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Abstract: In the food domain, text mining techniques are extensively employed to derive valuable
insights from large volumes of text data, facilitating applications such as aiding food recalls, offering
personalized recipes, and reinforcing food safety regulation. To provide researchers and practitioners
with a comprehensive understanding of the latest technology and application scenarios of text mining
in the food domain, the pertinent literature is reviewed and analyzed. Initially, the fundamental
concepts, principles, and primary tasks of text mining, encompassing text categorization, sentiment
analysis, and entity recognition, are elucidated. Subsequently, an analysis of diverse types of data
sources within the food domain and the characteristics of text data mining is conducted, spanning
social media, reviews, recipe websites, and food safety reports. Furthermore, the applications of
text mining in the food domain are scrutinized from the perspective of various scenarios, including
leveraging consumer food reviews and feedback to enhance product quality, providing personalized
recipe recommendations based on user preferences and dietary requirements, and employing text
mining for food safety and fraud monitoring. Lastly, the opportunities and challenges associated
with the adoption of text mining techniques in the food domain are summarized and evaluated. In
conclusion, text mining holds considerable potential for application in the food domain, thereby
propelling the advancement of the food industry and upholding food safety standards.

Keywords: text mining; food quality control; recipe recommendation; food safety regulation

1. Introduction

Food plays a crucial role in people’s daily lives, significantly influencing their health
and overall well-being [1]. The textual data related to food mainly come from ingredient
lists, nutritional information, and other details found on food packaging. With the continu-
ous advancement of information technology, the amount of accessible textual data in the
food domain is rapidly increasing.

Meanwhile, the rapid development of text mining methods [2,3] makes it possible
to deeply analyze the rich semantic information contained in the content of the text. It
is used in various areas, especially in the food industry, where it plays an important
role in analyzing food quality [4], providing gastronomic recommendations [5], warning
about food safety issues [6,7], and creating regulations for food security [8], among other
things. Specifically, the work in [9] monitored food quality and safety issues based on
user-generated content for timely corporate response. The work in [10] utilized big data to
provide a comprehensive examination of the entire food supply chain, thereby increasing
synergies and efficiencies throughout the supply chain and beyond. The work in [11]
performed semantic analysis of food products based on reviews and menu descriptions,
providing a way for users to discover their favorite dishes based on personal preferences
and descriptions. Recommendation systems [12–14] use text mining techniques to provide
guidance on healthy dietary choices, as well as to customize recipes based on individual
and group preferences. These examples highlight the potential effectiveness of text mining
in providing intelligent decision support in the food domain.
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Text mining techniques have the same potential in the food domain. However, food
practitioners may not be familiar with the techniques and applications in this domain. This
paper aims to fill this knowledge gap by providing a concise introduction to the major text
mining techniques and their applications in the food domain. It will also review the latest
technological advances in text mining in the food domain to help food practitioners better
utilize text mining techniques to solve relevant problems and improve productivity and
product quality.

2. Methodology

In the process of conducting this comprehensive review, a thorough literature search was
meticulously carried out to gather relevant information from reputable English databases,
including the Web of Science, PubMed, IEEE Xplore, Google Scholar, and others, employing
strategic keywords using the following terms: 1. “text mining” and “food”, 2. “data mining”
and “food”, 3. “Text Classification” and “food”, 4. “Sentiment Analysis” and “food”,
5. “Information Extraction” and “food”, 6. “Named Entity Recognition” and “food”, and
7. “Text Clustering” and “food”. This series of searches resulted in an initial set of papers.
These papers were screened to exclude those that did not meet the following conditions:
1. duplicates from different indexing repositories, 2. topics other than agriculture and text
mining, and 3. a lack of peer review. This set of papers was then further expanded by
looking for papers that cited or were cited by this initial batch of papers.

In the literature classification stage, we categorized the selected literature according
to different criteria. Firstly, the literature was classified into different categories based on
its subject matter or content. Figure 1 visually illustrates the specific application of text
mining techniques in the food domain. Secondly, the literature was categorized according
to the text mining techniques used; five common techniques were selected for this review,
and Figure 2 illustrates the proportion of papers in each area. Finally, we categorized
the literature by data source into government and science data, media and social data,
and consumer data.

Figure 1. Application classification in the food domain.



Algorithms 2024, 17, 176 3 of 23

42.1% 19.3%

15.8%

15.8%
7.0%

TC
SA
IE
NER
TCL

Figure 2. Number of papers, where TC = text classification, SA = sentiment analysis, IE = information
extraction, NER = named entity recognition, and TCL = text clustering.

The organizational structure of this review is as follows: text mining overview
(Section 3), data sources in the food domain (Section 4), text mining in food quality control
(Section 5), text mining in recipe recommendation and personalized nutrition (Section 6),
text mining in food safety regulation (Section 7), challenges and future directions (Section 8),
and conclusions (Section 9).

3. Text Mining Overview

The rise of text data in society highlights their importance in social interactions.
Manual processing was once efficient, but digitization has made it impractical, especially
for urgent tasks. Text mining, using natural language processing and machine learning,
helps extract insights from large datasets, aiding in understanding text content [3].

The subsequent section will delve into the research scope of the text mining field, with
particular emphasis on studies related to the food domain.

3.1. Text Classification

Text classification, a critical part of NLP, is a large endeavor with the main objective
of automatically categorizing textual information into specified taxonomies. Its value
extends to a wide range of applications across several domains, including spam filtration,
news subject categorization, and sentiment analysis [15]. Table 1 lists frequently used text
categorization methods, along with their benefits and drawbacks, as well as pertinent
studies that use these approaches.

Table 1. General methods of text classification.

Methods Algorithms Comments Papers

Machine learning KNN, SVM, NB, and so on.
Automated, efficient, generalized, but

data-dependent and difficult
to interpret.

Monakhova et al. (2011) [16],
Wiegand et al. (2013) [17],

Chang et al. (2020) [18],
Wiegand et al. (2015) [19],
Barbara et al. (2018) [20],

van den Bulk et al. (2022) [21],
Eftimov et al. (2017) [22],
Sowinski et al. (2022) [23]
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Table 1. Cont.

Methods Algorithms Comments Papers

Deep learning CNN, RNN, Transformer, and so on.

Has contextual understanding
advantage, learns rich semantic
knowledge, but has high data

requirements and
computational complexity.

Adyasha et al. (2019) [24],
Zuo et al. (2020) [25],

Pingzhen et al. (2021) [26],
Enguang et al. (2022) [27],

Huang et al. (2022) [9],
Xiong et al. (2023) [28]

Text classification models within the food domain serve a crucial role in analyzing
textual data gathered from diverse sources, such as news articles [28], social media [29],
and online forums [30]. They are also useful for identifying product recalls, food safety
incidents, and other related occurrences, which makes it easier to promptly notify people
about food safety issues [20,24,26,27]. Moreover, a deeper investigation in this field entails
interpreting complex associations between food decisions and health state using data from
a corpus of natural language texts [17,19].

Machine learning relies on hand-designed features and models, while deep learning
learns features and models to represent data through hierarchical learning [16,21,22]. Sup-
port Vector Machines (SVMs), grounded in statistical learning theory, excel in intricate
classification within high-dimensional feature spaces. For instance, Monakhova et al. [16]
utilized a software system employing data analysis methods to automatically identify sus-
picious food products. In contrast, the Naive Bayes (NB) method relies on the assumption
of conditional independence among textual features as it constructs the classification model.
For example, Chang et al. [18] leveraged e-invoice big data to craft an automated food
safety alert system for the edible oil manufacturing industry.

In recent years, deep learning-based convolutional neural networks and recurrent
neural networks have found applications in text classification tasks within the food domain,
aiming to acquire intricate semantic feature representations from text and enhancing
classification performance [23,25]. Among these approaches, deep learning models like
BERT have demonstrated remarkable potential in text classification tasks [9,28]. BERT, a bi-
directional Encoder pre-trained language model, accrues substantial linguistic knowledge
during pre-training and undergoes fine-tuning for downstream NLP tasks. Research
consistently underscores BERT’s capacity to improve text classification outcomes [31].
Within the food domain, BERT finds applications in areas such as food safety supervision
and food category text classification, consistently surpassing traditional methodologies.

In NLP, text classification is pivotal for assessing various approaches. From traditional
machine learning to deep learning, technological advancements drive text categorization
and NLP techniques. Text classification’s importance lies in its application value and future
potential in the food domain.

3.2. Sentiment Analysis

Sentiment analysis, also known as Opinion Mining, is a prominent and extensively
researched field within NLP and textual analysis. From the NLP perspective, the core
objective of sentiment analysis lies in the extraction of both the subject of the comment and
the proclivity of the commenter to convey sentiment towards said subject [15]. In Table 2,
commonly used methods for sentiment analysis, along with their advantages and disad-
vantages, are presented alongside relevant papers that employ these methods.
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Table 2. General methods of sentiment analysis.

Methods Algorithms Comments Papers

Dictionary-Based

Sentiment Lexicon Matching
Algorithm, Sentiment Intensity
Algorithm based on sentiment

lexicon, and so on.

Using a sentiment lexicon and
calculating based on the sentiment
words in the text are simple and

effective, but rely on the quality of
the sentiment lexicon and are

unable to handle complex
relationships in the context.

Alamsyah et al. (2015) [32],
Ariyasriwatana et al. (2016) [33],

Jia (2018) [34]

Rules-Based Keyword/Phrase Rule Matching
Algorithm. and so on.

Interpretable, domain-adaptable,
but rule-engineering dependent,

difficulty handling complex
contexts.

Vidal et al. (2015) [35]

Machine Learning KNN, SVM, NB, and so on.

Adaptable to handle complex
language structures and contexts,

but overly dependent on data
quality.

Song et al. (2020) [36]

Deep Learning CNN, RNN, BERT, and so on.

Capable of learning more complex
semantic and contextual features,
but requires large computational

resources and training data.

Hossain et al. (2020) [37]

In the food domain, sentiment analysis technology is widely applied. When assessing
entities such as fast-food restaurants, bubble tea shops, and various food products, sen-
timent analysis technology enables the detailed collection, categorization, and analysis
of online consumer feedback and reviews [34]. This analysis not only aims to ascertain
whether consumers’ evaluations tend towards positivity or negativity, but also, through
meticulous research, can pinpoint consumers’ specific perspectives on aspects such as taste,
texture, packaging, pricing, and other dimensions of food [33].

Sentiment analysis has progressed from rules-based methods to statistical machine
learning and, more recently, deep learning. Initially, it relied on dictionaries and rules,
then evolved to incorporate machine learning classifiers for improved results. These
technologies not only provide businesses with profound insights into consumer preferences,
but also directly impact product design and marketing strategies [35,37]. For instance,
Alamsyah et al. [32] conducted a rigorous analysis using a vast dataset from Facebook,
creating a social network model that offered valuable insights into market dynamics,
competitiveness, and segmented markets.

The introduction of neural network models and the utilization of sentiment analysis
techniques employing word and sentence vectors enable the autonomous extraction of
advanced semantic features, showcasing adaptability across various data domains and
language differences. Taking Song et al.’s [36] research as an example, they employed a
stacked ensemble learning framework, integrating various base learners such as Naive
Bayes, Support Vector Machine, XGBoost, FastText, a convolutional neural network, Long
Short-Term Memory, and BERT for evaluating the impact of global food safety news.

Sentiment analysis technology has garnered significant attention in the food industry,
progressing from traditional machine learning to the developments in deep learning.
This advancement not only propels progress in the food domain, but also stimulates
the evolution of related NLP.

3.3. Information Extraction

Information extraction (IE) is a vital and dynamic field of research within NLP. Its main
goal is to automatically extract structured information from unstructured text. Information
extraction plays a crucial role in identifying entities, events, and relationships between
entities in text, converting unstructured textual data into organized information. This pro-
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cess provides valuable assistance for knowledge acquisition and text analysis [15]. Table 3
presents commonly used methods for information extraction, outlining their advantages
and disadvantages, along with references to papers that employ these methods.

Table 3. General methods of information extraction.

Methods Algorithms Comments Papers

Rules-Based Pattern Matching Algorithm,
Regular Expressions, and so on.

Easily understood and adapted,
but difficult to adapt to complex

linguistic structures and
uncertainty of change.

Wiegand et al. (2012) [38],
Wiegand et al. (2012) [39],
Wiegand et al. (2014) [40]

Machine Learning SVM, CRF, HMM, and so on.

Ability to learn models from large
amounts of labeled training data,
adaptable, but highly dependent

on the quality and diversity of
training data for

model performance.

Wiegand et al. (2012) [41],
Gavai et al. (2021) [42]

Deep Learning CNN, RNN, LSTM, and so on.

Capable of learning more complex
semantics and feature

representations, but requires
many computational resources

and labeled data, poor
model interpretability.

Cenikj et al. (2021) [43],
Zhang et al. (2022) [44],

Zuo et al. (2022) [45],
Wang et al. (2022) [46]

Information-extraction technology plays a crucial role in the extensive application
within the food industry. This technology is utilized to analyze ingredient lists and nutri-
tional labels of food products, extracting key information such as names, carbohydrates,
proteins, fats, and vitamins [38,39]. This capability is essential for monitoring food compo-
nents and understanding the nutritional composition of different food items.

Furthermore, information extraction contributes to real-time monitoring of food safety,
enabling regulatory authorities to extract relevant information related to food safety inci-
dents from sources like news reports and social media. This empowers regulatory bodies
to swiftly identify potential risks and take timely actions to ensure public health and
safety [38,39]. For example, Gavai et al. [42] utilized artificial intelligence to detect novel
stimulants in food supplements, employing machine learning to identify 20 new stimu-
lants from the scientific literature and online sources. Through word embeddings and
text mining techniques, relevant authorities can proactively discover potential health risks
and promptly alert consumers. Additionally, information-extraction technology is ap-
plied to establish relationships between food and chemicals by analyzing the biomedical
peer-reviewed scientific literature [43].

Information-extraction technology has evolved from basic methods to sophisticated
approaches. Initially, information extraction relied on manually crafted rules and templates.
In the 1990s, there was a shift towards employing statistical machine learning models,
reducing the need for extensive manual labor in feature engineering [41]. In the 21st century,
the introduction of deep learning technologies has further propelled the development
of information-extraction methods. Various neural network models can autonomously
learn semantic features from text, enabling more intelligent and automated information-
extraction processes [40,44–46].

In the field of NLP, information-extraction technology has consistently been a key focus
in the domain of food. From the evolution of traditional machine learning to the advent of
deep learning, this technology has not only driven advancements in information extraction,
but has also spurred the evolution of related NLP techniques. Given the crucial applications
of information extraction in extracting food-related information and monitoring safety
issues, it holds significant value in the food domain.
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3.4. Named Entity Recognition

Named entity recognition (NER) is a fundamental task in the field of NLP. Its objective
is to identify entities in a text with special significance, such as personal names, geographic
locations, and organization names [47]. Entities can be broadly categorized into general and
domain-specific types. The key to NER lies in developing models capable of eliminating text
ambiguities, accurately delineating entity boundaries, and assigning appropriate categories.
Methods for achieving this goal include rules-based approaches, statistical techniques,
and deep learning. NER plays a pivotal role in supporting tasks like information extraction,
question-answering systems, and relationship extraction. Table 4 summarizes common
NER methods along with their advantages and disadvantages, accompanied by relevant
literature utilizing these approaches.

Table 4. General methods of named entity recognition.

Methods Algorithms Comments Papers

Rules-Based Regular Expressions, Lexicon
Lookup, and so on.

Easy to understand and implement,
but requires writing many rules

manually and is difficult to
generalize to new domains.

Eftimov et al. (2017) [48],
Popovski et al. (2019) [49],

Popovski and
Kochev et al. (2019) [50]

Deep Learning CNN, RNN, LSTM, and so on.

Capable of learning more complex
semantic and contextual features,
but requires large computational
resources and labeled data, poor

model interpretability.

Yadav et al. (2018) [51], Li et al.
(2020) [47], Cenikj et al. (2022) [52],

Perera et al. (2022) [53],
Makridis et al. (2023) [54]

The application of NER has greatly expanded in the field of food, encompassing the
identification of entities such as ingredient names, brand names, and product specifica-
tions in food menus, packaging, and review texts. This provides possibilities for various
downstream applications [51]. For example, Eftimov et al. [48] employed a rules-based
NER method named drNER to extract knowledge on evidence-based dietary advice from
unstructured text.

In NER tasks within the food domain, it is necessary to identify domain-specific terms
such as ingredient names, dishes, and food technologies. Additionally, NER models must
handle specific language conventions, such as ingredient omissions and pronoun usage
in menus. Establishing an NER system for the food domain requires the construction of
domain-specific texts to create annotated datasets and the incorporation of contextual fea-
tures and vocabulary constraints in the text to enhance the model’s recognition capabilities.
For instance, Popovski et al. [49] proposed a rules-based NER method called FoodIE for
extracting entities related to food from unstructured text data. This method integrates
rules from computational linguistics and semantic information to describe features of food
entities, addressing shortcomings in information-extraction methods specifically designed
for food concepts in NLP. In further research, FoodIE and a gold standard corpus named
FoodBase were utilized for an in-depth exploration of the food domain [50]. Additionally,
researchers introduced a scientific food NER and Named Entity Linking (NEL) model called
SciFoodNER, which fine-tunes a Transformer model and leverages a scientific abstract
corpus annotated with food entities [52].

The evolution of NER technology has traversed from initial rules-based methodologies
to statistical learning techniques and, notably, to the era of deep learning. Within deep
learning, various neural network models, including CNN, RNN, LSTM, and BERT, have
substantially enhanced NER’s performance [47]. For instance, Perera et al. [53] compared
the performance of seven text mining models for food and dietary ingredient NER, reveal-
ing differences between classical machine learning models and the latest deep language
models. Contemporary NER systems can be trained end-to-end, eliminating the need
for manual feature engineering, thanks to pre-trained language models. Additionally,



Algorithms 2024, 17, 176 8 of 23

the integration of knowledge graphs and transfer learning has improved the adaptability
of NER systems [54].

NER stands as a cornerstone technology within NLP, with significant application
potential in the food domain. Its evolution from rules-based to deep learning methodologies
has not only enhanced performance, but also broadened its application scope. As language
technology and artificial intelligence continue to advance, NER is expected to play an
increasingly pivotal role in supporting intelligent decision-making and services.

3.5. Text Clustering

Text clustering is an unsupervised machine learning paradigm that autonomously
categorizes unstructured textual data based on inherent similarities [15]. Its primary
utility lies in its ability to reveal underlying themes and concepts within textual corpora,
condensing extensive datasets by identifying textual resemblances and grouping similar
compositions into coherent clusters. Unlike supervised learning, text clustering does
not require manual data labeling, making it particularly effective for managing large
textual archives. Common methodologies include distance-based clustering techniques,
such as hierarchical clustering algorithms, partitioning algorithms, and hybrid strategies
that combine hierarchical and partitioned clustering approaches [15]. Table 5 presents
commonly used methods for text clustering, outlining their advantages and disadvantages,
along with references to papers that employ these methods.

Table 5. General methods of text clustering.

Methods Algorithms Comments Papers

Hierarchical Clustering KNN, Complete-Linkage
Clustering, and so on.

No need to pre-specify the
number of clusters, able to

capture hierarchical structure,
but higher computational
complexity for large-scale
datasets, more sensitive to

outliers and noise.

Singh et al. (2018) [55],
Pigłowski et al. (2019) [56]

Non-Hierarchical Clustering
K-Means Clustering,

Grid-Based Clustering, and
so on.

Computationally efficient for
irregularly shaped clusters,

but sensitive to initial values.

Lee et al. (2013) [57],
Kim et al. (2018) [58]

Text clustering has gained significant traction within the food domain, particularly in
endeavors such as the extraction and categorization of themes from consumer feedback.
This application enhances the ability to analyze and predict consumer preferences and ten-
dencies related to food, utilizing social network-based consumer ratings and feedback [58].
An interesting application involves the use of a fuzzy relational clustering algorithm to
classify Korean food items based on the adjectives used to describe their flavors. This ap-
proach resulted in the establishment of linguistic scales for various gastronomic categories,
benefiting consumers in selecting their preferred foods and providing valuable insights
to purveyors and producers about consumer requisites and inclinations [57]. Leveraging
text-clustering technology, food enterprises gain the capability to extract meaningful in-
sights from textual datasets, enlightening them about consumer needs and the dynamics of
public sentiment [56].

As an unsupervised text analytical modality, text clustering serves as a pivotal in-
strument for the classification and scrutiny of extensive unstructured textual data. Its
intersection with the food landscape continues to grow and evolve alongside advances in
machine learning and natural language processing. Consequently, it provides the alimen-
tary industry with an indispensable tool for consumer demand analysis and public opinion
monitoring, emerging as a guiding star in the arena of data analytics [55].
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4. Data Sources in the Food Domain

Textual data in the food domain come from diverse sources such as government
agencies, corporations, media outlets, and consumers, offering insights into food safety,
distribution, and consumer trends [3]. Government and corporate datasets provide quan-
titative information, while media and social data offer qualitative perspectives on food
health, quality, and trends. Consumer-generated content like product reviews reflects
consumer sentiments. This amalgamation of data provides a comprehensive view of the
food domain, essential for decision making and research.

In this section, we delve into the utilization of these three primary information streams,
elucidating their unique contributions and practical applications in gastronomic text mining.
To facilitate easy access and reference, we augmented Table 6 with detailed descriptions of
each source and direct links to relevant resources.

Table 6. Literature dataset sources.

Author Public or
Not Source

F.J. van de Brug et al. (2014) [59] No Government and science data
Kathryn Montgomery et al. (2017) [60] No Government and science data
Yamine Bouzembrak et al. (2016) [61] 1 Yes Government and science data

Alberto Nogales et al. (2020) [62] No Government and science data
Anand Gavai et al. (2023)[63] No Government and science data

Lee et al. (2023) [64] No Government and science data
M. Pigłowski et al. (2019) [56] No Government and science data

Shanquan Chen et al. (2016) [56] No Government and science data
Shweta Singh Chauhan et al. (2020) [56] 2 Yes Government and science data

Kasper Jensen et al. (2015)[65] 3 Yes Government and science data
Wahiba Ben Abdessalem Karaa et al. (2018)[66] 4 Yes Government and science data

Hui Yang et al. (2011) [67] No Government and science data
Ruth Areli García-León et al. (2019)[68] No Media and social data

Sofiane Abbar et al. (2015)[1] No Media and social data
Debarchana (Debs) Ghosh et al. (2013)[69] No Media and social data

Haoyang Zhang et al. (2023)[6] 5 Yes Media and social data
Daniel Fried et al. (2014)[70] 6 Yes Media and social data

Mohamed M. Mostafa et al. (2018)[29] No Media and social data
Yuru Huang et al. (2019)[71] No Media and social data

Munmun De Choudhury et al. (2016)[72] No Media and social data
Kate G. Blackburn et al. (2018)[73] No Media and social data

R.Akila et al. (2020)[4] No Consumer data
Shuting Tao et al. (2022)[74] No Consumer data

Leticia Vidal et al. (2015) [72] No Consumer data
Andry Alamsyah et al. (2015)[35] No Consumer data

Adyasha Maharana et al. (2019) [24] No Consumer data
1 https://www.foodchainid.com/products/food-fraud-database (accessed on 17 April 2024). 2 http://ctf.iitrindia.
org/focusdb/ (accessed on 17 April 2024). 3 http://cbs.dtu.dk/services/NutriChem-1.0 (accessed on 17 April
2024). 4 https://pubmed.ncbi.nlm.nih.gov/(accessed on 17 April 2024). 5 https://github.com/DachuanZhang-
FutureFood/IFoodCloud (accessed on 17 April 2024). 6 https://sites.google.com/site/twitter4food/ (accessed on
17 April 2024).

There are a wide range of sources of textual data in the food domain, but there are a
number of challenges and limitations. Despite the wide range of data sources, not all of
the data are publicly available. Many of these datasets may be subject to confidentiality
restrictions or proprietary in nature, which limits further use of the data by researchers
and analysts.

4.1. Government and Science Data

Governmental and scientific data play a prominent role in the food domain, derived
from statistical reports, assay records, surveillance bulletins, and related publications from

https://www.foodchainid.com/products/food-fraud-database
http://ctf.iitrindia.org/focusdb/
http://ctf.iitrindia.org/focusdb/
http://cbs.dtu.dk/services/NutriChem-1.0
https://pubmed.ncbi.nlm.nih.gov/
https://github.com/DachuanZhang-FutureFood/IFoodCloud
https://github.com/DachuanZhang-FutureFood/IFoodCloud
https://sites.google.com/site/twitter4food/


Algorithms 2024, 17, 176 10 of 23

governmental bodies. This corpus of information provides a comprehensive macro-level
view of the state of affairs in the entire food domain, overseeing the quality and safety
of food and shaping food policies [59,60,63,75]. For example, scholars have utilized data
from the European Rapid Early Warning System for Food and Feed (RASFF) to predict
food deception and anticipate risks to food safety [61–64]. Notification data on mycotoxins
from the RASFF database have been employed for statistical analyses to decipher the risk
associated with mycotoxins in food [56].

Governmental databases house repositories of national food safety standards, results
from food sampling, monitoring of foodborne pathogens, and licenses for food production.
These databases aggregate food standards, assay results, and surveillance data, serving
as foundational infrastructure for comprehensive monitoring and risk assessment of food
quality and safety. They provide crucial information support for the decision-making
processes of food regulators [76]. For instance, the creation of a food safety information
database within the Greater China region empowers governmental entities with the capacity
to analyze and compare food safety, facilitating the formulation of effective policies [76].
Computational toxicologists at the Indian Institute of Toxicology created FOCUS-DB,
a comprehensive repository compiling detailed information on 2885 food additives, serving
as a valuable tool for scientific inquiry and public awareness [77].

Scientific literature exploration is another source of textual information, where re-
searchers leverage scientific abstracts to glean insights into associations among plant-based
foods, phytochemical constituents, and human diseases. For instance, “NutriChem”, a
scholarly resource, connects the chemical makeup of plant-based foods with the phenotypes
of human diseases, providing a foundation for well-informed nutritional and therapeu-
tic strategies [65]. Scientific literature research is crucial for scrutinizing relationships
between foods, genetics, and diseases [66,67], fostering a deep understanding of these
intricate relationships.

It is crucial to emphasize that repositories sourced from governmental agencies, in-
ternational bodies, and the scientific realm adhere to rigorous data integrity standards,
enhancing their data trustworthiness. Most publicly available datasets are also derived
from government and science data.

4.2. Media and Social Data

In recent years, media and social data have played an increasingly pivotal role in the
information ecosystem of the food domain. This type of data primarily comes from public
news outlets, informational releases by industry organizations, and data exchanges among
consumers across various social platforms [68]. Online social platforms actively generate
real-time textual data, enabling the analysis of behaviors, dietary patterns, and health
monitoring [1,68,69].

Media data not only monitor and report significant occurrences, policy trajectories,
and industrial advancements in the food domain, but also provide timely insights into
public concerns, highlighting hotspots and focal points. They serve as an indispensable
source for surveilling food-related public opinions, supporting research, and facilitating
decision-making processes [6]. Systematic collation and content analysis of media reports
allow the identification of evolving trends and issues, enabling the anticipation of pub-
lic sentiment trajectories and empowering relevant authorities to respond swiftly and
accurately. Concurrently, media data provide valuable insights into the industry. Social
data, on the other hand, present an abundance of fragmented, user-generated content
with expansive coverage and a profusion of information. For example, by analyzing the
linguistic patterns of food-related conversations on social media and their correlations with
demographic characteristics, researchers have uncovered intricate associations between
food-related discourse and geographical, as well as community attributes [70].

The comprehensive use of data from various social platforms enables access to a
diverse cross-section of individuals, capturing genuine user sentiments. This equips
enterprises with insights to enhance user experience and product optimization and enables
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regulatory bodies to align themselves with the voice of consumers [4,29]. In comparison
to media data, social data encompass more subjective and emotionally infused content.
However, the unstructured nature of such data increases the complexity of analysis and
data mining. For instance, Huang et al. [71] used geographically tagged food-related tweets
on Twitter to analyze food environments and chronic health outcomes across distinct U.S.
census regions. By harnessing data from social media to analyze the uneven distribution
of sustenance and resources, as well as the motivations, attitudes, beliefs, and emotions
expressed by individuals in their online discourse concerning food, researchers discuss
the instrumental role of social media in ameliorating disparities in food accessibility and
health [72,73].

Currently, media and social data are extremely time-sensitive, so there is an urgent
need to develop standardized tools and intelligent analytical models, while at the same
time digging deeper into the intrinsic value of textual data. This has become an important
development direction for contemporary research.

4.3. Consumer Data

Consumer data, as a vital source of textual information in the food domain, offer
insights into the authentic experiences and perceptions of consumers. Extracting and
analyzing this reservoir of data is crucial for organizations to align with the genuine voices
of their users and formulate strategies focused on user experiences [4,74,78]. These data
primarily come from diverse sources, including restaurant reviews, e-commerce product
evaluations, social media platforms, and various forms of user-generated content. Social
data, in particular, reflect individual sentiments and emotions, providing valuable insights
for understanding consumer behavior and experiences in various dietary contexts [35].

It is important to note that different platforms attract distinct user cohorts. By amal-
gamating data from various sources, a more comprehensive user profile can be crafted.
The textual analysis of consumer data is foundational for product enhancement and in-
formed marketing decision making [32]. Beyond production and marketing, consumer data
analyses support regulatory efforts in the food domain. User feedback serves as an early
indicator for regulatory responses, correlating issues raised by consumers with subsequent
food recall notifications and incidents. This expedites food safety measures, mitigates the
impact on public health and the economy, and ensures the timely identification of unsafe
food products [24].

Current research still faces significant challenges in dealing with the integration and
intelligent analysis of massive amounts of consumer data. Among them, advancing natural
language processing techniques for deeper understanding of unstructured textual data has
become one of the key issues to address. At the same time, the protection of user privacy
becomes the most urgent and important consideration when utilizing such data. Consumer
data are generally collected and labeled by individuals for scientific research. However,
as most of the datasets are not publicly available, they cannot be used for further research.

5. Text Mining in Food Quality Control
5.1. Sentiment Analysis of Product Reviews

Product reviews are valuable collections of user opinions, reflecting personal per-
spectives and consumer experiences. The use of NLP techniques for sentiment analysis,
theme mining, and relationship extraction of food reviews, combined with comprehensive
analysis of user data, enables the creation of consumer profiles and personalized quality
control. For example, Yong et al. [79] proposed an innovative model that combines senti-
ment analysis with BERT, a pre-trained text model, to enhance the understanding of online
food reviews.

However, these analyses face challenges, such as the complexity and diversity of
consumer language and the need to verify review authenticity. Researchers are actively
improving text representation and sentiment understanding to uncover subtle quality
concerns. Meaningful categorization, as demonstrated by Ariyasriwatana et al. [33], can
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contribute to healthier eating practices and assist policymakers and food companies in
developing effective programs and products. work, empowers developers and marketers
to better understand consumer needs and preferences, ultimately boosting the quality and
sales of food products.

In the effort to analyze what consumers say about the taste, smell, and overall char-
acteristics of food in online discussions, one challenge arises from the lack of specialized
words related to the senses. Kim et al. [58] used a technique called word embedding,
based on skip-word modeling, to study how people express their opinions about food on
social media. This method predicts whether consumers will like a food without relying
on specialized sensory words or expensive lab tests. By adopting this approach, food
developers and marketers can better understand what consumers want, improving the
quality and sales of food products. Similarly, Lee et al. [57] introduced a method based
on rough set theory to analyze clusters of Korean food and the adjectives people use to
describe its taste. This method helps reveal the patterns and characteristics of flavors in
Korean cuisine, making it easier for individuals to understand and describe the taste of
Korean food. It also provides a new tool for researching and promoting Korean cuisine.

In summary, examining and understanding consumer reviews are crucial for achieving
user-focused quality control in the food industry. They are often used in text classification
and sentiment analysis techniques, thus allowing food companies to really listen to the
voice of the customer, thus potentially transforming and advancing quality management
philosophies and approaches. This not only opens the door to utilizing the capabilities of
emerging technology, but also represents a vital path for the food industry to enhance its
quality management capabilities [30].

5.2. Extraction of Recall Information

Food recalls directly impact consumer well-being and safety. The timely extraction of
recall information is crucial for food enterprises to proactively initiate recalls and prevent
hazards from escalating. Researchers are increasingly exploring text mining to analyze
unstructured data sources, such as recall notices and media reports, aiming to enhance
recall responses and strengthen food quality and safety. For example, Maharana et al. [24]
utilized text matching techniques to correlate food reviews on Amazon.com with FDA
recalls between 2012 and 2014. This innovative approach leveraged consumer reviews to
identify unsafe food products promptly, mitigating their impact on public health and the
economy. It also addressed challenges related to urbanization, underreporting of illnesses,
and tracing the connection between tainted food and subsequent illnesses.

Contemporary research focuses on analyzing unstructured data with a limited text size
and complex semantic expressions. Researchers work on improving information-extraction
techniques and integrating this information with structured databases for precise recall
delineation. Makridis et al. [80] proposed a deep learning and machine learning approach,
using time-series prediction and historical recall announcements to foresee future recalls
by type. This proactive approach enables timely recalls, enhancing food safety across the
supply chain. The use of data-augmentation methodologies further expands the depth
and breadth of data sources. Deep learning for predicting food recalls enhances overall
safety and control of the food system, contributing to the development of an intelligent and
collaborative food regulatory framework [54].

Mining and analyzing recall notices are essential tools for food companies to conduct
swift and effective recalls. Researchers using techniques such as text categorization and
named entity recognition were able to extract key information from a large number of recall
notices, helping food companies accurately identify the affected products, the cause of the
recall, and the affected regions so that they can take targeted action.

5.3. Analysis of Supply Chain Data

Traceability is critical in the food supply chain for rapidly identifying the origins of
quality issues [81]. Text mining technology offers a means to explore traceability data
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at each node, detecting vulnerabilities and risk control points across the supply chain.
Researchers are increasingly integrating text analytics to enhance the informational value
of traceability systems, contributing to ongoing improvements in quality management
throughout food enterprises [82].

A significant challenge in the food supply chain is food waste, estimated at about one-
third of the total production [83]. The Internet of Things (IoT) and blockchain technology
are emerging solutions, providing transparency, sustainability, and efficiency by collecting
data at every stage of the supply chain [84,85].

Text mining tools empower food companies to identify crucial control nodes where
product quality may be compromised. Extracting business intelligence from consumer
opinions can optimize food production. For example, a case study using text mining
on Twitter posts revealed key issues with beef products, offering insights for develop-
ing a consumer-centric beef supply chain [55]. Digital technologies are also enhancing
the efficiency of the retail food supply chain, transforming the entire system to be more
sustainable [82].

Mining and analyzing traceability text data are essential for improving the quality
control of the food supply chain. By analyzing traceability text data using information
extraction, as well as text clustering techniques, food companies can gain a better under-
standing of the product’s production process, the nodes in the supply chain, and related
transaction and shipping information. The deep integration of text mining with emerging
technologies like the IoT and blockchain will further drive the digital transformation of the
food supply chain, ushering in an era of increased efficiency and transparency.

6. Text Mining in Recipe Recommendation and Personalized Nutrition
6.1. Analysis of Recipe Data

The importance of recipe data lies in the use of text mining methods, which help
to analyze huge food datasets and extract structured insights from them to support per-
sonalized recipe suggestions and nutritional strategies. Using NLP, essential details such
as ingredients, measurements, and procedures are extracted from unstructured recipe
narratives and transformed into organized datasets. These foundational data facilitate the
exploration of ingredient relationships, assessment of substitutes, and understanding the
synergistic properties of ingredient combinations [86]. This analytical capability enables
the customization of recipe recommendations based on users’ gastronomic preferences and
dietary restrictions, allowing for transformations like turning a calorie-dense Western dish
into a nutrition-conscious, Asian-inspired variant [87].

Additionally, the analysis of recipe content provides insights into nutritional profiles,
allowing assessments of caloric content, macronutrient distributions, and other nutritional
parameters [88]. Machine learning applications, such as predicting nutritional values based
on textual descriptors, are invaluable for individuals managing specific health conditions,
optimizing athletic performance, or pursuing wellness and fitness goals [89].

On the other hand, the meticulous examination of consumer feedback on recipes aids
in creating precise models of user food preferences. Applying association rule mining
algorithms to historical food interactions helps deduce individualized taste preferences,
while scrutinizing online food platforms provides a macroscopic view of dietary preferences
and emerging food trends [90–92].

As the global demand for animal-based proteins puts a strain on the environment,
the transition towards plant-centric diets becomes crucial for sustainability. Researchers
have explored online recipe databases to understand dietary customs, offering insights into
regional gastronomic heritage [93]. Additionally, methodologies like block-based linked
data generation facilitate the communal exchange and discovery of recipe information,
transcending the food domain for broader applicability [94].

To sum up, text mining is a revolutionary method of evaluating large recipe collections
and is essential to customized nutrition services and intelligent meal recommendation
systems. The field of food and nutritional services is projected to witness a substantial
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growth in the use of text mining due to the increased emphasis on health consciousness
and the digitization of the food industry.

6.2. Cross-Modal Recipe Analysis

Cross-modal food analysis involves synthesizing textual, pictorial, and multi-modal
datasets to capture the essence of recipes and intricacies of ingredient preparation, offering
a deeper understanding of cultural and health narratives. By dissecting the visual and
procedural attributes of food, such as color and slicing techniques, this approach enables
finely tuned, visually oriented food recommendations [95].

Cross-modal methodologies can deduce unarticulated aspects of recipes. Studies, like
the work by Chen et al. [96], leverage imagery and textual content to correlate recipes with
visual depictions, guiding users in the food-creation process based on visual cues from food
photographs. By combining text and image data from diverse sources, a more nuanced
system for recipe comprehension and recommendation can be engineered. Innovations,
like the R2GAN model introduced by Zhu et al. [97], generate food images from recipe de-
scriptions, enhancing cross-modal recipe retrieval. This advancement benefits individuals
seeking to identify dishes from recipes or recipes from images, opening possibilities for
cross-modal retrieval in different domains. Cross-modal recipe retrieval, matching food
images with recipe scripts or vice versa, has been explored in various studies [98–102].
Looking ahead, as multimodal interaction evolves, additional modalities like auditory and
gestural inputs may be integrated, providing users with more intelligent and bespoke food
selection and guidance services.

In conclusion, cross-modal analysis improves recipe understanding and marks a major
advancement towards customized services and intelligent food recommendation systems
by overcoming the limits of text-only data.

6.3. Food and Nutritional Sciences

In the contemporary era, global health concerns are increasingly linked to diet-related
chronic diseases resulting from deviations from nutritional norms. Scholarly efforts are
underway to establish correlations between individuals’ nutritional profiles and overall
wellness [89]. The field of food science and nutrition has generated a vast amount of
textual data, both structured and unstructured, ready for analysis through advanced text
mining methodologies to extract key insights on dietary and nutritional knowledge. Recent
research emphasizes the adoption of a quantitative index reflecting food processing levels and
physicochemical attributes, moving away from traditional nutrient-centric approaches [103].

Text mining is instrumental in examining documentary sources such as dietary regula-
tions and nutrition facts labels, automating the extraction of essential knowledge on the
interrelation among food, nutrients, and diseases. Pioneering work by Yang et al. [104]
introduced the Nutritional Epidemiology Ontology (ONE), a framework based on norma-
tive guidelines, enriching comprehensive knowledge graphs for intelligent querying and
decision support. Text mining also serves as a valuable tool for synthesizing and distilling
nutrition research literature, providing scholars with expedited access to scientific discover-
ies, enhancing research productivity. Additionally, text mining aids in scrutinizing nutrient
composition studies, as exemplified by do Nascimento et al. [105], who employed text
mining to analyze gluten-free versus gluten-laden provisions. This investigation highlights
the compositional nuances and constraints of gluten-free products, emphasizing the need
for individuals with celiac disease to be vigilant about nutritional content. Aiello et al. [106]
used digital datasets to elucidate Londoners’ dietary patterns and their link to metabolic
syndrome-associated pathologies, revealing counterintuitive findings.

There is much promise in text mining technology for analyzing scientific data related to
nutrition and food. Its capabilities hold the potential to spur new discoveries, improve the
effectiveness of research, and create more intelligent knowledge-based services, all of which
will advance empirical illumination in the fields of food science and nutritional practices.
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6.4. Food Knowledge Discovery

Techniques for data mining are used in the field of knowledge discovery in modern
food science to uncover underlying patterns and guiding principles from massive datasets.
This method not only contributes to a deeper knowledge of topics like customer preferences,
food safety, nutrition, and supply chain logistics, but it also establishes the framework for
extensive and thorough study.

Ontologies, structured frameworks for categorizing domain-specific concepts, have
become indispensable tools in this era of the Semantic Web [107]. Various ontologies,
such as FoodWiki, AGROVOC, Open Food Facts, Food Product Ontology, and Foodon,
serve distinct purposes in elucidating the complexities of the food domain [108,109].
For example, FoodWiki analyzes the adverse effects of food additives using Semantic
Web technologies to provide tailored advice on safe consumption for different risk demo-
graphics [110,111]. Foodon addresses challenges in disparate datasets within food safety,
quality, production, distribution, and consumption, aiming to enhance traceability and
transparency [109]. The ISO-FOOD ontology encapsulates metadata and traceability ele-
ments, supporting future analytical endeavors and integrating stable isotope data within
food science research [107]. It seamlessly integrates with pre-existing ontologies like the
Unit Metrics Ontology, the Food Nutrition Ontology, and the Literature Ontology, show-
casing the synergy of shared knowledge in this domain. The Nutritional Epidemiology
Ontology (ONE) standardizes the outputs of nutritional epidemiology studies, embedding
data standards, reporting guidelines, and core concepts from authoritative guidelines
within the field [104]. An ontology-based repository for food lexicon and methodologies
further enhances the exchange and retrieval of food data [94].

Text mining, as a tool for extracting latent knowledge from unstructured textual data,
is poised to catalyze the evolution of food science research and knowledge-based services.

7. Text Mining in Food Safety Regulation
7.1. Food Safety and Food Fraud Surveillance

The issue of food fraud, encompassing intentional substitution, adulteration, dilu-
tion, falsification, or mislabeling of food products for economic gain, has become a focal
point of regulatory attention [112,113]. This illicit practice not only undermines consumer
confidence, but also poses serious risks to food safety and quality. Establishing a robust
food-safety-monitoring infrastructure for comprehensive surveillance of the entire supply
chain is crucial.

Textual data play a crucial role in supporting food safety regulatory mechanisms [114].
Publicly accessible articles, government databases, academic research repositories, and Internet
sources contain vast amounts of unstructured textual information. Researchers have compiled
databases and utilized data from various sources to analyze patterns and trends in food
fraud, predict incidents, and proactively monitor food safety issues [61,115–118]. Social
media platforms have also emerged as valuable data reservoirs for monitoring food safety
issues globally [119]. Systems like FoodSIS in Singapore exemplify the use of Internet data
retrieval for proactive monitoring [120]. Studies on the role of social media in communication
disparities related to food safety incidents further underscore its significance [121].

The increasing complexity and globalization of the food supply chain have heightened
concerns about food safety, posing a significant threat to consumer health [122]. NLP and
text mining are deployed for intelligent textual analysis to foster proactive monitoring and
risk alerting for food safety events and fraudulent practices [123,124]. The application of
these technologies in analyzing online media data for public health safeguarding and crisis
anticipation is advocated [125]. Food safety regulators face a constant influx of reports and
complaints in various formats, and the application of multi-class classification techniques
aids in monitoring and preventing violations, strengthening consumer rights, public health,
and socio-economic stability [126,127].

In the realm of social media, insights from user-generated content are valuable for
understanding public perception and sentiment regarding food safety [128,129]. The
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convergence of text classification, sentiment analysis, and web-monitoring technologies
proves instrumental in shaping discourse on food safety, enabling regulators and the public
to navigate this complex domain more effectively.

7.2. Analysis of the Causes of Foodborne Diseases

The surge in foodborne illnesses, caused by contamination with microbial, viral,
or parasitic agents, poses a serious threat to public health and safety, impacting both
individual well-being and the broader healthcare and economic landscape. Extensive
textual data serve as a valuable resource for understanding the causes behind these dis-
eases. Thakur et al. [130] have pioneered a novel data mining methodology to uncover
patterns in the incidence of foodborne diseases. Using a combination of attribute selection,
decision tree training, and association rule generation, they revealed important correla-
tions among different categories of foodborne afflictions, implicated food sources, and
consumption locations.

Additionally, emerging sources of information, such as social media, have been lever-
aged to enhance the detection of foodborne disease outbreaks [119]. Sadilek et al. [131]
developed nEmesis, a system that intelligently identifies potential public health threats
from food establishments by analyzing Twitter discourse. This showcases the potential of
social media analytics in public health and provides actionable intelligence to strengthen
public health responses. Similarly, collaborations between health departments and aca-
demic institutions, like the one between the New York City Department of Health and
Mental Hygiene and Columbia University [132], have utilized online restaurant reviews on
platforms such as Yelp to identify previously unreported outbreaks of foodborne illnesses,
offering valuable insights into the origin and impact of these diseases [133,134].

Text data analysis of foodborne illness has challenges such fragmentation, compart-
mentalization, and quality inconsistencies. The development of extensive text analysis
tools and the establishment of defined methods for text annotation are crucial in addressing
these difficulties. Hu et al. [135] presented TWEET-FID, an annotated dataset designed for
the multifaceted detection of foodborne illness events. They provided a detailed overview
of the robust framework for creating this dataset and the fine-grained annotation process
and showed how state-of-the-art deep learning methods can be applied to various tasks
using the TWEET-FID corpus.

In conclusion, a comprehensive and effective analysis of foodborne disease etiologies
necessitates the integration of various methodologies. Text data offer new perspectives for
exploration through the use of text classification, information extraction, and sentiment
analysis, and continued efforts to advance text intelligence analytics are critical to ensuring
food safety.

7.3. Food Public Opinion Monitoring

In the face of ongoing food security challenges, monitoring public sentiment on food
safety is essential for understanding incident impacts and crafting targeted regulatory
approaches. This surveillance hinges on vast unstructured data from modern media
channels. Kate et al. [136], for example, applied text mining to extract instances of public
grievances about food safety from various web forums, enhancing governmental capacity
to compile a comprehensive database of food safety concerns and improving regulatory
oversight precision.

Insights gained from monitoring public perspectives on food enable regulators to
quickly identify and address focal points of public discourse, proactively mitigate societal
distress, and navigate collective sentiment with targeted precision. For example, the IFood-
Cloud platform, offering real-time analysis of China’s food safety public opinion, aggregates
data from over 3100 sources. This platform helps decipher public sentiment, analyze re-
gional disparities, and understand public concerns following food safety incidents [137].
In the aftermath of a food safety crisis, regulators can trigger responsive protocols informed
by monitoring outputs to disseminate accurate information and maintain societal equilib-
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rium. Zhang et al. [6] showcased the power of big data and machine learning in analyzing
public sentiment around food safety in Greater China, particularly during the initial stages
of the 2019 NKP outbreak, highlighting the potential of these technologies in enhancing
risk communication and decision making.

In essence, food opinion monitoring is an essential tool for enacting precise and
informed supervisory actions. Food safety regulators continue to raise the bar on food
safety governance by utilizing techniques such as text classification, sentiment analysis,
etc., to enhance effectiveness and enlightenment.

8. Challenges and Future Directions
8.1. Opportunities

In the food domain, text mining technology offers promising applications, especially
in food safety monitoring, business value analysis, and consumer support, with ample
room for further development.

Text mining plays a crucial role in supporting food safety regulations by analyzing data
from social media, online forums, and government sources. This enables early detection
of foodborne disease outbreaks and helps identify problematic foods, providing decision-
making support to regulatory authorities [130–132,134]. Additionally, text analysis can
monitor dietary patterns and population health, allowing for targeted dietary guidance
and health education [1,69,138].

In the business landscape, text mining provides food enterprises with valuable market
intelligence. By analyzing consumer feedback on digital platforms, businesses can under-
stand customer preferences, informing product innovation and marketing strategies [33,58].

Consumers also benefit from text mining technology. Through the analysis of diverse
data such as purchase records and browsing behavior, mobile applications and recommen-
dation systems can offer personalized dietary advice and shopping guidance, facilitating
informed food choices and promoting healthy eating habits [111,139,140].

8.2. Challenges

The food domain possesses a vast amount of unstructured text data, including recipes,
menus, and reviews, which are valuable assets. Text mining involves preprocessing and
feature extraction, followed by machine learning and deep learning algorithms for tasks
like classification, clustering, and sentiment analysis. However, challenges arise due to the
varied quality, diversity, and complexity of multi-source text data in the food domain. En-
suring semantic understanding is hindered by inconsistent quality, including misspellings
and grammar errors in reviews. Authenticating reviews and dealing with potential false
information further complicate the analysis. Additionally, the lack of structured meta-
data limits semantic understanding, despite efforts to generate structured training data
through manual annotation. Data diversity and complexity necessitate effective methods
for integration, cleaning, and management, especially concerning different languages, for-
mats, and sources [141]. Ethical and legal concerns, such as privacy protection, also arise,
balancing open application with information security [142]. Overall, while text mining
offers promising applications in the food industry, addressing challenges of data quality,
representativeness, completeness, privacy, and skill requirements is essential for its effective
implementation and social value creation.

9. Conclusions

This paper provides a comprehensive survey of text mining techniques in the food
domain and their potential impact on industry development. It delineates the effective
utilization of text mining for extracting valuable insights and outlines its applications in
food recalls, personalized recipes, and food safety regulation. Furthermore, it presents a
comprehensive overview of text mining in the food domain, encompassing basic concepts,
data source analysis, food quality control, personalized recipe recommendation, and food
safety monitoring. Finally, it highlights the opportunities and challenges associated with
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text mining technology in the food industry, emphasizing its pivotal role in industry
advancement and the establishment of food safety standards.

The utilization of text data as a pivotal communication and information conduit
in human society is well established. The integration of text mining technology with
artificial intelligence, big data, and other state-of-the-art methodologies to construct a
text-based intelligent decision support system holds significant promise for elevating
the sophistication of food processing, quality control, and food services. It is essential to
acknowledge the inherent trade-off between data quality and personal privacy protection in
big data analysis, necessitating further research to achieve an optimal equilibrium. As text
mining technology advances further, the latent value embedded within textual data is
gradually being unearthed and leveraged, thereby perpetuating the advancement of the
entire food industry.
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48. Eftimov, T.; Koroušić Seljak, B.; Korošec, P. A rule-based named-entity recognition method for knowledge extraction of evidence-
based dietary recommendations. PLoS ONE 2017, 12, e0179488. [CrossRef] [PubMed]

49. Popovski, G.; Kochev, S.; Eftimov, T. FoodIE: A Rule-based Named-entity Recognition Method for Food Information Extraction.
In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2019), Prague,
Czech Republic, 19–21 February 2019.

50. Popovski, G.; Seljak, B.K.; Eftimov, T. FoodBase corpus: A new resource of annotated food entities. Database 2019, 2019, baz121.
[CrossRef]

51. Yadav, V.; Bethard, S. A Survey on Recent Advances in Named Entity Recognition from Deep Learning models. In Proceedings of
the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 2145–2158.

52. Cenikj, G.; Petelin, G.; Seljak, B.K.; Eftimov, T. SciFoodNER: Food Named Entity Recognition for Scientific Text. In Proceedings of
the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 4065–4073.

53. Perera, N.; Nguyen, T.T.L.; Dehmer, M.; Emmert-Streib, F. Comparison of text mining models for food and dietary constituent
named-entity recognition. Mach. Learn. Knowl. Extr. 2022, 4, 254–275. [CrossRef]

54. Makridis, G.; Mavrepis, P.; Kyriazis, D. A deep learning approach using natural language processing and time-series forecasting
towards enhanced food safety. Mach. Learn. 2023, 112, 1287–1313. [CrossRef]

55. Singh, A.; Shukla, N.; Mishra, N. Social media data analytics to improve supply chain management in food industries. Transp.
Res. Part E Logist. Transp. Rev. 2018, 114, 398–415. [CrossRef]

56. Pigłowski, M. Comparative analysis of notifications regarding mycotoxins in the Rapid Alert System for Food and Feed (RASFF).
Qual. Assur. Saf. Crop. Foods 2019, 11, 725–735. [CrossRef]

57. Lee, J.; Ghimire, D.; Rho, J.O. Rough clustering of Korean foods based on adjectives for taste evaluation. In Proceedings of the
2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shenyang, China, 23–25 July 2013;
pp. 472–475.

58. Kim, A.Y.; Ha, J.G.; Choi, H.; Moon, H. Automated text analysis based on skip-gram model for food evaluation in predicting
consumer acceptance. Comput. Intell. Neurosci. 2018, 2018, 9293437. [CrossRef] [PubMed]

59. Van de Brug, F.; Luijckx, N.L.; Cnossen, H.; Houben, G. Early signals for emerging food safety risks: From past cases to future
identification. Food Control 2014, 39, 75–86. [CrossRef]

60. Montgomery, K.; Chester, J.; Nixon, L.; Levy, L.; Dorfman, L. Big Data and the transformation of food and beverage marketing:
Undermining efforts to reduce obesity? Crit. Public Health 2019, 29, 110–117. [CrossRef]

61. Bouzembrak, Y.; Marvin, H.J. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and
Bayesian network modelling. Food Control 2016, 61, 180–187. [CrossRef]

62. Nogales, A.; Morón, R.D.; García-Tejedor, Á.J. Food safety risk prediction with Deep Learning models using categorical
embeddings on European Union data. arXiv 2020, arXiv:2009.06704.

63. Gavai, A.; Bouzembrak, Y.; Mu, W.; Martin, F.; Kaliyaperumal, R.; van Soest, J.; Choudhury, A.; Heringa, J.; Dekker, A.; Marvin,
H.J. Applying federated learning to combat food fraud in food supply chains. npj Sci. Food 2023, 7, 46. [CrossRef] [PubMed]

64. Lee, N.Z.H. Named Entity Extraction for Food Safety Events Monitoring. Master’s Thesis, Nanyang Technological University,
Singapore, 2023.

65. Jensen, K.; Panagiotou, G.; Kouskoumvekaki, I. NutriChem: A systems chemical biology resource to explore the medicinal value
of plant-based foods. Nucleic Acids Res. 2015, 43, D940–D945. [CrossRef] [PubMed]

66. Ben Abdessalem Karaa, W.; Mannai, M.; Dey, N.; Ashour, A.S.; Olariu, I. Gene-disease-food relation extraction from biomedical
database. In Proceedings of the Soft Computing Applications: Proceedings of the 7th International Workshop Soft Computing
Applications (SOFA 2016); Springer: Berlin/Heidelberg, Germany, 2018; Volume 17; pp. 394–407.

http://dx.doi.org/10.1016/j.foodcont.2021.108360
http://dx.doi.org/10.1155/2022/7773259
http://www.ncbi.nlm.nih.gov/pubmed/35528358
http://dx.doi.org/10.1155/2022/1879483
http://www.ncbi.nlm.nih.gov/pubmed/35237307
http://dx.doi.org/10.1007/s11063-021-10690-9
http://dx.doi.org/10.1109/TKDE.2020.2981314
http://dx.doi.org/10.1371/journal.pone.0179488
http://www.ncbi.nlm.nih.gov/pubmed/28644863
http://dx.doi.org/10.1093/database/baz121
http://dx.doi.org/10.3390/make4010012
http://dx.doi.org/10.1007/s10994-022-06151-6
http://dx.doi.org/10.1016/j.tre.2017.05.008
http://dx.doi.org/10.3920/QAS2018.1398
http://dx.doi.org/10.1155/2018/9293437
http://www.ncbi.nlm.nih.gov/pubmed/29606960
http://dx.doi.org/10.1016/j.foodcont.2013.10.038
http://dx.doi.org/10.1080/09581596.2017.1392483
http://dx.doi.org/10.1016/j.foodcont.2015.09.026
http://dx.doi.org/10.1038/s41538-023-00220-3
http://www.ncbi.nlm.nih.gov/pubmed/37658060
http://dx.doi.org/10.1093/nar/gku724
http://www.ncbi.nlm.nih.gov/pubmed/25106869


Algorithms 2024, 17, 176 21 of 23

67. Yang, H.; Swaminathan, R.; Sharma, A.; Ketkar, V.; D ‘Silva, J. Mining biomedical text towards building a quantitative
food-disease-gene network. In Learning Structure and Schemas from Documents; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 205–225.

68. Areli García-León, R. Twitter and food well-being: analysis of# SlowFood postings reflecting the food well-being of consumers.
Glob. Media J. México 2019, 16, 5.

69. Ghosh, D.; Guha, R. What are we ‘tweeting’about obesity? Mapping tweets with topic modeling and Geographic Information
System. Cartogr. Geogr. Inf. Sci. 2013, 40, 90–102. [CrossRef] [PubMed]

70. Fried, D.; Surdeanu, M.; Kobourov, S.; Hingle, M.; Bell, D. Analyzing the language of food on social media. In Proceedings of the
2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 778–783.

71. Huang, Y.; Huang, D.; Nguyen, Q.C. Census tract food tweets and chronic disease outcomes in the US, 2015–2018. Int. J. Environ.
Res. Public Health 2019, 16, 975. [CrossRef] [PubMed]

72. De Choudhury, M.; Sharma, S.; Kiciman, E. Characterizing dietary choices, nutrition, and language in food deserts via social
media. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, San
Francisco, CA, USA, 27 February–2 March 2016; pp. 1157–1170.

73. Blackburn, K.G.; Yilmaz, G.; Boyd, R.L. Food for thought: Exploring how people think and talk about food online. Appetite 2018,
123, 390–401. [CrossRef] [PubMed]

74. Tao, S.; Kim, H.S. Online customer reviews: Insights from the coffee shops industry and the moderating effect of business types.
Tour. Rev. 2022, 77, 1349–1364. [CrossRef]

75. Lucas Luijckx, N.B.; van de Brug, F.J.; Leeman, W.R.; van der Vossen, J.M.; Cnossen, H.J. Testing a text mining tool for emerging
risk identification. EFSA Support. Publ. 2016, 13, 1154E. [CrossRef]

76. Chen, S.; Huang, D.; Nong, W.; Kwan, H.S. Development of a food safety information database for Greater China. Food Control
2016, 65, 54–62. [CrossRef]

77. Chauhan, S.S.; Sachan, D.K.; Parthasarathi, R. FOCUS-DB: An Online Comprehensive Database on Food Additive Safety. J. Chem.
Inf. Model. 2020, 61, 202–210. [CrossRef] [PubMed]

78. Marvin, H.J.; Janssen, E.M.; Bouzembrak, Y.; Hendriksen, P.J.; Staats, M. Big data in food safety: An overview. Crit. Rev. Food Sci.
Nutr. 2017, 57, 2286–2295. [CrossRef] [PubMed]

79. Yong, L.; Yang, X.; Liu, Y.; Liu, R.; Jin, Q. A new emotion analysis fusion and complementary model based on online food reviews.
Comput. Electr. Eng. 2022, 98, 107679. [CrossRef]

80. Makridis, G.; Mavrepis, P.; Kyriazis, D.; Polychronou, I.; Kaloudis, S. Enhanced food safety through deep learning for food
recalls prediction. In Proceedings of the Discovery Science: 23rd International Conference, DS 2020, Thessaloniki, Greece,
19–21 October 2020, Proceedings 23; Springer: Berlin/Heidelberg, Germany, 2020; pp. 566–580.

81. Badia-Melis, R.; Mishra, P.; Ruiz-García, L. Food traceability: New trends and recent advances. A review. Food Control 2015,
57, 393–401. [CrossRef]

82. El Bilali, H.; Allahyari, M.S. Transition towards sustainability in agriculture and food systems: Role of information and
communication technologies. Inf. Process. Agric. 2018, 5, 456–464. [CrossRef]

83. Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the internet of things and blockchain technology in supply chain management.
Future Internet 2019, 11, 161. [CrossRef]

84. Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review
of enabling technology solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [CrossRef]

85. Kamilaris, A.; Fonts, A.; Prenafeta-Boldν́, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends
Food Sci. Technol. 2019, 91, 640–652. [CrossRef]

86. Pellegrini, C.; Özsoy, E.; Wintergerst, M.; Groh, G. Exploiting Food Embeddings for Ingredient Substitution. In Proceedings of
the HEALTHINF, Virtual Conference, 11–13 February 2021; pp. 67–77.

87. Morales-Garzón, A.; Gómez-Romero, J.; Martin-Bautista, M.J. Semantic-aware transformation of short texts using word
embeddings: An application in the Food Computing domain. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Student Research Workshop, Virtual Conference, 19–23 April 2021; pp. 148–154.

88. Ispirova, G.; Eftimov, T.; Seljak, B.K. Predefined domain specific embeddings of food concepts and recipes: A case study on
heterogeneous recipe datasets. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan,
17–20 December 2022; pp. 4074–4083.

89. Ispirova, G.; Eftimov, T.; Seljak, B.K. Exploring Knowledge Domain Bias on a Prediction Task for Food and Nutrition Data.
In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 3563–3572.

90. Ueda, M.; Takahata, M.; Nakajima, S. User’s food preference extraction for personalized cooking recipe recommendation. In
Proceedings of the Workshop of ISWC, Bonn, Germany, 23–24 October 2011; pp. 98–105.

91. Asano, Y.M.; Biermann, G. Rising adoption and retention of meat-free diets in online recipe data. Nat. Sustain. 2019, 2, 621–627.
[CrossRef]

92. Komariah, K.S.; Sin, B.K. Enhancing Food Ingredient Named-Entity Recognition with Recurrent Network-Based Ensemble (RNE)
Model. Appl. Sci. 2022, 12, 10310. [CrossRef]

http://dx.doi.org/10.1080/15230406.2013.776210
http://www.ncbi.nlm.nih.gov/pubmed/25126022
http://dx.doi.org/10.3390/ijerph16060975
http://www.ncbi.nlm.nih.gov/pubmed/30889911
http://dx.doi.org/10.1016/j.appet.2018.01.022
http://www.ncbi.nlm.nih.gov/pubmed/29407531
http://dx.doi.org/10.1108/TR-12-2021-0539
http://dx.doi.org/10.2903/sp.efsa.2016.EN-1154
http://dx.doi.org/10.1016/j.foodcont.2016.01.002
http://dx.doi.org/10.1021/acs.jcim.0c01147
http://www.ncbi.nlm.nih.gov/pubmed/33379866
http://dx.doi.org/10.1080/10408398.2016.1257481
http://www.ncbi.nlm.nih.gov/pubmed/27819478
http://dx.doi.org/10.1016/j.compeleceng.2022.107679
http://dx.doi.org/10.1016/j.foodcont.2015.05.005
http://dx.doi.org/10.1016/j.inpa.2018.06.006
http://dx.doi.org/10.3390/fi11070161
http://dx.doi.org/10.1016/j.tifs.2019.07.024
http://dx.doi.org/10.1016/j.tifs.2019.07.034
http://dx.doi.org/10.1038/s41893-019-0316-0
http://dx.doi.org/10.3390/app122010310


Algorithms 2024, 17, 176 22 of 23

93. Rong, C.; Liu, Z.; Huo, N.; Sun, H. Exploring Chinese dietary habits using recipes extracted from websites. IEEE Access 2019,
7, 24354–24361. [CrossRef]

94. Öztürk, Ö.; Özacar, T. A case study for block-based linked data generation: Recipes as jigsaw puzzles. J. Inf. Sci. 2020, 46, 419–433.
[CrossRef]

95. Chen, J.j.; Ngo, C.W.; Chua, T.S. Cross-modal recipe retrieval with rich food attributes. In Proceedings of the 25th ACM
International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1771–1779.

96. Chen, J.; Pang, L.; Ngo, C.W. Cross-modal recipe retrieval: How to cook this dish? In Proceedings of the MultiMedia
Modeling: 23rd International Conference, MMM 2017, Reykjavik, Iceland, 4–6 January 2017; Proceedings, Part I 23; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 588–600.

97. Zhu, B.; Ngo, C.W.; Chen, J.; Hao, Y. R2gan: Cross-modal recipe retrieval with generative adversarial network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11477–11486.

98. Pham, H.X.; Guerrero, R.; Pavlovic, V.; Li, J. CHEF: Cross-modal hierarchical embeddings for food domain retrieval. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Conference, 2–9 February 2021; Volume 35, pp. 2423–2430.

99. Zhu, B.; Ngo, C.W.; Chen, J.j. Cross-domain cross-modal food transfer. In Proceedings of the 28th ACM International Conference
on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 3762–3770.

100. Chen, J.J.; Ngo, C.W.; Feng, F.L.; Chua, T.S. Deep understanding of cooking procedure for cross-modal recipe retrieval.
In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018;
pp. 1020–1028.

101. Wang, H.; Sahoo, D.; Liu, C.; Lim, E.p.; Hoi, S.C. Learning cross-modal embeddings with adversarial networks for cooking
recipes and food images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 11572–11581.

102. Salvador, A.; Gundogdu, E.; Bazzani, L.; Donoser, M. Revamping cross-modal recipe retrieval with hierarchical transformers and
self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual
Conference, 19–25 June 2021; pp. 15475–15484.

103. Fardet, A.; Lakhssassi, S.; Briffaz, A. Beyond nutrient-based food indices: A data mining approach to search for a quantitative
holistic index reflecting the degree of food processing and including physicochemical properties. Food Funct. 2018, 9, 561–572.
[CrossRef]

104. Yang, C.; Ambayo, H.; De Baets, B.; Kolsteren, P.; Thanintorn, N.; Hawwash, D.; Bouwman, J.; Bronselaer, A.; Pattyn, F.; Lachat,
C. An ontology to standardize research output of nutritional epidemiology: From paper-based standards to linked content.
Nutrients 2019, 11, 1300. [CrossRef]

105. do Nascimento, A.B.; Fiates, G.M.R.; Dos Anjos, A.; Teixeira, E. Analysis of ingredient lists of commercially available gluten-free
and gluten-containing food products using the text mining technique. Int. J. Food Sci. Nutr. 2013, 64, 217–222. [CrossRef]

106. Aiello, L.M.; Schifanella, R.; Quercia, D.; Del Prete, L. Large-scale and high-resolution analysis of food purchases and health
outcomes. EPJ Data Sci. 2019, 8, 14. [CrossRef]
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