
Citation: Zhen, Q.; Wu, L.; Liu, G. An

Oracle Bone Inscriptions Detection

Algorithm Based on Improved

YOLOv8. Algorithms 2024, 17, 174.

https://doi.org/10.3390/a17050174

Academic Editor: Frank Werner

Received: 5 March 2024

Revised: 17 April 2024

Accepted: 20 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Oracle Bone Inscriptions Detection Algorithm Based on
Improved YOLOv8
Qianqian Zhen 1,2, Liang Wu 1,2 and Guoying Liu 1,2,*

1 School of Software Engineering, Anyang Normal University, Anyang 455000, China;
qian_zhen@aynu.edu.cn (Q.Z.); 02031@aynu.edu.cn (L.W.)

2 Henan Province Oracle Bone Culture Intelligent Industry Engineering Research Center, Anyang 455000, China
* Correspondence: guoying.liu@aynu.edu.cn

Abstract: Ancient Chinese characters known as oracle bone inscriptions (OBIs) were inscribed on
turtle shells and animal bones, and they boast a rich history dating back over 3600 years. The detection
of OBIs is one of the most basic tasks in OBI research. The current research aimed to determine the
precise location of OBIs with rubbing images. Given the low clarity, severe noise, and cracks in oracle
bone inscriptions, the mainstream networks within the realm of deep learning possess low detection
accuracy on the OBI detection dataset. To address this issue, this study analyzed the significant
research progress in oracle bone script detection both domestically and internationally. Then, based
on the YOLOv8 algorithm, according to the characteristics of OBI rubbing images, the algorithm
was improved accordingly. The proposed algorithm added a small target detection head, modified
the loss function, and embedded a CBAM. The results show that the improved model achieves an
F-measure of 84.3%, surpassing the baseline model by approximately 1.8%.

Keywords: oracle bone inscriptions; object detection; deep learning; YOLOv8

1. Introduction

The earliest known mature writing system in China is represented by oracle bone
inscriptions [1,2]. Chinese character development and construction were significantly
influenced by the characters of OBIs, and as a longstanding literary form, OBIs contain a
wealth of information that holds significant value for our understanding of global history,
character evaluation, and many other aspects [3]. In-depth research on these objects enables
us to continuously explore the treasures of ancient civilization and thus contribute to the
history and promotion of Chinese traditional culture. In 2017, OBIs were successfully
entered into the Memory of the World Register, demonstrating that the cultural value
and historical significance of OBIs are recognized worldwide. With the comprehensive
improvement of public cultural understanding in society, it is increasingly important to
improve and enhance the dissemination and utilization of OBIs, allowing them to move
out of the realm of study and into the public domain. This will revitalize their legacy in
the current era and gradually draw attention in the academic community for new research
directions. One of the fundamental research tasks regarding OBIs is detection. Rapidly
detecting OBIs using information technology significantly contributes to the acceleration of
research and development in OBI studies. Many OBIs remained entombed within ruins
until they were unearthed in 1899 [4]. Given the frequent incompleteness and low clarity
of oracle bones that have endured years of burial underground, the precise detection and
identification of OBIs has consistently posed a challenging task.

OBI detection falls under the umbrella of object detection, which constitutes an im-
portant research area in computer vision. The primary objective of this domain is to
autonomously pinpoint the location of target objects and classify them in videos or im-
ages. Currently, OBI detection technology may be broadly classified into two groups:
deep learning-based OBI detection and classical methods-based OBI detection. In terms
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of traditional methods, Xiaosong Shi [5] used a method based on connected components
for oracle bone script detection, but this method is not very effective regarding complex
backgrounds or noisy oracle bone rubbing images.

As computer technology continues to evolve, object detection algorithms rooted in
deep learning have emerged as the prevailing trend. In recent years, many experts and
scholars, both domestically and internationally, have dedicated significant effort toward
researching OBI detection by using deep learning techniques. OBI detection algorithms
rooted in deep learning can be primarily categorized into two types: two-stage and one-
stage detection algorithms. Of these, YOLO [6] and SSD [7] fall under the umbrella of one-
stage detection algorithms, and Faster R-CNN [8], RFBNet [9], etc., are two-stage detection
algorithms. RefineDet [10] is an improvement based on the SSD algorithm and effectively
blends the strengths of both types. Although two-stage detection algorithms have higher
accuracy, their implementation is complex and computationally intensive, the inference
speed is slow, and they perform poorly when detecting small and dense objects. Conversely,
one-stage detection algorithms are fast, accurate, and widely applicable. In research on one-
stage detection algorithms, the YOLO series is used extensively across a range of diverse
scenarios because of its excellent performance; these algorithms are lightweight, have a low
background false-alarm rate, show good performance in detecting small objects, have strong
model generalization abilities, and have a fast detection speed. For instance, YOLO can be
used to detect objects in pictures taken by unmanned aerial vehicles [11], for traffic sign
recognition [12], for steel surface defect detection [13], etc. Lin Meng [14] at Ritsumeikan
University in Japan enhanced the SSD algorithm to improve the detection accuracy of
small-font oracle bone characters. Jici Xing [15] constructed an OBI detection dataset
and analyzed the detection performance of representative general detection frameworks
(comprising Faster R-CNN, SSD, RefineDet, RFBnet, and YOLOv3 [16]) applied to this
dataset, thus improving the best-performing YOLOv3, achieving an F-measure of 80.1%.
Guoying Liu [17] proposed a multi-scale Gaussian kernel-based oracle bone detector. Xinren
Fu [18] proposed a pseudo-label-based oracle bone script detection architecture. While the
algorithm demonstrated promising performance on the training set, its detection accuracy
was suboptimal on the validation and test sets. While these algorithms have enhanced the
performance of object detection to a certain degree, there is still room for further refinement
in terms of detection accuracy. According to research results in the literature [15], YOLOv3
performs well among mainstream deep learning models.

YOLOv8 is the latest version (as of 1 January 2024) of the YOLO series, released by
Ultralytics in 2023. YOLOv8 adopts a more efficient network structure and more advanced
algorithm technology, enhancing the precision and rapidity of object detection even further.
YOLOv8 includes multiple models at different scales, and YOLOv8_n stands out as the
most compact and efficient model within this series, offering the quickest performance
among its counterparts.

In conclusion, to further improve the precision of detection, the present study focused
on the uneven target size and significant noise of OBI rubbing images as well as real-time
detection. Using the YOLOv8_n model as a baseline, our primary advancements were
as follows:

1. Given the concentration of oracle bone script detection data, some oracle bone charac-
ters in certain images are small. To enhance detection performance for small objects, a
detection head with a scale of 160 × 160 was added;

2. Some of the images in the OBI detection dataset are of poor quality, and the WIoU
(Wise-IoU) [19] loss function prioritizes ordinary-quality anchor boxes; therefore, the
loss function was modified to WIoU;

3. The noise in the OBI rubbing images is quite severe. To focus the model on recognizing key
points—the oracle bone characters—and to reduce focus on other information, the CBAM
(convolutional block attention module) [20] was embedded in the network architecture.
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Given what is currently known in the field of deep learning, no target detection
algorithm combines a small object detection head, WIoU, and a CBAM with YOLOv8, as
proposed in this paper, and neither is there such a technology for OBI detection.

2. Materials and Methods
2.1. Experiment Dataset
2.1.1. Dataset Introduction

This experiment’s OBI detection dataset comes from the Oracle Bone Inscription
Information Processing Laboratory of Anyang Normal University. The OBI detection
dataset is a set of annotated data used to train and evaluate OBI detection algorithms.
The dataset contains OBI rubbing images and related annotation information. The image
set contains all the image data. There are 8895 training annotations and 411 verification
annotations, all saved in JSON files.

The oracle bone inscriptions have become blurry after being buried underground for a
long time, causing varying degrees of corrosion in the bones. The dataset was obtained
by scanning the rubbing images, and some images in the dataset contain a large quantity
of noise and cracks, as shown in Figure 1. During the training process, these low-quality
images can interfere with the model’s ability to learn about image features.
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Figure 1. The noise and cracks.

The proportion of oracle bone annotation box sizes in the OBI detection dataset is
shown in Figure 2. The sizes of the oracle bone characters vary, but they tend to be on the
smaller side.
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2.1.2. Processing Label Information

In the OBI detection dataset, the annotation file records the name of the image
(img_name) and the specific position information of each OBI character. The annota-
tion of the OBI character is implemented through a rectangular box, and the JSON file
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contains the coordinates for the upper left and lower right corners of every bounding box,
denoted as (x0, y0) and (x1, y1), respectively. The bounding box in YOLOv8 saves the
coordinates of the bounding box’s center point, width, and height, denoted as center_x,
center_y, width, and height, respectively. It is important to emphasize that the bounding box
coordinate values have undergone normalization, resulting in a range between 0 and 1.
At the same time, in the annotation set, the “height value” denotes the proportion of the
annotation box’s actual height in relation to the overall image height, whereas the “width
value” signifies the ratio of the annotation box’s actual width to the width of the image.

To ensure that YOLOv8 can accurately locate each oracle bone inscription, it is nec-
essary to obtain the width and height parameters of the target image being processed,
denoted as img_width and img_height, respectively. Then, the annotation information needs
to be transformed according to Formulas (1)–(4).

center_x =
x0 + x1

2 × img_width
(1)

center_y =
y0 + y1

2 × img_height
(2)

width =
x1 − x0

img_width
(3)

height =
y1 − y0

img_height
(4)

Owing to the absence of categorical data pertaining to the characters within the dataset,
this experiment treats all oracle bone characters as a single target and assigns them the
same class label.

2.2. Input Data Assumptions

This study uses an improved YOLOv8 model to detect oracle bone inscriptions in the
OBI detection dataset. To ensure effective training and accurate evaluation, the assumptions
for the input data are as follows:

• Image Format:

All input images are in standard JPEG image format;

• Color Space and Channels:

The color space of the input images is RGB, and each image has three color channels;

• Bounding Box Coordinate Representation:

In the data preprocessing stage, all bounding box labels in the original JSON file are
converted using Formulas (1)–(4);

• Class Label Representation:

The class label is represented by an integer, starting with 0. Since all oracle bone
inscriptions in the dataset are treated as a single category in this study, it is assumed that 0
represents this unique class label;

• Label Format and Transformation:

The label file is converted into a txt file in the preprocessing stage; irrelevant label
information from the original JSON file in the oracle bone inscription detection dataset is
removed during data preprocessing, specifically parity bits; each oracle bone inscription’s
label information is on a separate line in the label file, consisting of the class label and the
bounding box information; the data are separated by spaces;

• Data Preprocessing:

None of the input images have undergone any form of data preprocessing and are
maintained in their unaltered state. The dataset has been cleansed to ensure a one-to-one
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correspondence between images and label files. The label information has been prepro-
cessed to meet the model’s requirements;

• Data Distribution and Diversity:

Considering the characteristics of the OBI detection dataset, it is assumed that the
oracle bone characters in the dataset have diverse forms and varied sizes and a random
distribution of noise and cracks in the images.

2.3. YOLOv8_n Network Model

Figure 3 shows that the YOLOv8_n model comprises three fundamental components:
the backbone, the neck, and the detection module. The detection layer outputs three
differently sized feature maps, specifically 20 × 20, 40 × 40, and 80 × 80.

Algorithms 2024, 17, x FOR PEER REVIEW 5 of 17 
 

label information is on a separate line in the label file, consisting of the class label and the 

bounding box information; the data are separated by spaces; 

• Data Preprocessing: 

None of the input images have undergone any form of data preprocessing and are 

maintained in their unaltered state. The dataset has been cleansed to ensure a one-to-one 

correspondence between images and label files. The label information has been prepro-

cessed to meet the model’s requirements; 

• Data Distribution and Diversity: 

Considering the characteristics of the OBI detection dataset, it is assumed that the 

oracle bone characters in the dataset have diverse forms and varied sizes and a random 

distribution of noise and cracks in the images. 

2.3. YOLOv8_n Network Model 

Figure 3 shows that the YOLOv8_n model comprises three fundamental components: 

the backbone, the neck, and the detection module. The detection layer outputs three dif-

ferently sized feature maps, specifically 20 × 20, 40 × 40, and 80 × 80. 

Conv

Conv

C2f×3

Conv

C2f×6

Conv

C2f×6

SPPF

Conv

C2f×3

C2f×3

ConCat

UpSample

C2f×3

ConCat

UpSample

Conv

ConCat

C2f×3

Conv

ConCat

C2f×3

Detect

Detect

Detect

Backbond Neck Detect

80×80

40×40

20×20

 

Figure 3. YOLOv8_n network model. 

Compared with previous versions, YOLOv8_n has an optimized and improved net-

work structure, adopting a more efficient feature extraction network and a lighter model 

structure. Firstly, the previous version’s C3 structure was substituted with a C2f structure 

that exhibits a more abundant gradient flow. This change allows the model to better han-

dle gradient flow, thereby improving its performance. Secondly, YOLOv8_n adjusts the 

channel numbers of models at different scales, enabling the model to more precisely man-

age objectives of varying sizes and further improve its accuracy. Additionally, YOLOv8_n 

introduces new data augmentation techniques and regularization methods to enhance 

both the generalization capacity and robustness of the model. Through these techniques, 

YOLOv8_n can more effectively accommodate various scenarios and environments, there-

fore improving its performance in practical applications. 

Figure 3. YOLOv8_n network model.

Compared with previous versions, YOLOv8_n has an optimized and improved net-
work structure, adopting a more efficient feature extraction network and a lighter model
structure. Firstly, the previous version’s C3 structure was substituted with a C2f structure
that exhibits a more abundant gradient flow. This change allows the model to better handle
gradient flow, thereby improving its performance. Secondly, YOLOv8_n adjusts the channel
numbers of models at different scales, enabling the model to more precisely manage objec-
tives of varying sizes and further improve its accuracy. Additionally, YOLOv8_n introduces
new data augmentation techniques and regularization methods to enhance both the gener-
alization capacity and robustness of the model. Through these techniques, YOLOv8_n can
more effectively accommodate various scenarios and environments, therefore improving
its performance in practical applications.

2.4. The Proposed Method
2.4.1. Adding Small Target Detection Head

By analyzing the proportion of oracle bone annotation box sizes in the OBI detection
dataset, it can be seen that it comprises OBI characters of varying sizes. Owing to the large
downsampling factor of YOLOv8_n, obtaining feature information on small targets poses a
challenge for deeper feature maps during the learning process. Therefore, small targets are
prone to problems due to their size, including undetection or poor detection performance.
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T.L. introduced a small object detection head into a traffic sign recognition algorithm based
on YOLOv5 [12]. Taking inspiration from this, to enhance the sensitivity of small OBI
characters, this study incorporates an additional layer specifically designed to detect small
targets, integrating shallower and deeper feature maps to comprehensively capture and use
global contextual information. In addition, a dedicated 160 × 160 scale detection head solely
devoted to this task is also incorporated, which uses shallower, higher-resolution feature
maps as inputs to achieve greater precision in detection. Furthermore, adding the new
detection head supplements the existing three, resulting in a structure with four detection
heads, significantly enhancing the overall target detection performance. The detection head
is intricately designed. It extracts features from the second layer of the backbone network
and then integrates the features extracted from the neck network through the concatenation
operation. Finally, by using the output of the 19th layer as a crucial part of small target
detection, it precisely detects small targets. The network structure is illustrated in Figure 4,
with its modifications highlighted in blue.
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2.4.2. Improving the Loss Function

The loss function for bbox (bounding box) regression is pivotal in achieving accurate
object detection. By learning to predict the location of bboxes, the model can closely
approximate true bounding boxes, providing precise localization and crucial information
about key areas for detecting objects. YOLOv8_n uses CIoU (Complete IoU) [21,22] as its
loss function for bbox regression, as shown in Formulas (5)–(8).

LIoU= 1 − IoU (5)

where IoU [23] denotes the intersection over the union between the predicted and ground-
truth box.

LCIoU = LIoU +

(
xp − xgt

)2
+

(
yp − ygt

)2

Wg
2 + Hg

2 + αν (6)
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where
(

xp, yp
)

and
(

xgt, ygt
)

denote the central points of the prediction box and the ground-
truth box, Wg, Hg are the width and height of the smallest enclosing box covering the
two boxes, α is a positive trade-off parameter, and ν measures the consistency of the
aspect ratio.

ν =
4

π2

(
arctan

wgt

hgt
− arctan

wp

hp

)2
(7)

The width and height of the ground-truth box are indicated by wgt and hgt, where wp
and hp stand for the width and height of the prediction box, respectively.

α =
ν

LIoU + ν
(8)

As a result of the unavoidable presence of substandard instances within the training
data, the penalty for low-quality examples can be augmented by considering factors,
ultimately leading to a decline in the model’s generalization capabilities. In addition, when
the overlap between the predicted box and the ground-truth box is very small or non-
existent, CIoU may not provide effective gradient information. To tackle these challenges,
this study uses the WIoU loss function. WIoU is a type of boundary loss based on the
non-monotonic dynamic focusing method that evaluates the anchor boxes’ quality through
outlier evaluation and offers a prudent strategy for allocating gradient gains. The proposed
strategy effectively diminishes the competitiveness of superior-quality anchor boxes and
simultaneously mitigates adverse gradients emanating from inferior examples. As a result,
WIoU concentrates on moderate-quality anchor boxes, leading to an improvement in the
detector’s overall performance. The distance attention is shown in Formulas (9) and (10).

LWIoU = RWIoU · LIoU (9)

RWIoU = exp

(
xp − xgt

)2
+

(
yp − ygt

)2(
Wg

2 + Hg
2
)∗

 (10)

To avoid generalizing the gradients with WIoU, which could potentially hinder con-
vergence, the computational graph does not include Wg or Hg (denoted by the superscript
∗). This effectively removes the convergence-hindering factor. Therefore, there is no need
to introduce new metrics. When the anchor boxes align well with the target box, WIoU
diminishes the penalty imposed by the geometric factors, thereby allowing for minimal
intervention during training and enhancing the model’s generalization capability.

The primary step in implementing WIoU is computing the basic IoU value. Building
on this, the final loss value is further refined by introducing distance attention mechanisms
and dynamic adjustment factors. Subsequently, the obtained WIoU values are integrated
into the loss function to replace the original CIoU loss component. During the model
training phase, optimization adjustments are made based on the values of WIoU to more
precisely calibrate the predicted bounding box positions and shapes.

2.4.3. Adding CBAM Attention Module

The complex background of OBI rubbing images and the small image area occupied by
some of the detection targets lead to the presence of a significant proportion of extraneous
features in the image iteration. To selectively enhance the feature channels that contain the
most target information while also minimizing the disruption caused by invalid targets,
enhancing the detection effect of the targets of interest, and thus enhancing the model’s
overall detection precision, this study embeds CBAM into the OBI detection algorithm. In
recent years, attention modules have emerged rapidly, and common attention mechanisms
include SE [24], GAM [25], EMA [26], and CBAM.

CBAM innovatively incorporates a spatial attention mechanism based on retaining the
original channel attention mechanism, thereby comprehensively optimizing the network
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in terms of both channel and spatial dimensions. This measure enables an optimized
network to more accurately capture key features encompassing both channel-wise and
spatial aspects, significantly improving the model’s efficiency in extracting features from
both the channel and spatial dimensions. Figure 5 illustrates the structure of the CBAM.
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The CBAM processes the input feature map, F, by first obtaining its channel attention
feature, Mc(F). Multiplying the features element-wise with F yields the channel-refined
feature F′. It then computes the spatial attention feature Ms(F′) of F′, multiplies it with F′

element-wise, and obtains the final refined feature. This enhanced refined feature is used
as the input for subsequent network layers, effectively preserving key information while
suppressing noise and irrelevant information. Formulas (11) and (12) outline the entire
attention procedure.

F′ = Mc(F)⊗ F (11)

F′′ = Ms
(

F′)⊗ F′ (12)

The input feature map undergoes max-pooling and average-pooling operations and
feeds the resulting feature map into a shared multi-layer perceptron. Then, the feature
maps generated by the shared MLP are combined, and the outcome is scaled by using the
sigmoid function to derive the channel attention, Mc. Multiplying Mc with the feature
map element-wise yields the channel-refined feature. The channel attention module’s
architecture is schematically represented in Figure 6.
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Figure 6. Channel attention module.

The channel attention module successively applies max-pooling and average-pooling
to the refined channel features, stacks the results along the same dimension, adjusts the
channel numbers using a convolutional layer, and utilizes the sigmoid function to derive
spatial attention, Ms. Eventually, the channel-refined feature is element-wise multiplied
with Ms to obtain the final refined feature. Figure 7 illustrates the spatial attention mod-
ule’s structure.
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Figure 7. Spatial attention module.

CBAMs can be easily integrated into most mainstream networks, thus effectively
improving the ability of network models to extract features without significantly increasing
the computational complexity and number of parameters. Therefore, in this paper, the
CBAM is embedded before the SPPF in the YOLOv8_n model.

2.5. Experimental Setup
2.5.1. Evaluation Metrics

Given that the dataset download page on the Yin Qi Wen Yuan website explicitly
requires the use of F-measure as the metric for evaluating model detection performance,
this study complies with this requirement. The experiment uses the balanced F-measure of
precision and recall metric as the evaluation metric. Formulas (13)–(15) are calculated for
precision, recall, and F-measure.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F − Measure =
2 × Precision × Recall

Precision + Recall
(15)

where TP denotes the count of accurately identified positive samples, FP represents the
count of negative samples mistakenly labeled as positive, and FN signifies the count of
positive samples incorrectly identified as negative.

2.5.2. Experimental Environment

The experimental environment utilized in this study is presented in Table 1.

Table 1. The experimental environment.

Item Description

Operating System Windows 11
Deep Learning Framework PyTorch 1.11.0

CUDA Version 11.3.1
CPU Model Intel(R) Xeon(R) Silver 4210R
GPU Model NVIDIA GeForce RTX 3090

GPU Memory 24 GB
Programming Language Python
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2.5.3. Experimental Design

To thoroughly investigate the contribution of the model’s improvements to its overall
achievement, thus laying the foundation for future optimization work on the model, we
designed an ablation experiment. In this experiment, a step-by-step introduction strategy
was adopted to sequentially integrate the small target detection head, adjusted loss function,
and an attention mechanism into the baseline model. Furthermore, to specifically study the
effects of different attention mechanisms, GAM, SE, EMA, and CBAM were, respectively,
embedded in the network’s 9th layer on the basis of adding a small target detection head
and adjusting the loss function.

Throughout the training phase, the OBI images in their original forms underwent
scaling to achieve a resolution of 640 × 640 pixels. The learning rate commenced at 0.01
and remained unchanged, terminating at the same value. Every experimental iteration
comprised 100 epochs, and the batch size for image processing was consistently main-
tained at 32. During training, all other parameters were set to the default values of the
YOLOv8 model.

3. Results
3.1. Results of Ablation Experiments

Through carefully designed ablation experiments, this study systematically explored
the impact of gradually incorporating small target detection heads, adjusting loss functions,
and embedding attention mechanisms into a baseline model (YOLOv8_n) on overall perfor-
mance. The experimental results for the validation set are shown in Table 2, which reveals
the specific contributions of each component to the model’s performance. Specifically,
introducing small target detection heads enhanced the model’s ability to recognize small
targets to a certain extent, the WIoU significantly improved the model’s detection perfor-
mance, and introducing the CBAM further strengthened the model’s ability to process key
information. In summary, the model demonstrated a significant improvement in overall
performance, providing a solid foundation for applications and subsequent research in
related fields.

Table 2. The results of the ablation experiments.

Small Target
Detection Head WIoU CBAM Precision Recall F-Measure FLOPs

(GFLOPs)

0.844 0.808 0.8256 8.2√
0.843 0.822 0.8324 12.6√
0.873 0.811 0.8409 8.2√
0.847 0.815 0.8307 8.2√ √
0.847 0.825 0.8359 12.6√ √
0.85 0.817 0.8332 12.7√ √
0.858 0.824 0.8407 8.2√ √ √
0.85 0.837 0.8434 12.7

To evaluate the usefulness of the attention module, GAM, SE, EMA, and CBAM were
separately embedded into the 9th layer of the main network on the basis of the addition of
a small object detection head and modification of the loss function. Given the experimental
results presented in Table 3, it is evident that the F-measure value was highest when CBAM
was embedded.
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Table 3. The results of embedding the attention module.

Algorithm Precision Recall F-Measure FLOPs
(GFLOPs)

YOLOv8_n + small target
detection head + WioU + GAM 0.866 0.821 0.8429 14.0

YOLOv8_n + small target
detection head + WioU + SE 0.856 0.829 0.8423 12.6

YOLOv8_n + small target
detection head + WioU + EMA 0.86 0.821 0.84 12.7

YOLOv8_n + small target
detection head + WioU + CBAM 0.85 0.837 0.8434 12.7

3.2. Result Analysis
3.2.1. Quantitative Analysis

• Adding a Small Target Detection Head Experiment

After integrating the small target detection head component, precision was almost
unchanged compared with the baseline model, but the recall was enhanced by 1.4%, and
the F-measure increased from 0.826 to 0.832. The improved recall rate indicates that the
model’s ability to identify true positives was enhanced, thereby enabling the more accurate
reduction of false negatives. The experimental data show that the detection performance
underwent a modest enhancement after adding the small target detection head. However,
FLOPs increased by approximately 50% over the baseline model.

• Improving Loss Function Experiment

Changing the loss function from CIoU to WIoU resulted in a minor improvement in
recall compared with the baseline model, with a 2.9% improvement in model accuracy. The
improved accuracy indicates more precise model predictions, which enhance reliability,
reduce misjudgments, and ultimately improve decision accuracy. The experimental results
show a 1.53% increase in the comprehensive F-measure metric, showing that modifying the
loss function is the most significant improvement in the entire algorithm. Some of the im-
ages in the OBI detection dataset are of poor quality, and the WIoU loss function prioritizes
ordinary-quality anchor boxes, thus improving the overall detection performance.

• Adding Attention Module Experiment

After adding the CBAM to the ninth layer of the backbone network, the model’s recall
rate increased by 0.7%, the model’s accuracy improved by 0.3%, and the comprehensive
indicator F-measure increased by 0.5% compared with the baseline model. The images in
the OBI detection dataset contain a lot of noise. The attention module enabled the model
to concentrate on important information, so the detection performance was improved
to varying degrees by incorporating different attention mechanisms. This improvement
contributes to the model’s ability to provide more comprehensive and reliable results.

• The Proposed Algorithm Experiment

In the ablation experiment—in addition to testing the contribution of three improve-
ment strategies separately—the effects of any combination of two improvement strategies
were also tested and compared with the improvement plan adopted in this study. The ex-
perimental outcomes indicate that the proposed improvement plan had the best effect, with
a 1.78% increase in F-measure. However, the algorithm’s time complexity also increased by
approximately 50%.

To assess the generalization capability of the model, testing was conducted on the
training and validation sets, as shown in Table 4. The improved model’s F-measure was
1.76% higher on the training set and 1.78% higher on the validation set compared with
YOLOv8. The results indicate that the improved model and YOLOv8 have the same
generalization ability.
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Table 4. Comparison between the training set and the validation set.

Algorithm
Precision Recall F-Measure

Train Val Train Val Train Val

YOLOv8 0.882 0.844 0.868 0.808 0.8749 0.8256
The improved YOLOv8 (this study) 0.892 0.85 0.893 0.837 0.8925 0.8434

• Comparison of the Results of the Improved Algorithm with Other Algorithms

To further assess the model’s performance, we compared the algorithm introduced in
this study and various other object detection techniques. These algorithms include common
first-stage and second-stage mainstream models as well as some efficient algorithms pro-
posed for this dataset. The comparison results are presented in Table 5. The performance
of the algorithm proposed in this study is much better than mainstream models like SSD
and YOLOv3. Compared with the second-place Gaussian algorithm, the accuracy is 4.7%
lower, but the recall rate is 6.2% higher. Therefore, the comprehensive F-measure index of
precision and recall is 1.14% higher than the Gaussian algorithm. Compared with the latest
U2NeT model, the F-measure on the training set decreased by 1.75%, but on the validation
set, it increased by over 11%.

Table 5. Comparison between the improved algorithm and other existing algorithms.

Algorithm Precision Recall F-Measure

YOLOv3 0.776 0.784 0.78
The improved YOLOv3 [15] 0.794 0.808 0.8009

Gaussian [17] 0.897 0.775 0.8315
SSD 0.748 0.758 0.753

Faster R-CNN 0.754 0.778 0.7658
RefineDet 0.752 0.805 0.7776

RFBnet 0.761 0.789 0.7747
U2NeT [18] 0.738 0.721 0.7294

The improved YOLOv8 (this study) 0.85 0.837 0.8434

3.2.2. Qualitative Analysis

By sequentially introducing a small target detection head, improving the loss function,
and integrating a CBAM, the improved algorithm was able to achieve a 1.78% improvement
in F-measure compared with YOLOv8_n on the OBI dataset. The comparison results
between the baseline and improved algorithms’ F-measures are displayed in Figure 8.
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To comprehensively evaluate the performance of the model, further analysis of its
precision–recall curves is needed. Figures 9 and 10, respectively, show the precision–
recall curves of the baseline model and the improved model. The results indicate that the
proposed improvement algorithm exhibits higher detection performance.
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Figure 10. Precision–Recall Curve of the improved algorithm.

The annotated results were subjected to a rigorous comparison and in-depth analysis,
the outcomes of which are depicted in Figure 11. The refined algorithm introduced within
this research demonstrates enhanced detection accuracy when juxtaposed against the base-
line model. For example, in the first oracle bone image, four oracle bone characters were
manually marked, but the baseline model only detected one character, while the improved
algorithm detected three characters. In the fourth image, six oracle bone characters were
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marked manually; the baseline model detected four characters, while the improved algo-
rithm detected all characters. Both the first image and the fourth image exhibited significant
noise interference. Given the comparative analysis of the detection results, it can be seen
that the improved algorithm can focus on the key detection region more effectively and
therefore exhibits superior detection performance. The second and third images are not
too noisy, and both the baseline model and the improved model detected all oracle bone
characters, but the improved algorithm possessed a higher confidence level.
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4. Discussion

Due to the large quantity of noise and cracks in the dataset, the improved algorithm’s
loss function was changed from IoU to WIoU and incorporated CBAM embedded into the
backbone network. Compared with the traditional IoU loss function, WIoU provides a more
accurate target detection assessment by more comprehensively considering the relationship
between the target region and its surroundings. Its advantage is more pronounced when
dealing with low-quality examples, as it effectively avoids overfitting the model to these
examples, thereby enhancing the overall model performance. The CBAM consists of
two key attention mechanisms—channel and spatial attention—allowing the network to
dynamically adjust the feature extraction based on the characteristics of the current task
and input image. Therefore, the proposed improved algorithm shows significantly better
detection results for images with noise compared with the baseline model, leading to an
overall improvement in detection performance.

The improved algorithm can meet the requirements of real-time detection in practical
applications, but it also has certain limitations. Adding additional downsampling, C2f, and
convolution operations to the model increases FLOPs decreases computational efficiency
and prolongs model training time. The next research direction is finding ways to enhance
detection performance for OBIs while ensuring computational efficiency.

To study the expandability of the proposed algorithm, an experiment was conducted
on the NEU-DET open dataset. Given the lack of convergence after 100 epochs, the training
rounds were increased to 200, keeping all other settings consistent with the OBI experiment.
The experimental results are shown in Table 6. On the NEU-DET dataset, the detection
performance of the improved algorithm increased by 3.13% compared with the baseline
model. Therefore, the improved algorithm can be extended to detecting complex, small
target background images in areas such as industrial defect detection and UAV aerial
image analysis.

Table 6. Results for the NEU-DET dataset.

Algorithm Precision Recall F-Measure

YOLOv8 0.773 0.684 0.7258
The improved YOLOv8 (this study) 0.807 0.713 0.7571

During the model training process, some technical challenges gradually emerged. The
primary issue lies in the lack of strict one-to-one correspondence between the images and
labels in the dataset, necessitating a comprehensive data-cleaning process to ensure a strict
correspondence between images and labels. Additionally, the label format of the original
dataset did not align with the requirements of the YOLOv8 algorithm. To address this
challenge, it is necessary to accurately retrieve the actual dimensions of each image based
on the label information of the dataset and recalculate the label data accordingly, thereby
ensuring the effectiveness and accuracy of model training.

5. Conclusions

To enhance the efficacy of object detection algorithms for OBI images, we propose a
refined version of the YOLOv8 algorithm. To boost detection accuracy for smaller objects, a
dedicated small target detection head with a 160 × 160 scale was incorporated. To reduce
the overwhelming influence of high-quality anchor boxes, minimize detrimental gradi-
ents arising from low-quality samples, and prioritize ordinary-quality anchor boxes, the
loss function was improved to enhance the overall detection performance. To selectively
enhance feature channels that contain the maximum target information, a CBAM was
introduced. The improved YOLOv8 algorithm was verified on the OBI detection dataset,
showing an approximately 1.8% increase in F-measure while maintaining a level of gener-
alization ability comparable to the YOLOv8 algorithm. In actual testing, FLOPs increased
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by approximately 50% compared with the baseline model. Our primary future work will
be to further lighten the network model while also ensuring target detection performance.
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