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Abstract: When moving discontinuities in solids need to be simulated,standard finite ele-

ment (FE) procedures usually attain low accuracy because ofspurious oscillations appearing

behind the discontinuity fronts. To assure an accurate tracking of traveling stress waves in het-

erogeneous media, we propose here a flux-corrected transport (FCT) technique for structured

as well as unstructured space discretizations. The FCT technique consists of post-processing

the FE velocity field via diffusive/antidiffusive fluxes, which rely upon an algorithmic length-

scale parameter. To study the behavior of heterogeneous bodies featuring compliant inter-

phases of any shape, a general scheme for computing diffusive/antidiffusive fluxes close to

phase boundaries is proposed too. The performance of the newFE-FCT method is assessed

through one-dimensional and two-dimensional simulationsof dilatational stress waves prop-

agating along homogeneous and composite rods.

Keywords: flux-corrected transport algorithm; composite dynamics; shock waves.

1. Introduction

The propagation of waves in elastic solids is governed by a second-order, hyperbolic differential

equation. Waves therefore travel inside bodies with a finitespeed, and cause an abrupt change of the

local velocity and stress fields across their fronts.

Numerical methods have to accurately track such moving inner discontinuities. Since standard dis-
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placement-based finite element (FE) schemes adopt continuous interpolation fields to mimic the discon-

tinuous ones inside the modeled domain, non-physical high-frequency oscillations show up around wave

fronts; these oscillations are a numerical artifact and need to be filtered out of the solution. Algorith-

mic treatments of this issue have been proposed in the literature, and they typically consist in artificial

viscosity or mesh adaption. Focusing on time integration, algorithms like theα−method [1] or the gen-

eralizedα−method [2] were also devised to damp oscillations. All these methods can reduce in size

such spurious effects, but sometimes entail energy dissipation which is, again, non-physical.

An alternative treatment, whose roots can be traced back to the seminal work of Boris & Book [3, 4],

is the flux-corrected transport (FCT) method. The FCT algorithm consists of post-processing a standard

FE solution: diffusive and antidiffusive fluxes, the latterbeing appropriately limited in size, are handled

to improve the discrete velocity field around the discontinuities, and to filter out spurious oscillations.

This method has been extensively used to simulate the propagation of shock waves in fluids [5, 6];

recently, it has been adopted to simulate traveling stress waves in solids [7]. Noteworthy results have

been obtained in [8] through a coupling of a displacement-based FE solution andthe FCT algorithm;

owing to the adopted structured meshes, results for bodies of arbitrary shapes were based on a partition-

of-unity enrichment of the nodal shape functions.

In this work, to study the dynamics of heterogeneous bodies we propose two enhancements to the

frame developed in [8, 9]. First, to simulate the propagation of stress waves insidedomains of arbitrary

shape, an algorithmic length-scaleℓFCT is introduced: this length-scale allows to define local supports of

finite size, which are independent of the space discretization, wherein diffusive/antidiffusive fluxes are

computed. Second, the rationale behind the computation of diffusive/antidiffusive fluxes close to body

or phase boundaries is revisited, so as to permit the treatment of compliant interphases confined along

loci of zero measure (i.e. surfaces in three-dimensional frames and lines in two-dimensional frames).

These two enhancements are of paramount importance when dynamic failure of quasi-brittle poly-

crystals (like, e.g., polysilicon) needs to be modeled, since damaging phenomena at the micro-scale are

incepted as soon as the tensile strength is locally attained. Because of the polycrystal micro-structure,

traveling waves are partially reflected by each grain boundary, and eventually lead to complex stress

patterns. If the numerical solution does contain the aforementioned fictitious oscillations, the amplitude

of the local stress field may be artificially increased and, therefore, damage wrongly started. Through

simulations of stress waves traveling along homogeneous aswell as heterogeneous (bimaterial) rods, we

show that the proposed FE-FCT method can be used to accurately study the evolution of the stress field

in quasi-brittle polycrystals.

As far as notation is concerned, a matrix one will be adopted throughout the whole paper with upper-

case and lowercase bold symbols respectively denoting matrices and vectors, a superscriptT standing for

transpose, and a superposed dot representing time rates.

2. Dynamics of heterogeneous bodies

2.1. Governing relations

Let Ω be a heterogeneous three-dimensional body; its smooth outer boundary, with unit outward

normalm, be constituted by the two disjoint setsΓu andΓτ , where displacements and tractions are
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Figure 1. Geometry of a two-phase body, and notation.
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respectively assigned. Without any loss of generality, letus assume thatΩ is a continuum made of

two phases (Ω+ andΩ−, with Ω = Ω+ ∪ Ω−), tied together in the initial configuration along the flat

interfaceΓ, see Figure1. Γ actually represents the interphase betweenΩ+ andΩ−; since the thickness

of this interphase is usually at least one order of magnitudesmaller than the characteristic size ofΩ,

the interphase itself is modeled as a zero-thickness interface. Damaging processes alongΓ may cause

opening (mode I) and/or sliding (mode II and mode III) displacement discontinuities in then direction

and in thes1 − s2 plane, respectively.

The equilibrium ofΩ at timet is governed by:

CT
σ + b̄ =̺ü in Ω\Γ (1)

Mσ =τ̄ onΓτ (2)

Nσ = − τ onΓ+ (3)

Nσ =τ onΓ− (4)

whereΓ+ andΓ− are the sides ofΓ respectively belonging toΩ+ andΩ−, and according to Voigt’s

notation [10]: σ is the stress vector, which gathers the independent components of the stress tensor;b̄

andτ̄ are the assigned loads in the bulkΩ\Γ and alongΓτ ; ̺ is the mass density of the bulk material;

ü is the acceleration inΩ\Γ; C is the differential compatibility operator;M andN are the matrices

collecting the components of the unit vectorsm andn.

In the small strain regime, compatibility reads:

ε =Cu in Ω\Γ (5)

[u] =u

∣

∣

∣

∣

Γ+

− u

∣

∣

∣

∣

Γ−

onΓ (6)

u =ū onΓu (7)

where:ε is the strain vector;u is the displacement inΩ; [u] is the displacement discontinuity alongΓ;

ū is the assigned displacement alongΓu.
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The body is conceived to be initially at rest, i.e.:

u0 = 0, u̇0 = 0 in Ω (8)

As far as constitutive modeling is concerned, the bulk is assumed to behave elastically according to:

σ = EΩε in Ω\Γ (9)

whereEΩ is the bulk elasticity matrix. AlongΓ, damage can be incepted once a local strength criterion

is satisfied; to simplify matters we assume that the stress waves do not cause any dissipative phenomena.

The interface thus behaves elastically too, according to:

τ = EΓ[u] onΓ (10)

EΓ being the interface elasticity matrix.

2.2. Space-time discretized solution

The weak form of the equilibrium equations (1)-(4), allowing for bulk and interface constitutive laws

(9)-(10), reads [11–13]:

find u ∈ U :

∫

Ω\Γ

̺v
T
ü dΩ +

∫

Ω\Γ

εv

T
EΩε dΩ+

∫

Γ

[v]TEΓ[u] dΓ

=

∫

Ω\Γ

v
T
b̄ dΩ +

∫

Γτ

v
T
τ̄ dΓτ ∀v ∈ U0

(11)

where:v is the test function, andεv = Cv; U is the trial solution space, featuring displacement fieldsu

continuous inΩ\Γ, possibly discontinuous alongΓ, and fulfilling the boundary condition (7) onΓu; U0

is the relevant variation space. In view of the assumed linearized kinematics,Γ ≡ Γ+ ≡ Γ− holds for

the interface.

Now, let the finite element approximation of the displacement, displacement jump and deformation

fields be:

u ∼=Φu
h (12)

[u] ∼=BΓu
h (13)

ε
∼=CΦu

h = BΩu
h (14)

where:uh is the nodal displacement vector;Φ is the matrix of nodal shape functions;BΓ andBΩ are,

respectively, the interface and bulk compatibility matrices. The semi-discretized equations of motion of

the solid turn out to be:

Mü
h + (KΩ + KΓ)uh = F (15)

where the mass matrixM, the bulk and interface stiffness matricesKΩ andKΓ, and the external load
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vectorF are:

M =

∫

Ω\Γ

̺Φ
T
Φ dΩ (16)

KΩ =

∫

Ω\Γ

B
T
ΩEΩBΩ dΩ (17)

KΓ =

∫

Γ

B
T
ΓEΓBΓ dΓ (18)

F =

∫

Ω\Γ

Φ
T
b̄ dΩ +

∫

Γτ

Φ
T
τ̄ dΓτ (19)

To advance the solution of (15) in time we employ an explicit Newmark method. Having partitioned

the time interval of interest according to[t0 tN ] = ∪Nt−1

i=0 [ti ti+1], within the time step[ti ti+1] a

predictor-integrator-corrector splitting is followed according to:

• predictor:

ũi+1 =ui + ∆t u̇i + ∆t2
(

1

2
− β

)

üi (20)

˙̃ui+1 =u̇i + ∆t(1 − γ)üi (21)

where∆t = ti+1 − ti;

• explicit integrator:

üi+1 = M
−1

(

Fi+1 −
(

KΩ + KΓ

)

ũi+1

)

(22)

• corrector:

ui+1 =ũi+1 + ∆t2β üi+1 (23)

˙̄ui+1 = ˙̃ui+1 + ∆tγ üi+1 (24)

To resemble the average acceleration scheme, which is unconditionally stable and second-order accurate,

β = 0.25 andγ = 0.5 are adopted in the preceding equations.

The time step size∆t has been always set so as to fulfill the Courant condition in the bulk Ω\Γ.

Moreover, to speed up the explicit integrator phase (22), the mass matrixM has been diagonalized via

row-sum lumping [14].

Customary FE methods finally assumeu̇i+1 = ˙̄ui+1, without any treatment to avoid the occurrence of

spurious oscillations. With the FCT scheme, instead, a post-processing stage is added to deal with such

an issue; details on this phase are furnished in Section3.

3. Flux-corrected transport method

We already pointed out that the accuracy of customary FE simulations of moving discontinuities, as

obtained via the procedure outlined in Section 2.2, is usually spoiled by oscillations first arising around

the discontinuity fronts, where both the velocity and stress fields are discontinuous.



Algorithms2009, 2 6

Figure 2. Deployment of points for the computation of FCT diffusive/antidiffusive fluxes:

(a) structured mesh case; (b) unstructured mesh case.
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To avoid such kind of fictitious oscillations, the FCT algorithm has been adopted in [8, 15, 16]: it

amounts to post-processing the local velocity field, which actually suffers discontinuities, via viscous-

like diffusive and antidiffusive fluxes, the latter ones being appropriately limited in size. For ease of

notation, we detail here the algorithm in the case of a one-dimensional domainΩ; pointing to thej−th

node of the space discretization and assuming the mesh to be structured, the standard version of the FCT

algorithm reads:

• compute diffusive fluxes:

ϕ
j−1/2

D = ηD (u̇j
i − u̇

j−1

i ) (25)

ϕ
j+1/2

D = ηD (u̇j+1

i − u̇
j
i ) (26)

• update the solution through diffusive fluxes:

˙̂uj
i+1 = ˙̄uj

i+1 + ϕ
j+1/2

D − ϕ
j−1/2

D (27)

• compute anti-diffusive fluxes:

ϕ
j−1/2

A = ηA ( ˙̄uj
i − ˙̄uj−1

i ) (28)

ϕ
j+1/2

A = ηA ( ˙̄uj+1

i − ˙̄uj
i ) (29)

• apply limitation to antidiffusive fluxes:

ϕ̄
j−1/2

A =Sj−1/2 max
{

0, min
{

Sj−1/2

(

˙̂uj−1

i+1 − ˙̂uj−2

i+1

)

,
∣

∣ϕ
j−1/2

A

∣

∣, Sj−1/2

(

˙̂uj+1

i+1 − ˙̂uj
i+1

)}}

(30)

ϕ̄
j+1/2

A =Sj+1/2 max
{

0, min
{

Sj+1/2

(

˙̂uj
i+1 −

˙̂uj−1

i+1

)

,
∣

∣ϕ
j+1/2

A

∣

∣, Sj+1/2

(

˙̂uj+2

i+1 − ˙̂uj+1

i+1

)}}

(31)

whereSj−1/2 = sign(ϕj−1/2

A ) andSj+1/2 = sign(ϕj+1/2

A )
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Figure 3. Sketch of the shape of nodal supports, either when they are wholly included inΩ

or when they intersect the boundary of any phase.
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• update the solution through limited antidiffusive fluxes:

u̇
j
i+1 = ˙̂uj

i+1 − ϕ̄
j+1/2

A + ϕ̄
j−1/2

A (32)

• enforce boundary conditions.

In the above equations: termsu̇j−1 andu̇j+1 respectively denote the velocities at the nodes on the left

and right sides of thej−th one, see Figure2(a);ηD andηA are the diffusive and antidiffusive coefficients.

In two- and three-dimensional settings the above procedurecan be generalized by following the same

path to correct the velocity component aligned with each reference axis.

As far as the computational burden of the proposed FE-FCT scheme is concerned, it can said that: the

explicit Newmark time integration consists of the five loops(20)-(24) over the nodes; the FCT algorithm

consists of the eight loops (25)-(32) over the nodes, and of some additional operations in (30)-(31) (i.e.

min, max, positive part). Hence, in terms of computing time,simulations run with the present FE-FCT

scheme turn out to be at least13

5
= 2.6 times longer than the corresponding customary FE ones.

When discontinuities travel inside irregular domains, ad-hoc procedures have been followed to fulfill

boundary conditions or to model the response of multi-phasematerials, see e.g. [8]. In this work we offer

a simple procedure to allow also the adoption of unstructured meshes: in the above equations, instead of

using nodal information to update the velocity field, we handle information on a local grid centered at

thej−th node and characterized by a constant spacing among grid points, see Figure2(b). This spacing

between grid points, termedℓFCT, is not to be meant as the distance between neighboring nodes, but

instead an algorithmic parameter to be tuned. The velocity at each point of this grid is obtained from the

nodal ones through interpolation, using the shape functions gathered inΦ (see Equation12).

A proof of the conservation of local momenta, or error estimators for the conservation laws are beyond

the goals of this paper, and are left for future investigations.

To deal with compliant interfaces, whose behavior is described by constitutive laws like (10), a spe-

cific treatment of phase boundaries is needed. Here we propose the following rationale: during the FCT
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Figure 4. Longitudinal wave propagation in a two-phase rod: sketch ofgeometry and load-

ing condition.
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Figure 5. Wave propagating along a homogeneous rod discretized with astructured mesh:

stress field at (a)t = 0.5 · 10−2 s and at (b)t = 1.8 · 10−2 s. Blue solid line: FE solution;

black solid line: standard FE-FCT solution; orange dashed line: newly proposed FE-FCT

solution.

(a) (b)

correction step, each phase is assumed to be an independent body. Therefore, if a local support inter-

sects either the outer boundaryΓu ∪ Γτ or the interfaceΓ, it is re-shaped according to what sketched in

Figure3. Since in Equations (25)-(32) the(j − 2)−th, (j − 1)−th, (j + 1)−th and(j + 2)−th terms are

dropped when the relevant points (or nodes in the standard formulation) fall outsideΩ, the algorithm is

enhanced by adopting the same criterion if grid points fall outside the phase thej−th node belongs to.

If this procedure is not followed, the FCT correction step can not feel interfaces endowed with their own

constitutive laws.

Forthcoming results will show that the two enhancements here proposed permit to increase much the
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Figure 6. Wave propagating along a homogeneous rod discretized with an unstructured

mesh: stress field att = 1.8 · 10−2 s. Blue solid line: FE solution; black solid line: standard

FE-FCT solution; orange dashed line: newly proposed FE-FCTsolution.

accuracy of FE results, specially close to stress wave fronts, by preventing macroscopic fluctuations to

show up in the velocity and stress fields, even when unstructured space discretizations are adopted.

4. Longitudinal waves in homogeneous and heterogeneous rods

To assess the capability of the newly proposed FE-FCT method, the propagation of (longitudinal)

waves in homogeneous as well as heterogeneous slender bodies (rods) is simulated. To check the accu-

racy of the method, results are compared to an analytical solution derived next.

4.1. Analytical solution

Let Ω be a slender body, such that only the propagation of longitudinal waves is of interest. According

to the schematic of Figure4, the body is assumed to be loaded by a constant pressureτ̄ , acting over the

time interval∆tτ . To get insights into the effect of inner boundaries on wave reflection and dispersion, a

two-phase body in considered, with phases A and B (of lengthL in the direction of wave propagation) re-

spectively featuring Young’s moduliEA andEB, and mass densities̺A and̺B; the relevant longitudinal

wave speeds thus arecA =
√

EA

̺A
andcB =

√

EB

̺B
.

In view of the elastic response of the bulk, a tensile wave propagating inside material A turns out to

be characterized by the following relationship between thestress amplitudeσin and the particle velocity

vin:

σin = −̺AcAvin (33)
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Figure 7. Wave propagating along a homogeneous rod discretized with an unstructured

mesh: stress field att = 1.8 · 10−2 s. Effect of parametersηD = ηA on the capability of the

newly proposed FE-FCT scheme to accurately track the stressdiscontinuity across the wave

fronts.

(a) (b)

After impinging upon the interfaceΓ at t = t̄, the incident wave induces reflected and transmitted waves,

respectively characterized by relations [17]:

σ− = + ̺AcAv− (34)

σ+ = − ̺BcBv+ (35)

whereσ− andσ+ are the amplitudes of the reflected and transmitted stress waves, andv− andv+ are the

relevant particle velocities. Equilibrium acrossΓ requires:

σin + σ− = σ+ (36)

while compatibility reads:

[u̇] = v+ −
(

vin + v−
)

(37)

[u̇] being the opening velocity onΓ. Account taken of the interface constitutive law (10), written for

mode I loadings asτ ≡ σ+ = EΓ[u], one arrives at the differential equation:

σ̇+ =
1

tc

(

σin −
γ + 1

2γ
σ+

)

(38)

where:tc = ̺A cA

2EΓ
is the time-scale of the opening process along interfaceΓ (sometimes called charac-

teristic relaxation time [17]); γ = ̺B cB

̺A cA
. Upon integration of (38), the solution in terms of time histories
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Figure 8. Wave propagating along a homogeneous rod discretized with atwo-dimensional

unstructured mesh: longitudinal stress field at (top)t = 0.5·10−2 s and (bottom)t = 1.8·10−2

s.

0-10000 10000

of the reflected and transmitted waves reads:

σ− =

(

γ − 1

2γ
− exp

[

−
γ + 1

2γ

t − t̄

tc

])

2γ

γ + 1
σin (39)

σ+ =

(

1 − exp

[

−
γ + 1

2γ

t − t̄

tc

])

2γ

γ + 1
σin (40)

In case of perfect adhesion between the two phases, i.e. in case ofEΓ → ∞, the exponential terms

in (39) and (40) drop to zero. The time-dependent feature of the solution isthus lost in view of the

non-evolving microstructure along the interface.

4.2. FE-FCT results

Similarly to what done in [9], all the results to follow have been obtained by adopting:L = 0.5 m;

̺A = ̺B = 102 kg/m3; τ̄ = 104 Pa, so as to initially cause the propagation of a tensile waveinside

material A of magnitudeσin = 104 Pa;∆tτ = 4 · 10−3 s. As for the FCT parameters, if not otherwise

stated we have adopted:ηD = ηA = 0.125 [9], andℓFCT = L
1000

.

In a first example the rod has been assumed homogeneous, i.e. made of two phases featuring the
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Figure 9. Wave propagating along a homogeneous rod discretized with unstructured meshes:

comparison between the evolutions of the longitudinal stress atx = 0.5 m, as obtained

through one-dimensional (black solid line) and two-dimensional (red dashed line) simula-

tions.

Figure 10. Wave propagating along a heterogeneous rod with perfect bonding between

phases, discretized with an unstructured mesh: stress fieldat (a)t = 0.5 · 10−2 s and at (b)

t = 1.3 · 10−2 s. Blue solid line: FE solution; orange dashed line: newly proposed FE-FCT

solution.

(a) (b)

same Young’s modulusEA = EB = 106 Pa and perfectly bonded together. In the absence of wave

reflection along inner surfaces, the present outcomes are meant to assess the robustness of the new FE-
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Figure 11. Wave propagating along an interface-containing homogeneous rod (EΓ = 5 · 107

N/m3) discretized with an unstructured mesh: stress field att = 0.9 · 10−2 s. Black dotted

line: analytical solution; blue solid line: FE solution; orange dashed line: newly proposed

FE-FCT solution.

(a)

FCT scheme when either structured or unstructured space discretizations are adopted. In our analysis,

unstructured one-dimensional meshes have been obtained from the relevant structured ones as follows.

Starting with a nodal spacing∆x (here∆x = 5 · 10−4 m, meaning that 1000 quadratic elements, with

characteristic sizeℓ1D
e = 2∆x = L

500
, have been adopted to discretize the whole specimen), a random

sequence ran[−0.5 0.5] is generated so as:

x
j
unstruct= x

j
struct + χ ∆x · ran[−0.5 0.5] (41)

where:xj
struct andx

j
unstructare the longitudinal coordinates of thej−th node in the structured and unstruc-

tured meshes, respectively;χ = 0.6 is a scaling factor, introduced to ensure positivity of the length of

each element in the unstructured mesh.

Figure5 shows the stress distribution in the rod at time instantst = 0.5 · 10−2 s andt = 1.8 · 10−2

s; it can be seen that the tensile wave, after reflection at therear free surface of the specimen, becomes

a compressive wave of same amplitude. These results have been obtained with a structured mesh, hence

the standard [8] and the newly proposed FE-FCT schemes furnish the same outcomes. Moreover, the
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Figure 12. Wave propagating along an interface-containing homogeneous rod (EΓ = 5 · 106

N/m3) discretized with an unstructured mesh: evolution in time of the normal tractionτ at

the interface. Black dotted line: analytical solution; blue solid line: FE solution; orange

dashed line: newly proposed FE-FCT solution.

analytical solution can not be distinguished from the FE-FCT ones; on the other hand, ripples show

up in the FE solution, initially just behind the wave fronts (see Figure5(a), where the discontinuities

are propagating from left to right) and eventually spoilingthe accuracy of the solution along the whole

specimen (see Figure5(b)).

In case of unstructured meshing, the methods here compared furnish the results summarized in Figure

6 in terms of stress field att = 1.8 ·10−2 s. As expected, the FE solution wildly oscillates, with ripples of

increased amplitude as compared to the structured mesh case; the standard FE-FCT scheme is no more

able to fully damp oscillations, whereas the new one works properly and prevents the birth of spurious

maxima/minima. It must be noticed that the small delay of thenew FE-FCT method in the attainment of

the analytical solution (characterized by sharp discontinuities), as shown in the two insets of Figure6,

may be avoided or reduced in duration by a fine tuning of Newmark parametersβ, γ and FCT parameters

ηD, ηA. To prove it, Figure7 shown the effect ofηD = ηA on the aforementioned delay; as far as this

feature of the solution is concerned, it can be seen that smaller parameter values strongly reduce the

delay, even if the value of the longitudinal stress may get affected. Only results relevant toηD = ηA are

here reported; on the one hand, ifηD > ηA the solution is characterized by an excessive diffusion around

the discontinuities, with fronts smeared over too many FEs;on the other hand, ifηD < ηA the solution

has a tendency to instability, characterized by ripple amplitudes continuously increasing in time.

For comparison purposes, outcomes of a two-dimensional simulation are depicted in Figure8 in terms

of contour plots of the longitudinal stress before (Figure8(a)) and after (Figure8(b)) reflection at the

rear free surface. In this two-dimensional case a much coarser space discretization has been adopted,

with 6-node triangular elements featuring a characteristic sizeℓ2D
e = L

100
. It can be seen that the stress
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Figure 13. Wave propagating along an interface-containing homogeneous rod (EΓ = 5 · 106

N/m3) discretized with one-dimensional and two-dimensional unstructured meshes: evolu-

tion in time of the normal tractionτ at the interface. Black dotted line: analytical solution;

orange dashed line: one-dimensional FCT-FE solution; bluedotted line: two-dimensional

FCT-FE solution.

wave maintain sharp fronts, always perpendicular to the propagation direction independently of local

mesh features. Because of the coarse discretization, it is expected that spurious oscillations are here

characterized by an increased amplitude when compared to the one-dimensional case. Figure9, where

the time history of the longitudinal stress atx = 0.5 m is reported, testifies the performance of the

proposed FE-FCT scheme: even though the ratio between the characteristic sizes of FEs isℓ
1D
e

ℓ2D
e

= 5, the

discrepancy between the two solutions amounts at most to 2%.

In a second example, to start assessing the efficiency of the FE-FCT scheme in the presence of inner

boundaries, it has been assumed thatEB = 2 · 106 Pa at fixed values of all the other material parameters;

perfect adherence between the two phases was also assigned.FE and FE-FCT results are shown in Figure

10 in terms of stress field att = 0.5 · 10−2 s andt = 1.3 · 10−2 s. At t = 0.5 · 10−2 s (Figure10(a)),

since the leading front of the stress wave has not impinged yet upon the interface (placed atx = 0.5

m) the results are similar to those of Figure5(a), showing again that the FCT scheme properly damps

oscillations (as before, the analytical solution is not reported here since it can not be distinguished from

the FE-FCT one). Moreover, when waves are partially reflected by the inner surface the solution still

proves accurate, even without explicitly accounting for the acoustic impedance of each phase as done in

[9].

In a third example, the behavior of a homogeneous two-phase specimen (EA = EB = 106 Pa) con-

taining a compliant interface has been studied. In the caseEΓ = 5 · 107 N/m3, results in terms of the

stress field att = 0.9 · 10−2 s are depicted in Figure11; even in the presence of a compliant interface, it

can be seen that the new FE-FCT method correctly reproduces the response of the body without spuri-
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ous oscillations. To further assess the accuracy of the method, the time history of the normal tractionτ

acrossΓ is shown in Figure12. To increase the duration of the transitory stage and to get insights into the

performance of the FE-FCT method, the interface stiffness has been decreased toEΓ = 5 ·106 N/m3, and

the loading interval∆tτ has been slightly increased accordingly, so as to ensure completion of interface

opening till [u]⋆ = τ̄
EΓ

. Once again, the FE solution looks oscillatory; this behavior becomes a serious

issue in case of nonlinear, irreversible interface modes, since spurious unloadings and overshoots may

cause a drift of the computed solution away from the exact one. The FE-FCT solution instead presents

only an oscillation just after the leading front of the stress wave has impinged upon the interface; after-

wards, the FCT scheme filters out possible subsequent ripples. This is also shown in Figure13, where

results of one-dimensional and two-dimensional simulations are compared; in the two-dimensional case,

the same space discretization depicted in Figure8 has been adopted. According to previous results, the

higher oscillation amplitude aroundt = 0.005 s in the two-dimensional simulation is caused by the

coarser mesh; subsequently, the FCT scheme completely damps ripples.

The small time discrepancy (amounting to∆t⋆ ∼= 10−5 s in the one-dimensional case) between FE-

FCT and exact solutions is due to the dispersive properties of the FE solution and can be explained

as follows. While the analytical solution is characterizedby sharp wave fronts, in the FE-FCT one

discontinuities are smeared over the resolved length-scale, which is typically one element wide;∆t⋆

is about the time interval required by the stress wave to travel across∆x (or the corresponding node

spacing in the unstructured mesh case) at speedcA = cB.

5. Concluding remarks

In this paper we have proposed a finite element flux-correctedtransport (FE-FCT) method for the

simulation of stress wave propagation in homogeneous as well as heterogeneous bodies.

Through a comparative assessment of existing remedies for the oscillatory behavior of standard FE

simulations of moving discontinuities, the FCT algorithm emerged as a very promising tool. It consists of

post-processing the velocity field, as furnished by a customary FE scheme, via diffusive and antidiffusive

fluxes, the latter being appropriately limited in size. The main limitations of present implementations,

already foreseen e.g. in [8, 9], are the need of structured space discretizations, which entails an ad-

hoc treatment of irregular boundaries of the body, and the former knowledge of the acoustic impedance

of each phase in case of waves traveling inside heterogeneous bodies. This second issue prevents the

simulation of the dynamics of polycrystals (i.e. highly heterogeneous solids) in the presence of defective,

compliant interphase boundaries, since acoustic impedances turn out to be influenced by the interphase

compliances and by the angle between the wave propagation direction and each phase boundary. We have

here proposed a new FCT scheme, which is able to deal with irregular and compliant phase boundaries;

this new scheme relies upon an algorithmic length-scale, used to define the size of the nodal support

within which the velocity field is corrected through the diffusive/antidiffusive fluxes. Close to phase

boundaries, alike close to boundaries of the whole body, theaforementioned local support is properly

re-shaped: this permits to account for possible interphasecompliances.

Through one-dimensional and two-dimensional simulationsof stress waves propagating along slen-

der bodies (rods), it has been shown that the newly proposed FE-FCT method is effective and robust.

Results, never showing macroscopic fluctuations in the stress and velocity fields, turned out to be very
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accurate when compared to available analytical solutions,and independent of the (unstructured) space

discretizations adopted.
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