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Abstract: When moving discontinuities in solids need to be simulagtdndard finite ele-
ment (FE) procedures usually attain low accuracy becauspuwfous oscillations appearing
behind the discontinuity fronts. To assure an accurat&itngof traveling stress waves in het-
erogeneous media, we propose here a flux-corrected trar{5@ar) technique for structured
as well as unstructured space discretizations. The FCThimaé consists of post-processing
the FE velocity field via diffusive/antidiffusive fluxes, v rely upon an algorithmic length-
scale parameter. To study the behavior of heterogeneoussfahturing compliant inter-
phases of any shape, a general scheme for computing défasitidiffusive fluxes close to
phase boundaries is proposed too. The performance of th&BeCT method is assessed
through one-dimensional and two-dimensional simulatmindilatational stress waves prop-
agating along homogeneous and composite rods.

Keywords: flux-corrected transport algorithm; composite dynamibscg waves.

1. Introduction

The propagation of waves in elastic solids is governed bycars&order, hyperbolic differential
equation. Waves therefore travel inside bodies with a fisjiteed, and cause an abrupt change of the
local velocity and stress fields across their fronts.

Numerical methods have to accurately track such movingridisgontinuities. Since standard dis-



Algorithms2009, 2 2

placement-based finite element (FE) schemes adopt consnaterpolation fields to mimic the discon-
tinuous ones inside the modeled domain, non-physical fiiggiuency oscillations show up around wave
fronts; these oscillations are a numerical artifact andirteebe filtered out of the solution. Algorith-
mic treatments of this issue have been proposed in thetliteraand they typically consist in artificial
viscosity or mesh adaption. Focusing on time integratitwgréthms like theaw—method [] or the gen-
eralizeda—method P] were also devised to damp oscillations. All these meth@sreduce in size
such spurious effects, but sometimes entail energy digsipahich is, again, non-physical.

An alternative treatment, whose roots can be traced badietsgminal work of Boris & Bookd, 4],
is the flux-corrected transport (FCT) method. The FCT atbariconsists of post-processing a standard
FE solution: diffusive and antidiffusive fluxes, the latb&ing appropriately limited in size, are handled
to improve the discrete velocity field around the discontiag, and to filter out spurious oscillations.
This method has been extensively used to simulate the patipagof shock waves in fluids[ 6];
recently, it has been adopted to simulate traveling stres®svin solids7]. Noteworthy results have
been obtained ing] through a coupling of a displacement-based FE solutionthad=CT algorithm;
owing to the adopted structured meshes, results for boflebirary shapes were based on a partition-
of-unity enrichment of the nodal shape functions.

In this work, to study the dynamics of heterogeneous bodepmpose two enhancements to the
frame developed ing, 9]. First, to simulate the propagation of stress waves ind@®aains of arbitrary
shape, an algorithmic length-scd}e is introduced: this length-scale allows to define local surfspof
finite size, which are independent of the space discretigativherein diffusive/antidiffusive fluxes are
computed. Second, the rationale behind the computatioiffative/antidiffusive fluxes close to body
or phase boundaries is revisited, so as to permit the treatofieceompliant interphases confined along
loci of zero measure (i.e. surfaces in three-dimensiomaah&s and lines in two-dimensional frames).

These two enhancements are of paramount importance whemilyrfailure of quasi-brittle poly-
crystals (like, e.g., polysilicon) needs to be modeled;sidamaging phenomena at the micro-scale are
incepted as soon as the tensile strength is locally attaiBedause of the polycrystal micro-structure,
traveling waves are partially reflected by each grain bogndad eventually lead to complex stress
patterns. If the numerical solution does contain the afergioned fictitious oscillations, the amplitude
of the local stress field may be artificially increased andrdfore, damage wrongly started. Through
simulations of stress waves traveling along homogeneowgkhas heterogeneous (bimaterial) rods, we
show that the proposed FE-FCT method can be used to acgusaidly the evolution of the stress field
in quasi-brittle polycrystals.

As far as notation is concerned, a matrix one will be adogtealighout the whole paper with upper-
case and lowercase bold symbols respectively denotindaeatind vectors, a superscripgtanding for
transpose, and a superposed dot representing time rates.

2. Dynamics of heterogeneous bodies
2.1. Governing relations

Let Q2 be a heterogeneous three-dimensional body; its smooth batendary, with unit outward
normalm, be constituted by the two disjoint saf§ andI',, where displacements and tractions are
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Figure 1. Geometry of a two-phase body, and notation.

m

respectively assigned. Without any loss of generalityuktassume thdl is a continuum made of
two phases{{™ andQ—, with Q = QT U Q7), tied together in the initial configuration along the flat
interfacel’, see Figurel. T" actually represents the interphase betw@érand(2~; since the thickness
of this interphase is usually at least one order of magnigrdeller than the characteristic size (of
the interphase itself is modeled as a zero-thickness aterfDamaging processes aldngnay cause
opening (mode 1) and/or sliding (mode Il and mode lll) diggiaent discontinuities in the direction
and in thes; — s, plane, respectively.

The equilibrium of(2 at timet is governed by:

C'o + b =yii in Q\I' (1)
Mo =7 onl, (2)
No=-71 onl'" (3)
No =1 onl~ (4)

whereI't andI'~ are the sides of respectively belonging t®* andQ2~, and according to Voigt's
notation [LO]: o is the stress vector, which gathers the independent compooéthe stress tensds;
andT are the assigned loads in the bélkI" and alondl’,; ¢ is the mass density of the bulk material;
ii is the acceleration if2\I"; C is the differential compatibility operatorM and A are the matrices
collecting the components of the unit vectatisandn.

In the small strain regime, compatibility reads:

e =Cu in Q\I' (5)

[ul=ul -—u onI’ (6)
T+ =

u=au onl, (7)

where:e is the strain vectoru is the displacement if2; [u] is the displacement discontinuity alohg
u is the assigned displacement aldng
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The body is conceived to be initially at rest, i.e.:
u=0 1y;=0 in (8)
As far as constitutive modeling is concerned, the bulk isiaes] to behave elastically according to:
o = Eqe in Q\T' 9)

whereEq, is the bulk elasticity matrix. Alond’, damage can be incepted once a local strength criterion
is satisfied; to simplify matters we assume that the stregesvdo not cause any dissipative phenomena.
The interface thus behaves elastically too, according to:

r=Ep[u onl (10)
Er being the interface elasticity matrix.
2.2. Space-time discretized solution

The weak form of the equilibrium equationg{(4), allowing for bulk and interface constitutive laws
(9-(10), reads 11-13:

findue U : / ov'iidQ + / £, Eqe dQ+/[V]TEp[u] dr

o\r o\r T 11)
= / vbdQ + /VTT dl',  Yv € U,
o\r r,

where:v is the test function, and, = Cv; i/ is the trial solution space, featuring displacement fields
continuous iM\TI", possibly discontinuous alordg and fulfilling the boundary conditiorv onT',; Uy
is the relevant variation space. In view of the assumed fined kinematics]" = I'* = I'" holds for
the interface.

Now, let the finite element approximation of the displacetndisplacement jump and deformation
fields be:

u =du” (12)
[u] =Bru” (13)
e 2CPu" = Bou" (14)

where:u” is the nodal displacement vecta®; is the matrix of nodal shape functionB; andBy, are,
respectively, the interface and bulk compatibility magsc The semi-discretized equations of motion of
the solid turn out to be:

Mii" + (Kq + Kp)u" =F (15)

where the mass matrixI, the bulk and interface stiffness matridss, and K, and the external load
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vectorF are:

M = / o ®TP A (16)
O\T

Kq = / B{,EqBg dQ (17)
O\T

Kr = / BLErBrdl (18)
T

F = / &b dQ + / &7 dl', (19)
Q\r T,

To advance the solution o19) in time we employ an explicit Newmark method. Having pastied
the time interval of interest according ty ty] = UZN;O‘l[ti ti11], within the time stegt; ¢;.1] a
predictor-integrator-corrector splitting is followedcacding to:

e predictor:
Wiy =u; + At + A2 G — 5) ir (20)
W =1, + At(1 — )iy (21)

whereAt =t — t;;
e explicit integrator:

W =M1 (FH1 — (Ko + Kp)aiﬂ) (22)

e corrector:
Wiy =Wy + A Bl (23)
1 =l + Aty iy (24)

To resemble the average acceleration scheme, which is diticorally stable and second-order accurate,
B = 0.25 andy = 0.5 are adopted in the preceding equations.

The time step sizé\t has been always set so as to fulfill the Courant condition éntitlk Q\T".
Moreover, to speed up the explicit integrator phd&®,(the mass matrid has been diagonalized via
row-sum lumping 14].

Customary FE methods finally assuiing; = i, without any treatment to avoid the occurrence of
spurious oscillations. With the FCT scheme, instead, a-pastessing stage is added to deal with such
an issue; details on this phase are furnished in Se8tion

3. Flux-corrected transport method

We already pointed out that the accuracy of customary FElations of moving discontinuities, as
obtained via the procedure outlined in Section 2.2, is Ugsgabiled by oscillations first arising around
the discontinuity fronts, where both the velocity and driéslds are discontinuous.
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Figure 2. Deployment of points for the computation of FCT diffusivetidiffusive fluxes:
(a) structured mesh case; (b) unstructured mesh case.
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To avoid such kind of fictitious oscillations, the FCT algbm has been adopted i8,[15, 16]: it
amounts to post-processing the local velocity field, whictually suffers discontinuities, via viscous-
like diffusive and antidiffusive fluxes, the latter onesrgeiappropriately limited in size. For ease of
notation, we detail here the algorithm in the case of a ongedsional domaif?; pointing to thej—th
node of the space discretization and assuming the mesh toustused, the standard version of the FCT
algorithm reads:

e compute diffusive fluxes:

o P =np (i — a7 (25)
o = np (@t — ) (26)

e update the solution through diffusive fluxes:

. y 1 1
Ul = Ui + Spg /2 ©D / (27)
e compute anti-diffusive fluxes:
i—1/2 - q g
P = (@] - @) (28)
P = @ @) (29)

e apply limitation to antidiffusive fluxes:

@Q_I/Q — 5912 pax {O,min {Sj—1/2 <aj_1 B ﬁj_Q) 7 @j_l/Q

A

i+1 i+1

95{4"‘1/2 :Sj+1/2 max {07 min {Sj+1/2 (ﬁz_i_l _ ﬁz;11> ’ Spj+1/2

A

s (i - i) 1) e0)
s (i i)} e

whereS/~1/2 = sign(¢’; /*) and.$7+1/2 = sign(¢’;?)
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Figure 3. Sketch of the shape of nodal supports, either when they apdlyhcluded in¢2
or when they intersect the boundary of any phase.

e update the solution through limited antidiffusive fluxes:

. q Aq —j+1/2 _7—1/2

Ujpy = Uiy — ‘P]A+ e @ / (32)
e enforce boundary conditions.

In the above equations: term&~! and«’*! respectively denote the velocities at the nodes on the left
and right sides of thg—th one, see Figurg(a); n, andn, are the diffusive and antidiffusive coefficients.
In two- and three-dimensional settings the above procedamebe generalized by following the same
path to correct the velocity component aligned with eacarefce axis.

As far as the computational burden of the proposed FE-FC@arsehs concerned, it can said that: the
explicit Newmark time integration consists of the five logp8)-(24) over the nodes; the FCT algorithm
consists of the eight loops (25)-(32) over the nodes, andmiesadditional operations in (30)-(31) (i.e.
min, max, positive part). Hence, in terms of computing tisieyulations run with the present FE-FCT
scheme turn out to be at Ied§t: 2.6 times longer than the corresponding customary FE ones.

When discontinuities travel inside irregular domains had-procedures have been followed to fulfill
boundary conditions or to model the response of multi-phzesterials, see e.g8]. In this work we offer
a simple procedure to allow also the adoption of unstrudtareshes: in the above equations, instead of
using nodal information to update the velocity field, we Handformation on a local grid centered at
the j—th node and characterized by a constant spacing among gntspsee Figur@(b). This spacing
between grid points, termetct, is not to be meant as the distance between neighboring nbdes
instead an algorithmic parameter to be tuned. The velotipeh point of this grid is obtained from the
nodal ones through interpolation, using the shape funstyathered inP (see Equatioi?).

A proof of the conservation of local momenta, or error estorafor the conservation laws are beyond
the goals of this paper, and are left for future investigaio

To deal with compliant interfaces, whose behavior is describy constitutive laws likelQ), a spe-
cific treatment of phase boundaries is needed. Here we pedpedollowing rationale: during the FCT
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Figure 4. Longitudinal wave propagation in a two-phase rod: sketcheaimetry and load-

ing condition.
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Figure 5. Wave propagating along a homogeneous rod discretized vattuatured mesh:
stress field at (a) = 0.5- 1072 s and at (b} = 1.8 - 1072 s. Blue solid line: FE solution;
black solid line: standard FE-FCT solution; orange dashesl Inewly proposed FE-FCT
solution.
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correction step, each phase is assumed to be an indepermnttherefore, if a local support inter-
sects either the outer bounddry U I'; or the interfacd’, it is re-shaped according to what sketched in
Figure3. Since in Equation26)-(32) the (j — 2)—th, (j — 1)—th, (j + 1)—th and(;j + 2)—th terms are
dropped when the relevant points (or nodes in the standamtlfation) fall outside?, the algorithm is
enhanced by adopting the same criterion if grid points fatsme the phase the-th node belongs to.
If this procedure is not followed, the FCT correction step nat feel interfaces endowed with their own
constitutive laws.

Forthcoming results will show that the two enhancements pesposed permit to increase much the
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Figure 6. Wave propagating along a homogeneous rod discretized withnatructured
mesh: stress field at= 1.8 - 102 s. Blue solid line: FE solution; black solid line: standard
FE-FCT solution; orange dashed line: newly proposed FE-s@ition.

~8000
~9000 3 2000 —
15000 ~10000 3 — 10003
~11000 3 3
10000 12000 4ot ~1000 3
0.2 0.21 0.22 —2R000F4rrrrrr

0.6 0.61 0.62

_15000 IIIIIIIIIIIIIIIIIIIIIIII
0 0.2 0.4 0.6 0.8 1

z (m)

accuracy of FE results, specially close to stress wavedrdoyt preventing macroscopic fluctuations to
show up in the velocity and stress fields, even when unstredpace discretizations are adopted.

4. Longitudinal wavesin homogeneous and heterogeneous rods

To assess the capability of the newly proposed FE-FCT metthedpropagation of (longitudinal)
waves in homogeneous as well as heterogeneous slendes lfamtis) is simulated. To check the accu-
racy of the method, results are compared to an analyticatisalderived next.

4.1. Analytical solution

Let (2 be a slender body, such that only the propagation of longfitdevaves is of interest. According
to the schematic of Figud, the body is assumed to be loaded by a constant pressacting over the
time intervalAt... To get insights into the effect of inner boundaries on waflection and dispersion, a
two-phase body in considered, with phases A and B (of lengththe direction of wave propagation) re-
spectively featuring Young’s moduli, and £z, and mass densities, ando; the relevant longitudinal
wave speeds thus arg = \/% andcp = f—g

In view of the elastic response of the bulk, a tensile waveagating inside material A turns out to
be characterized by the following relationship betweensthess amplitude;, and the particle velocity
Vin'

Tin = —0ACAVin (33)
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Figure 7. Wave propagating along a homogeneous rod discretized withnatructured
mesh: stress field at= 1.8 - 1072 s. Effect of parameterg, = 14 on the capability of the
newly proposed FE-FCT scheme to accurately track the siisssntinuity across the wave

fronts.
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After impinging upon the interfacE at¢ = ¢, the incident wave induces reflected and transmitted waves,
respectively characterized by relatiods]f

O =+ 04CAV" (34)
O'+ = — QBCB’U+ (35)

wheres~ ando™ are the amplitudes of the reflected and transmitted stregssyand)~ andv™ are the
relevant particle velocities. Equilibrium acrdssequires:

On+o =ot (36)
while compatibility reads:
i = v — (o + ) (37)

[4] being the opening velocity ofi. Account taken of the interface constitutive lat0), written for
mode | loadings as = o = Er[u], one arrives at the differential equation:

1 1
ot = — (O’in — LUJF) (38)

where:t, = % is the time-scale of the opening process along interfatgmetimes called charac-
teristic relaxation timel7]); v = 22<£. Upon integration of38), the solution in terms of time histories

QA CA
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Figure 8. Wave propagating along a homogeneous rod discretized vitlo-alimensional

unstructured mesh: longitudinal stress field at (top)0.5-10~2? s and (bottom) = 1.8-10~2
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of the reflected and transmitted waves reads:
-1 1t—t 2
o= (1= exp _+ i Oin (39)
27y 2yt v+1

1t—t¢ 2
ot =(1—-exp _r+ 2 Tin (40)
2yt v+1

In case of perfect adhesion between the two phases, i.esenafd — oo, the exponential terms
in (39) and @0) drop to zero. The time-dependent feature of the solutiadhus lost in view of the
non-evolving microstructure along the interface.

4.2. FE-FCT results

Similarly to what done in9], all the results to follow have been obtained by adoptihg= 0.5 m;
oa = op = 10?2 kg/m?; 7 = 10* Pa, so as to initially cause the propagation of a tensile virasiee
material A of magnituder, = 10* Pa;At, = 4- 1072 s. As for the FCT parameters, if not otherwise
stated we have adoptegl; = n4 = 0.125[9], and/rct = ﬁ

In a first example the rod has been assumed homogeneous, age ohtwo phases featuring the
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Figure9. Wave propagating along a homogeneous rod discretized wétnuctured meshes:
comparison between the evolutions of the longitudinalsstratz = 0.5 m, as obtained
through one-dimensional (black solid line) and two-dimenal (red dashed line) simula-

tions.
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Figure 10. Wave propagating along a heterogeneous rod with perfeafibgrbetween
phases, discretized with an unstructured mesh: stressafiéijt = 0.5 - 10-2 s and at (b)
t = 1.3-1072 s. Blue solid line: FE solution; orange dashed line: newbposed FE-FCT
solution.
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same Young's modulugy, = Ex = 10° Pa and perfectly bonded together. In the absence of wave
reflection along inner surfaces, the present outcomes aaetrt@assess the robustness of the new FE-
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Figure 11. Wave propagating along an interface-containing homogesemd ¢ = 5 - 107
N/m?) discretized with an unstructured mesh: stress field-at0.9 - 10~2 s. Black dotted
line: analytical solution; blue solid line: FE solution;amge dashed line: newly proposed
FE-FCT solution.
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FCT scheme when either structured or unstructured spaceetimtions are adopted. In our analysis,
unstructured one-dimensional meshes have been obtamradlfie relevant structured ones as follows.
Starting with a nodal spacingz (hereAz = 5 - 10~* m, meaning that 1000 quadratic elements, with
characteristic sizé'”? = 2Az = WLO have been adopted to discretize the whole specimen), amand
sequence rgr-0.5 0.5] is generated so as:

xﬂnstruct: xétruct_’_ X Az - rar{_o'5 0'5] (41)

where: 2l andz)sruc@re the longitudinal coordinates of thieth node in the structured and unstruc-
tured meshes, respectively;= 0.6 is a scaling factor, introduced to ensure positivity of taedth of
each element in the unstructured mesh.

Figure5 shows the stress distribution in the rod at time instants0.5 - 10-? s andt = 1.8 - 1072
s; it can be seen that the tensile wave, after reflection atetliefree surface of the specimen, becomes
a compressive wave of same amplitude. These results hameob&gned with a structured mesh, hence
the standardd] and the newly proposed FE-FCT schemes furnish the samerme&: Moreover, the
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Figure 12. Wave propagating along an interface-containing homogesemd E&r = 5 - 10°
N/m?) discretized with an unstructured mesh: evolution in tirhéhe normal traction- at
the interface. Black dotted line: analytical solution; élsolid line: FE solution; orange
dashed line: newly proposed FE-FCT solution.
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analytical solution can not be distinguished from the FEFFsDes; on the other hand, ripples show
up in the FE solution, initially just behind the wave fronte¢ Figures(a), where the discontinuities
are propagating from left to right) and eventually spoilthg accuracy of the solution along the whole
specimen (see Figutgb)).

In case of unstructured meshing, the methods here comparadt the results summarized in Figure
6in terms of stress field @t= 1.8- 1072 s. As expected, the FE solution wildly oscillates, with tgsof
increased amplitude as compared to the structured meshtbastandard FE-FCT scheme is no more
able to fully damp oscillations, whereas the new one work@erly and prevents the birth of spurious
maxima/minima. It must be noticed that the small delay ofrtew FE-FCT method in the attainment of
the analytical solution (characterized by sharp discaiities), as shown in the two insets of Figuee
may be avoided or reduced in duration by a fine tuning of Newrparameterg, v and FCT parameters
np, na. 10 prove it, Figurer shown the effect of), = n4 on the aforementioned delay; as far as this
feature of the solution is concerned, it can be seen thatlem@drameter values strongly reduce the
delay, even if the value of the longitudinal stress may getcééd. Only results relevant tg, = 4 are
here reported; on the one handyjf > 74 the solution is characterized by an excessive diffusionrdo
the discontinuities, with fronts smeared over too many Fasthe other hand, i, < 74 the solution
has a tendency to instability, characterized by ripple @onbds continuously increasing in time.

For comparison purposes, outcomes of a two-dimensionalation are depicted in Figu&in terms
of contour plots of the longitudinal stress before (Fig8fa)) and after (Figur&(b)) reflection at the
rear free surface. In this two-dimensional case a much eoagsace discretization has been adopted,
with 6-node triangular elements featuring a characteristie/?? = WLO It can be seen that the stress
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Figure 13. Wave propagating along an interface-containing homogesemd E&r = 5 - 10°
N/m?) discretized with one-dimensional and two-dimensionatructured meshes: evolu-
tion in time of the normal traction at the interface. Black dotted line: analytical solution;
orange dashed line: one-dimensional FCT-FE solution; tateed line: two-dimensional

FCT-FE solution.
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wave maintain sharp fronts, always perpendicular to th@ggation direction independently of local
mesh features. Because of the coarse discretization, ¥pecged that spurious oscillations are here
characterized by an increased amplitude when comparee torte-dimensional case. Figu#ewhere
the time history of the longitudinal stressat= 0.5 m is reported, testifies the performance of the
proposed FE-FCT scheme: even though the ratio between #naathristic sizes of FEs %; =5, the
discrepancy between the two solutions amounts at most to 2%. )

In a second example, to start assessing the efficiency offHedT scheme in the presence of inner
boundaries, it has been assumed fhat= 2 - 10° Pa at fixed values of all the other material parameters;
perfect adherence between the two phases was also asdidheadd FE-FCT results are shown in Figure
10in terms of stress field dt= 0.5- 1072 sandt = 1.3 -1072s. Att = 0.5 - 1072 s (Figure10(a)),
since the leading front of the stress wave has not impingédiyen the interface (placed at= 0.5
m) the results are similar to those of Figls@), showing again that the FCT scheme properly damps
oscillations (as before, the analytical solution is noomégd here since it can not be distinguished from
the FE-FCT one). Moreover, when waves are partially reftebethe inner surface the solution still
proves accurate, even without explicitly accounting fa& #lcoustic impedance of each phase as done in
[9].

In a third example, the behavior of a homogeneous two-phaesgreen £, = E = 10° Pa) con-
taining a compliant interface has been studied. In the éase- 5 - 107 N/m?, results in terms of the
stress field at = 0.9 - 1072 s are depicted in Figurkl; even in the presence of a compliant interface, it
can be seen that the new FE-FCT method correctly reprodbeegs$ponse of the body without spuri-
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ous oscillations. To further assess the accuracy of theadethe time history of the normal traction
acrosd’ is shown in Figurd2. To increase the duration of the transitory stage and tangéglits into the
performance of the FE-FCT method, the interface stiffnesddeen decreasedfp = 5-10° N/m?, and

the loading intervalAt, has been slightly increased accordingly, so as to ensurpletion of interface
opening till [u]* = ELF Once again, the FE solution looks oscillatory; this bebiatslecomes a serious
issue in case of nonlinear, irreversible interface modesesspurious unloadings and overshoots may
cause a drift of the computed solution away from the exact dhe FE-FCT solution instead presents
only an oscillation just after the leading front of the str@sve has impinged upon the interface; after-
wards, the FCT scheme filters out possible subsequent sipplas is also shown in FigurE3, where
results of one-dimensional and two-dimensional simuteti&re compared; in the two-dimensional case,
the same space discretization depicted in Figlineas been adopted. According to previous results, the
higher oscillation amplitude around= 0.005 s in the two-dimensional simulation is caused by the
coarser mesh; subsequently, the FCT scheme completelysd@opies.

The small time discrepancy (amountingAs* = 10~° s in the one-dimensional case) between FE-
FCT and exact solutions is due to the dispersive properfigseoFE solution and can be explained
as follows. While the analytical solution is characterizgdsharp wave fronts, in the FE-FCT one
discontinuities are smeared over the resolved lengttesedlich is typically one element wide\t*
is about the time interval required by the stress wave tcetragrossAz (or the corresponding node
spacing in the unstructured mesh case) at spge€d c3.

5. Concluding remarks

In this paper we have proposed a finite element flux-corretesport (FE-FCT) method for the
simulation of stress wave propagation in homogeneous dsawhkterogeneous bodies.

Through a comparative assessment of existing remedietdondcillatory behavior of standard FE
simulations of moving discontinuities, the FCT algorithmexged as a very promising tool. It consists of
post-processing the velocity field, as furnished by a cuatgrRE scheme, via diffusive and antidiffusive
fluxes, the latter being appropriately limited in size. Thaimlimitations of present implementations,
already foreseen e.g. i8,[9], are the need of structured space discretizations, whithile an ad-
hoc treatment of irregular boundaries of the body, and thed¢o knowledge of the acoustic impedance
of each phase in case of waves traveling inside heterogertemilies. This second issue prevents the
simulation of the dynamics of polycrystals (i.e. highlyéretgeneous solids) in the presence of defective,
compliant interphase boundaries, since acoustic impedatocn out to be influenced by the interphase
compliances and by the angle between the wave propagatextidn and each phase boundary. We have
here proposed a new FCT scheme, which is able to deal withuilmeand compliant phase boundaries;
this new scheme relies upon an algorithmic length-scalked tis define the size of the nodal support
within which the velocity field is corrected through the dsfve/antidiffusive fluxes. Close to phase
boundaries, alike close to boundaries of the whole bodyatbeementioned local support is properly
re-shaped: this permits to account for possible interpbas®liances.

Through one-dimensional and two-dimensional simulatiminstress waves propagating along slen-
der bodies (rods), it has been shown that the newly propoEeBCT method is effective and robust.
Results, never showing macroscopic fluctuations in thest@ed velocity fields, turned out to be very
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accurate when compared to available analytical solutiand,independent of the (unstructured) space
discretizations adopted.
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