. Table 1 contains the complexities of the various algorithms. The notation
used here is the same as in Section 2.1. dmax is the maximum in-degree among all the
original contact sequence temporal graph nodes. Although [8] does not give an algorithm
for the min-hop paths problem, their OSE and TRG_Wu algorithms for shortest paths are
easily modified to compute min-hop paths. We do not compare with TRG_Zschoche as
this data structure requires that all edges in the temporal contact sequence graph have an
integer weight and be >0. Further, for contact sequence temporal graphs that satisfy these
requirements, TRG_Zschoche is expected to have more vertices and edges than TRG_Wu
most of the time. A particular case when the reverse is true is when all edge weights are 1.

Based on Table 1, we expect that the algorithms for cyclic TRGs will perform better
using TRG_Ours than TRG_Wu as our analysis of Section 2.1 shows that |V′| and |E′| will
be larger than |V′′′| and |E′′′| in most cases. To compare the OSE algorithms and those
for cyclic TRG graphs using TRG_Ours, we replace |V′′′| with its upper bound derived
in inequality (3) and |E′′′| with 2|E| as per inequality (4). The resulting complexities of
TRG_Ours will be O(V + 3|E|) which simplifies to O(V + |E|) for both the fastest and
minhop algorithms. Whether or not TRG_Our performs better than OSE depends on
|Tout(s)| and dmax. However, we do not expect improvements for the shortest and foremost
path algorithms.

For acyclic TRG graphs, we expect that using TRG_Ours will result in better perfor-
mance than using TRG_Wu because we expect |V′| and |E′| to be larger than |V′′′| and |E′′′|
in most cases. We also expect the acyclic TRG algorithms to outperform their counterparts
for cyclic TRGs. This is for the algorithms whose asymptotic complexity is the same for
cyclic and acyclic graphs, as the latter algorithms have a more negligible overhead. Also,
since the asymptotic complexity of the acyclic TRG algorithms is superior to that of the OSE
algorithms except for the foremost paths problem, we expect the acyclic TRG algorithms
to outperform their OSE counterparts except for the foremost paths problem. The OSE
algorithm for the foremost paths problem has very low overhead and we do not expect any
improvement from using acyclic TRGs.

Algorithms 2024, 17, 148 13 of 19

Table 1. Complexity comparison between OSE, TRG_Wu and TRG_Ours algorithms.

Fastest Minhop Shortest Foremost

OSE and cyclic TRG algorithms

OSE O(|Tout(s)|(|V|+ |E|)) O(|V|+ |E|log(dmax)) O(|V|+ |E|log(dmax)) O(|V|+ |E|)

TRG_Wu O(|V′|+ |E′|) O(|V′|+ |E′|log|V′|) O(|V′|+ |E′|log|V′|) O(|V′|+ |E′|)

TRG_Ours O(|V′′′|+ |E′′′|) O(|V′′′|+ |E′′′|) O(|V′′|+ |E′′|log|V′′|) O(|V′′′|+ |E′′′|)

Acyclic TRG algorithms

TRG_Wu O(|V′|+ |E′|) O(|V′|+ |E′|) O(|V′|+ |E′|) O(|V′|+ |E′|)
ine TRG_Ours O(|V′′′|+ |E′′′|) O(|V′′′|+ |E′′′|) O(|V′′′|+ |E′′′|) O(|V′′′|+ |E′′′|)

3. Results

In this section, we compare the performance of path algorithms for both cyclic and
acyclic TRG_Ours, acyclic TRG_Wu, and the algorithms given in [8] using OSE and
TRG_Wu. The shortest paths algorithms in [8] are adapted for the min-hop problem.
We do not compare with algorithms for TRG_Zschosche because TRG_Zschosche is re-
stricted to temporal graphs with integer weights > 0 and is expected to have more vertices
and edges than TRG_Wu except in exceptional cases such as when all edge weights are
1. While the algorithm of Bentert et al. [14] can be used for each of our path problems by
setting its parameters appropriately, its runtime was much larger than that of the other
algorithms being benchmarked. So, we do not present the times for [14] here.

3.1. Setup

The computational platform we use for our experiments is an Intel Knights Landing
with a maximum CPU clock cycle of 1.7 GHz and up to 384 GB RAM. All the codes are in
C++. We used the g++ compiler with the following flags: −std = c ++11 and −O3. The
codes for the OSE data structure were obtained from the authors of [8] and used with no
modification. We coded the remaining algorithms.

We use 11 of the datasets used by Wu et al. [8] in addition to an airline dataset.
The airline dataset is taken from the Bureau of Transportation Statistics website (https:
//www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp (accessed on 1 February 2024)).
The Wu datasets are taken from The KONECT Project website (http://konect.cc/networks/
(accessed on 1 February 2024)). The airline dataset contains information about flights in
the US since 1987. For our experiments, we used data from January 2020. Self-loops were
removed from all datasets in a preprocessing step, and undirected graphs were converted
to directed ones by replacing each undirected edge with two directed ones. In all datasets
(except the airline dataset), the weight w of every edge was set to 1, as was conducted
in Ref. [5]). Since all edges of all datasets used by us have a strictly positive weight the
TRG for each is acyclic. Hence, these datasets may be used by the algorithms for cyclic as
well as acyclic TRGs and also by all OSE algorithms. We use acyclic datasets to assess our
algorithms for cyclic TRGs because we expect little difference in runtime between cyclic
and acyclic datasets. The runtime is expected to depend more on the number of edges and
vertices and the reachability of vertices from the source rather than on whether the TRG
has cycles. Additionally, this enables us to assess the performance gain obtained by the
acyclic TRG algorithms relative to their cyclic counterparts.

Table 2 summarizes the properties of the datasets we used. In this table, |V| is the
number of vertices, and |E| is the number of temporal edges in a dataset. Es is the set
of static edges. These are obtained from E by removing edge weights and timestamps
and eliminating duplicate (u, v) pairs. The |E|/|Es| values, which measure edge activity
(i.e., how often a static edge becomes available), are rounded to 2 digits.

https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
http://konect.cc/networks/

Algorithms 2024, 17, 148 14 of 19

Table 2. Description of the datasets used in this paper.

Dataset |V | |E| |Es| |E|/|Es|
airline 351 599,183 5704 105.046
arxiv 28,093 9,193,606 6,296,894 1.46
conflict 116,836 5,835,570 4,055,742 1.44
digg 30,360 86,203 85,247 1.01
elec 7115 103,617 103,617 1
enron 86,978 2,269,980 594,912 3.82
epin 131,580 840,799 840,799 1
fb 63,731 1,634,070 1,634,070 1
flicker 2,302,925 33,140,017 33,140,017 1
growth 1,870,709 39,953,145 39,953,145 1
slash 51,083 139,789 130,370 1.07
youtube 3,223,585 18,750,748 18,750,748 1

There are slight differences from the statistics reported in [8]. This is possible because
the online datasets have been updated since the work of [8].

3.2. Number of Nodes and Edges after Transformation

In Section 2.1, we computed an upper bound on the number of nodes and edges in
OSE, TRG_Wu, TRG_Zschoche, and TRG_Ours. Table 3 gives the actual number of nodes
and edges for the datasets used in this paper.

Table 3. Number of nodes and edges in different data structures.

|V | |E| |V | |E| |V | |E|
airline arxiv conflict

OSE 351 599,183 OSE 28,093 9,193,606 OSE 116,836 5,835,570
TRG_Wu 973,032 1,817,451 TRG_Wu 433,412 9,759,445 TRG_Wu 6,382,486 15,058,791
TRG_Ours 472,244 1,071,076 TRG_Ours 244,799 9,410,312 TRG_Ours 3,308,079 9,026,813
TRG_Zschoche 2,058,822 2,657,654 TRG_Zschoche 433,412 9,598,925 TRG_Zschoche 6,378,348 12,097,082

digg elec enron

OSE 30,360 86,203 OSE 7115 103,617 OSE 86,978 2,269,980
TRG_Wu 172,384 233,330 TRG_Wu 205,284 303,496 TRG_Wu 2,730,480 6,104,766
TRG_Ours 98,434 154,277 TRG_Ours 103,372 199,874 TRG_Ours 1,452,218 3,635,220
TRG_Zschoche 172,379 228,222 TRG_Zschoche 205,284 301,786 TRG_Zschoche 2,728,896 4,911,898

epin fb flicker

OSE 131,580 840,799 OSE 63,731 1,634,070 OSE 2,302,925 33,140,017
TRG_Wu 481,859 1,219,172 TRG_Wu 1,448,264 3,615,273 TRG_Wu 12,600,099 44,358,410
TRG_Ours 292,878 1,002,097 TRG_Ours 787,863 2,358,202 TRG_Ours 7,425,807 38,262,899
TRG_Zschoche 481,859 1,191,078 TRG_Zschoche 1,448,208 3,018,547 TRG_Zschoche 12,600,099 43,437,191

growth slash youtube

OSE 1,870,709 39,953,145 OSE 51,083 139,789 OSE 3,223,585 18,750,748
TRG_Wu 34,814,941 77,196,220 TRG_Wu 273,371 381,167 TRG_Wu 15,446,056 32,249,077
TRG_Ours 11,466,331 49,548,767 TRG_Ours 157,037 245,743 TRG_Ours 10,946,613 26,473,776
TRG_Zschoche 34,814,941 72,897,377 TRG_Zschoche 273,371 362,077 TRG_Zschoche 15,446,056 30,973,219

As can be seen from Table 3, the number of nodes and vertices in TRG_Ours is less
than that of the other TRG structures but more than that of OSE for all 12 datasets.

As noted in Section 2.1.2, the relative number of vertices and edges in TRG_Wu
and TRG_Zschoche is very data-dependent. TRG_Zschoche has more vertices and edges
than TRG_Wu on the airline dataset. In this dataset, w > 1 for all edges. The remaining
11 datasets have w = 1 for all edges. TRG_Zschoche has the same number of vertices
as TRG_Wu on seven of these 11 datasets and a smaller number on the remaining four;

Algorithms 2024, 17, 148 15 of 19

TRG_Zschoche has a smaller number of edges than TRG_Wu on all 11 of our datasets with
w = 1. These results are consistent with Section 2.1.2 analysis.

3.3. Results for Cyclic TRG Algorithms

In this section, we present the results of running our algorithms for cyclic TRGs. We
measured the average time using 100 different randomly selected start vertices as conducted
in the experiments of [8].

The speedup obtained by TRG_Ours is computed using the formula ((time taken by
TRG_Wu)/time taken by TRG_Ours). These speedups are shown visually in Figure 2.
The speedups were computed using the non-rounded run times and then rounded to
decimal points.

As can be seen, TRG_Ours is faster than TRG_Wu on 11 of the 12 datasets for the
fastest paths, the min-hop paths, and the foremost paths problems. TRG_Ours is faster
than TRG_Wu on all 12 datasets for the shortest paths problem. The speedup obtained by
TRG_Ours on the fastest paths problem ranges from 0.63 to 6.81 and the speedup obtained
for the minhop problem ranges from 0.76 to 7.76. The speedup ranges for the shortest paths
and foremost paths problems are [1.46, 9.15] and [0.60, 6.52], respectively. On average, the
speedup obtained by TRG_Ours over TRG_Wu is 3.63 on the fastest paths problem, 2.86 on
the minhop problem, 2.95 for the shortest paths problem, and 2.85 for the foremost paths
problem, across the 12 datasets.

air
lin

e
ar

xiv

co
nflict digg

ele
c

en
ro

n
ep

in fb

flick
er

gro
wth

sla
sh

youtu
be0

2

4

6

8

10

Speedup of TRG_Ours over TRG_Wu

fastest minhop shortest foremost

Figure 2. Speedup obtained by cyclic TRG_Ours relative to cyclic TRG_Wu.

We do not compare our cyclic TRG algorithms with the OSE algorithms of [8] as the
latter are limited to contact sequence temporal graphs in which no edge weights 0, and
so these OSE algorithms work only on instances whose TRGs are acyclic. Hence, the OSE
algorithms are more appropriately compared to the algorithms for acyclic TRGs. While
Wu et al. [8], have stated that their OSE algorithms could be extended to handle the case
when edges weigh 0, such an extension would most likely increase the OSE algorithms’
run time.

3.4. Results for the Acyclic TRG Algorithms

Similar to the experiments on the cyclic algorithms, the runtimes of our algorithms for
acyclic TRGs are the average time over 100 random start nodes as conducted by Wu et al. [8].
In this section, we use “ATRG_Wu” and “ATRG_Ours” to denote “Acyclic TRG_Wu” and
“Acyclic TRG_Ours”.

The speedup values are computed using the same formula as our cyclic algorithms.
Here, they are rounded to 2 decimal points.

Algorithms 2024, 17, 148 16 of 19

Acyclic TRG_Ours is faster than acyclic TRG_Wu on all 12 datasets and for all four
path problems. For the fastest paths problem, the speedup obtained is in [1.45, 2.47], and
the average speedup over the 12 datasets is 2.09. For the minhop paths problem, the
speedup range is [1.47, 2.81], and the average speedup is 2.19. The corresponding ranges
and average speedup values are [1.26, 2.89] and 2.11 for the shortest paths problem and
[1.45, 2.74] and 2.11 for the foremost paths problem. Acyclic TRG_Ours is also faster than
OSE on all 12 datasets for the fastest, minhop and shortest path problems. As expected
from our runtime analysis in Section 2.4, TRG_Ours is slower than OSE on all 12 datasets
for the foremost paths problem. For the fastest paths problem, the speedup is in the range
[1.52, 5.41] with an average speedup of 2.84 across the 12 datasets. The speedup we obtain
for the minhop problem is in the range of [1.34, 5.84], and the average speedup across the
datasets is 3.01. The speedup range and the average speedup are [1.66, 4.93] and 2.86 for the
shortest paths problem. Concerning the cyclic version of TRG_Ours, acyclic TRG_Ours is
faster on 11 out of 12 datasets for the fastest, min-hop and foremost path problems and 10
out of 12 for the shortest paths problem. For the fastest paths problem, the speedup range is
[0.42, 17.58], and the average speedup across the 12 datasets is 3.27. For the min-hop paths
problem, the speedup range and the average speedup are [0.70, 4.61] and 2.50, respectively.
The speedup ranges and average speedup are [0.71, 3.59] and 1.87, respectively, for the
shortest paths problem and [0.45, 22.28] and 4.77 for the foremost paths problem. The
results are visually shown in Figures 3–6.

air
lin

e
ar

xiv

co
nflict digg

ele
c

en
ro

n
ep

in fb

flick
er

gro
wth

sla
sh

youtu
be0

5

10

15

20

Speedup of our acyclic fastest path algorithm

OSE/ATRG_Ours TRG_Ours/ATRG_Ours ATRG_Wu/ATRG_Ours

Figure 3. Speedup obtained by our acyclic fastest path algorithm.

air
lin

e
ar

xiv

co
nflict digg

ele
c

en
ro

n
ep

in fb

flick
er

gro
wth

sla
sh

youtu
be0

2

4

6

Speedup of our acyclic min-hop path algorithm

OSE/ATRG_Ours TRG_Ours/ATRG_Ours ATRG_Wu/ATRG_Ours

Figure 4. Speedup obtained by our acyclic min-hop algorithm.

Algorithms 2024, 17, 148 17 of 19

air
lin

e
ar

xiv

co
nflict digg

ele
c

en
ro

n
ep

in fb

flick
er

gro
wth

sla
sh

youtu
be0

2

4

6

Speedup of our acyclic shortest path algorithm

OSE/ATRG_Ours TRG_Ours/ATRG_Ours ATRG_Wu/ATRG_Ours

Figure 5. Speedup obtained by our acyclic shortest path algorithm.

air
lin

e
ar

xiv

co
nflict digg

ele
c

en
ro

n
ep

in fb

flick
er

gro
wth

sla
sh

youtu
be0

10

20

Speedup of our acyclic foremost path algorithm

OSE/ATRG_Ours TRG_Ours/ATRG_Ours ATRG_Wu/ATRG_Ours

Figure 6. Speedup obtained by our acyclic foremost path algorithm.

4. Discussion

We have developed a new time-respecting graph data structure TRG_Ours for contact
sequence temporal graphs. This data structure has fewer vertices and edges than previ-
ously proposed TRG structures: TRG_Wu and TRG_Zschoche. Benchmark experiments
conducted for the fastest, min-hop, shortest and foremost paths problems indicate that
TRG_Ours is superior to TRG_Wu on contact sequence temporal graphs whose TRG is
cyclic. In fact, TRG_Ours outperformed TRG_Wu on all but one of our datasets on the
fastest paths, min-hop paths, and foremost paths problems. It outperformed TRG_Wu on
all 12 datasets for the shortest path problem.

Contact sequence temporal graphs with no edge whose weight is 0 result in acyclic
TRGs. For acyclic TRGs, the path problems considered in this paper may be solved more
simply using an algorithm based on a topological ordering of the vertices. When there
are no edges whose weight is 0, these path problems may be solved using the OSE data
structure of [8]. The algorithms for acyclic TRG_Ours were faster than those for acyclic
TRG_Wu on all 12 of our datasets and for all four path problems studied in this paper.
The acyclic algorithms using TRG_Ours were also faster than the OSE algorithms on all
12 datasets for the fastest paths, min-hop paths, and shortest paths problems but slower on
all 12 datasets for the foremost paths problem.

Algorithms 2024, 17, 148 18 of 19

We did not experiment with TRG_Zschoche as this data structure is expected to have
more vertices and edges than TRG_Wu (except in the particular case when all edge weights
are 1), and so it is expected to give an inferior performance than TRG_Wu. We have
also pointed out that TRG structures are superior to OSE on problems requiring only local
information (shallow neighborhood search problems), such as one-hop and 2-hop neighbors.
So, while Wu et al. [8] conclude that OSE is the data structure of choice for single-source
all-destinations problems, our work indicates that TRG structures can be highly competitive
with OSE while providing distinct advantages for shallow neighborhood search problems.

Author Contributions: All the authors were involved in the development of the algorithms. Method-
ology, S.G., T.B., S.R. and S.S.; Software, S.G.; Validation, S.G.; Writing—original draft, S.G.;
Writing—review & editing, S.G., T.B., S.R. and S.S.; Supervision, S.R. and S.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The “airline” dataset has been taken from https://www.transtats.bts.
gov/OT_Delay/OT_DelayCause1.asp (accessed on 1 February 2024). All the other datasets, i.e.,
“arxiv”, “conflict”, “digg”, “elec”, “enron”, “epin”, “fb”, “flicker”, “growth”, “slash”, “youtube” are
taken from http://konect.cc/networks/ (accessed on 1 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gheibi, S.; Banerjee, T.; Ranka, S.; Sahni, S. An Effective Data Structure for Contact Sequence Temporal Graphs. In Proceedings of

the 2021 IEEE Symposium on Computers and Communications (ISCC), Athens, Greece, 5–8 September 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 1–8.

2. Scheideler, C. Models and techniques for communication in dynamic networks. In Proceedings of the Annual Symposium on
Theoretical Aspects of Computer Science, Juan les Pins, France, 14–16 March 2002; Springer: Berlin/Heidelberg, Germany, 2002;
pp. 27–49.

3. Stojmenovic, I. Location updates for efficient routing in ad hoc networks. Handb. Wirel. Netw. Mob. Comput. 2002, 8, 451–471.
4. Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125. [CrossRef]
5. Liu, Y.; Kalagnanam, J.R.; Johnsen, O. Learning dynamic temporal graphs for oil-production equipment monitoring system.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France,
28 June–1 July 2009; pp. 1225–1234.

6. Bozhenyuk, A.; Belyakov, S.; Knyazeva, M. Modeling objects and processes in gis by fuzzy temporal graphs. In Recent
Developments and the New Direction in Soft-Computing Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 277–286.

7. Bui-Xuan, B.M.; Ferreira, A.; Jarry, A. Evolving graphs and least cost journeys in dynamic networks. In Proceedings of the
WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Sophia-Antipolis, France, 3–5 March 2003; 10p.

8. Wu, H.; Cheng, J.; Ke, Y.; Huang, S.; Huang, Y.; Wu, H. Efficient algorithms for temporal path computation. IEEE Trans. Knowl.
Data Eng. 2016, 28, 2927–2942. [CrossRef]

9. Zschoche, P.; Fluschnik, T.; Molter, H.; Niedermeier, R. The complexity of finding small separators in temporal graphs. J. Comput.
Syst. Sci. 2020, 107, 72–92. [CrossRef]

10. Zhao, A.; Liu, G.; Zheng, B.; Zhao, Y.; Zheng, K. Temporal paths discovery with multiple constraints in attributed dynamic
graphs. World Wide Web 2020, 23, 313–336. [CrossRef]

11. Ding, P.; Liu, G.; Zhao, P.; Liu, A.; Li, Z.; Zheng, K. Reinforcement Learning Based Monte Carlo Tree Search for Temporal Path
Discovery. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 140–149.

12. Hassan, M.S.; Aref, W.G.; Aly, A.M. Graph indexing for shortest-path finding over dynamic sub-graphs. In Proceedings of
the Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016;
pp. 1183–1197.

13. Himmel, A.S.; Bentert, M.; Nichterlein, A.; Niedermeier, R. Efficient computation of optimal temporal walks under waiting-time
constraints. In Proceedings of the International Conference on Complex Networks and Their Applications, Lisbon, Portugal,
10–12 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 494–506.

14. Bentert, M.; Himmel, A.S.; Nichterlein, A.; Niedermeier, R. Efficient computation of optimal temporal walks under waiting-time
constraints. Appl. Netw. Sci. 2020, 5, 1–26. [CrossRef]

15. Casteigts, A.; Himmel, A.S.; Molter, H.; Zschoche, P. Finding temporal paths under waiting time constraints. Algorithmica
2021, 83, 2754–2802. [CrossRef]

https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
http://konect.cc/networks/
http://doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1109/TKDE.2016.2594065
http://dx.doi.org/10.1016/j.jcss.2019.07.006
http://dx.doi.org/10.1007/s11280-019-00670-4
http://dx.doi.org/10.1007/s41109-020-00311-0
http://dx.doi.org/10.1007/s00453-021-00831-w

Algorithms 2024, 17, 148 19 of 19

16. Roditty, L.; Zwick, U. Dynamic approximate all-pairs shortest paths in undirected graphs. Siam J. Comput. 2012, 41, 670–683.
[CrossRef]

17. Alshammari, M.; Rezgui, A. An all pairs shortest path algorithm for dynamic graphs. Comput. Sci 2020, 15, 347–365.
18. Chan, E.P.; Yang, Y. Shortest path tree computation in dynamic graphs. IEEE Trans. Comput. 2008, 58, 541–557. [CrossRef]
19. Cicerone, S.; D’Emidio, M.; Frigioni, D. On Mining Distances in Large-Scale Dynamic Graphs. In Proceedings of the ICTCS,

Urbino, Italy, 18–20 September 2018; pp. 77–81.
20. Hong, J.; Park, K.; Han, Y.; Rasel, M.K.; Vonvou, D.; Lee, Y.K. Disk-based shortest path discovery using distance index over large

dynamic graphs. Inf. Sci. 2017, 382, 201–215. [CrossRef]
21. Tretyakov, K.; Armas-Cervantes, A.; García-Bañuelos, L.; Vilo, J.; Dumas, M. Fast fully dynamic landmark-based estimation

of shortest path distances in very large graphs. In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, Glasgow Scotland, UK, 24–28 October 2011; pp. 1785–1794.

22. Wu, H.; Huang, Y.; Cheng, J.; Li, J.; Ke, Y. Reachability and time-based path queries in temporal graphs. In Proceedings of the
2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 145–156.

23. Dean, B.C. Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Netw. Int. J. 2004, 44, 41–46.
[CrossRef]

24. Cvetkovski, A.; Crovella, M. Hyperbolic embedding and routing for dynamic graphs. In Proceedings of the IEEE INFOCOM
2009, Rio De Janeiro, Brazil, 19–25 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1647–1655.

25. Demetrescu, C.; Italiano, G.F. A new approach to dynamic all pairs shortest paths. J. ACM 2004, 51, 968–992. [CrossRef]
26. Clementi, A.; Silvestri, R.; Trevisan, L. Information spreading in dynamic graphs. Distrib. Comput. 2015, 28, 55–73. [CrossRef]
27. Zhang, X.; Chan, F.T.; Yang, H.; Deng, Y. An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs.

Inf. Sci. 2017, 405, 123–140. [CrossRef]
28. Calle, J.; Rivero, J.; Cuadra, D.; Isasi, P. Extending ACO for fast path search in huge graphs and social networks. Expert Syst. Appl.

2017, 86, 292–306. [CrossRef]
29. Chen, D.; Navarro-Arribas, G.; Borrell, J. On the applicability of onion routing on predictable delay-tolerant networks. In

Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9 October 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 575–578.

30. Fluschnik, T.; Niedermeier, R.; Schubert, C.; Zschoche, P. Multistage st path: Confronting similarity with dissimilarity in temporal
graphs. In Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), Hong Kong,
14–18 December 2020; Schloss Dagstuhl-Leibniz-Zentrum für Informatik: Wadern, Germany, 2020.

31. Chabini, I.; Lan, S. Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic
networks. IEEE Trans. Intell. Transp. Syst. 2002, 3, 60–74. [CrossRef]

32. Akrida, E.C.; Mertzios, G.B.; Nikoletseas, S.; Raptopoulos, C.; Spirakis, P.G.; Zamaraev, V. How fast can we reach a target vertex
in stochastic temporal graphs? J. Comput. Syst. Sci. 2020, 114, 65–83. [CrossRef]

33. Brunelli, F.; Crescenzi, P.; Viennot, L. On Computing Pareto Optimal Paths in Weighted Time-Dependent Networks. Inf. Process.
Lett. 2021, 168, 106086. [CrossRef]

34. Riazi, S.; Srinivasan, S.; Das, S.K.; Bhowmick, S.; Norris, B. Single-source shortest path tree for big dynamic graphs. In Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 4054–4062.

35. Ni, P.; Hanai, M.; Tan, W.J.; Wang, C.; Cai, W. Parallel algorithm for single-source earliest-arrival problem in temporal
graphs. In Proceedings of the 2017 46th International Conference on Parallel Processing (ICPP), Bristol, UK, 14–17 August
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 493–502.

36. Ning, Z.; Dai, G.; Liu, Y.; Ge, Y.; Wu, J. An Improved Index Based on MapReduce for Path Queries in Public Transportation
Networks. In Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 919–926.

37. Ferone, D.; Festa, P.; Napoletano, A.; Pastore, T. Shortest paths on dynamic graphs: A survey. Pesqui. Oper. 2017, 37, 487–508.
[CrossRef]

38. Nannicini, G.; Liberti, L. Shortest paths on dynamic graphs. Int. Trans. Oper. Res. 2008, 15, 551–563. [CrossRef]
39. Caro, D.; Rodríguez, M.A.; Brisaboa, N.R. Data structures for temporal graphs based on compact sequence representations.

Inf. Syst. 2015, 51, 1–26. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1109/TC.2008.198
http://dx.doi.org/10.1016/j.ins.2016.12.013
http://dx.doi.org/10.1002/net.20013
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1007/s00446-014-0219-2
http://dx.doi.org/10.1016/j.ins.2017.04.021
http://dx.doi.org/10.1016/j.eswa.2017.05.066
http://dx.doi.org/10.1109/6979.994796
http://dx.doi.org/10.1016/j.jcss.2020.05.005
http://dx.doi.org/10.1016/j.ipl.2020.106086
http://dx.doi.org/10.1590/0101-7438.2017.037.03.0487
http://dx.doi.org/10.1111/j.1475-3995.2008.00649.x
http://dx.doi.org/10.1016/j.is.2015.02.002

	Introduction
	Materials and Methods
	TRG Data Structures
	TRG_Wu
	TRG_Zschoche
	TRG_Ours

	Algorithms for General TRG_Ours
	Shortest Paths Algorithm for TRG_Ours
	Foremost Paths Algorithm for TRG_Ours
	Fastest and Minhop Paths Algorithms for TRG_Ours

	Algorithms for Acyclic TRG_Ours
	Fastest Paths Algorithm on Acyclic TRG_Ours
	Minhop Paths Algorithm on Acyclic TRG_Ours
	Shortest Paths Algorithm on Acyclic TRG_Ours
	Foremost Paths Algorithm on Acyclic TRG_Ours

	Complexity of Algorithms

	Results
	Setup
	Number of Nodes and Edges after Transformation
	Results for Cyclic TRG Algorithms
	Results for the Acyclic TRG Algorithms

	Discussion
	References

