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Abstract: In this study different approaches based on multilayer perceptron neural networks 
are proposed and evaluated with the aim to retrieve tropospheric profiles by using GPS 
radio occultation data. We employed a data set of 445 occultations covering the land surface 
within the Tropics, split into desert and vegetation zone. The neural networks were trained 
with refractivity profiles as input computed from geometrical occultation parameters 
provided by the FORMOSAT-3/COSMIC satellites, while the targets were the dry and wet 
refractivity profiles and the dry pressure profiles obtained from the contemporary European 
Centre for Medium-Range Weather Forecast data. Such a new retrieval algorithm was 
chosen to solve the atmospheric profiling problem without the constraint of an independent 
knowledge of one atmospheric parameter at each GPS occultation.  
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1. Introduction  

Global Positioning System (GPS) radio occultation (RO) is a global sounding technique for the 
atmospheric profiling useful for numerical weather models and climate studies. The RO technique 
employs GPS receivers placed on Low-Earth Orbit (LEO) satellites to sound the Earth’s atmosphere 
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and ionosphere evaluating the additional delay affecting a radio signal when passing through the 
atmosphere due to the refractivity index variations [1].  

This limb-sounding technique works under all-weather conditions due to the insensitivity of the 
GPS signal wavelength to scattering by clouds, aerosols, and precipitation, with a vertical resolution of 
about 1 km but a poor horizontal resolution (about 200 km).  

Then, such GPS-LEO system is exploited to obtain profiles of refractivity, temperature, pressure 
and humidity in the atmosphere at global scale. Although the atmospheric refractivity profiling by 
radio occultation is a well-defined problem, care must be taken to compute temperature and 
particularly humidity profiles from refractivity [2]. In the troposphere, given an independent 
knowledge of temperature derived from independent observations (i.e. radiosoundings or data from 
atmospheric numerical modeling), GPS refractivity measurements are employed to derive water vapor 
partial pressure [3].  

In this paper, we have proposed a new retrieval algorithm based on multilayer perceptron neural 
networks to derive profile of atmospheric parameters from RO refractivity profiles overcoming the 
requirement for temperature profile availability at each GPS occultation. In particular, we have 
implemented and compared different neural network trainings, employing three neural networks at 
each approach. The inputs are refractivity profiles computed from the occultation parameters observed 
by the COSMIC Microsat Constellation satellites and provided by the COSMIC Data Analysis and 
Archive Center (CDAAC) of Boulder (Colorado) [4]. The targets employed in the training are the dry 
and wet refractivity profiles, together with the dry pressure ones, obtained from the contemporary 
European Centre for Medium-Range Weather Forecast (ECMWF) analysis data.  

The neural network training and the following independent test were performed over the entire land 
area between Tropics, split into a desert and vegetation zone, by using the available data set of 445 
refractivity profiles on summer 2006, from July 17 to August 18. The three networks estimating wet 
and dry refractivity and dry pressure allow us to obtain temperature and water vapor pressure profiles, 
without requiring independent information on atmospheric temperature. 

The choice of splitting the entire available data set into desert and vegetation databases is to obtain 
three neural networks able to recognize homogeneous atmospheric conditions, since the humidity is 
affected by a large variability in the low troposphere, particularly.  

To evaluate the performances of the different approaches, we have computed errors affecting the 
estimated profiles with respect to ECMWF analysis, assumed as the truth. Such a choice of ECMWF 
data as reference in the comparisons was also adopted by other authors [5, 6], considering that these 
data provide global coverage and high spatial resolution reconstruction of the atmosphere. 

The proposed algorithm shows the possibility to estimate tropospheric parameters included the wet 
ones only from RO refractivity, after the settlement of the training phase of neural networks, and hence 
the possibility to increase the atmospheric observations, thanks to a wide spatial coverage of RO 
soundings. For this purpose, the employment of neural networks proved useful and hence different 
training approaches were tested and evaluated not only from the standpoint of the retrieval accuracy, 
but also in terms of computational cost such as time and memory requirements.  
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2. Neural network input: profiles from radio occultation data   

First, we have collected 445 FORMOSAT-3/COSMIC radio occultation events provided by 
CDAAC [7], covering the inter-tropical land area during the period from July 17 to August 18, 2006. 
The FORMOSAT-3/COSMIC is a joint Taiwan-U.S. mission of six micro-satellites, launched on April 
2006, with onboard receivers registering phase and amplitude of radio waves at the two GPS carrier 
frequencies (1575.42 and 1227.6 MHz).  

GPS radio signals passing through the atmosphere are refracted due to the vertical refractive profile: 
the overall effect of the atmosphere can be characterized by a total bending angle α, an asymptotic 
impact parameter a and a tangent radius rp [2]. With the assumption of local spherical symmetry, the 
refraction index profile n can be retrieved from measurements of α as a function of a during an 
occultation by using an Abel transformation as in [8]: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
= ∫

∞

pr p
a r

p da
aa

)a(exp)r(n
22

1 α
π

                 (1) 

where arp = n(rp)⋅rp is the impact parameter for the ray whose tangent radius is rp. The refractivity 
profile is then N=(n-1)⋅106.  

As a second step, we have computed the refractivity as in eq. (1) using the impact parameters and 
the bending angles profiles provided by CDAAC, vertically spaced from 4 m to 50 m in the low and 
high atmosphere, respectively. 

The distribution of the considered GPS-RO events is shown in Figure 1. The FORMOSAT-
3/COSMIC GPS occultations and the corresponding ECMWF observations have been co-located, in 
time and space, with a maximum time difference of 1 hour and a maximum geographical coordinate 
distance of 0.5°.  

Figure 1. Distribution of FORMOSAT-3/COSMIC GPS occultation employed in the 
neural networks.  
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In order to train and test the neural networks we have created two uniform databases (desert and 
vegetation) of refractivity profiles sampled at the same altitude intervals for each RO observation. As a 
result, the desert database contains 98 profiles with 56 fixed altitude levels, representing the 
atmosphere from 1.1 to 12.1 km, i.e. the troposphere, and the vegetation database contains 347 profiles 
with 54 fixed altitude levels, representing the atmosphere from 1.4 to 12 km. Each profile is 
characterized by the vertical resolution of 200 m. 

We have chosen RO with the minimum altitude of 1.1 km and 1.4 km over desert and vegetation 
area respectively as a trade-off between the requirement of a adequate number of observations to train 
the networks and the need of tropospheric profile estimation as much as possible close to the surface. 

3. Neural network output: profiles from ECMWF data 

The targets for the neural network training and the references for the following independent test are 
the dry and wet refractivity profiles and the dry pressure profiles. These profiles were obtained by 
processing data provided by the ECWMF belonging to the “ECMWF 91 model levels” data set, 
representing the atmosphere from 75 km to the ground with a vertical resolution spanning from 5 km 
to 25 m in the high and low atmosphere, respectively [9]. 

First, we have computed the water vapour partial pressure profile and then the dry pressure profile 
by subtracting the partial pressure of water vapor from the total pressure profile. 

Hence, we have computed the atmospheric refractivity at microwave wavelength by [10]: 
5

277.6 72 3.75 10d w wP P PN
T T T

= + + ⋅                  (2) 

where Pd is the dry air pressure in mbar, Pw the water vapour partial pressure in mbar, T is the 
atmospheric temperature in Kelvin. Finally, we have vertically interpolated these profiles at the same 
altitude levels of the neural network input profiles.  

In conclusion, the neural network outputs are the dry Nd and wet Nw refractivity profiles and the dry 
pressure profiles Pd, where Nd is:  

T
P

N d
d 6.77=                     (3) 

while Nw is the remaining part of eq. (2):  
5
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The choice of these output profiles is justified as follows: to solve the atmospheric profiling 
problem, i.e. to retrieve T, Pd and Pw given N, the additional constraints of ideal gas and hydrostatic 
equilibrium laws are conventionally used in literature [2], [5]. Such an approach introduces another 
unknown, the air density ρ, leading to a system of three equations and four unknowns (T, Pd , Pw and 
ρ). Therefore it is necessary to have an independent knowledge of one of the four parameters to solve 
the atmospheric profiling problem [5], usually the temperature profile derived from independent 
observations or weather analysis [2]. Therefore, employing neural networks with inputs and outputs as 
described above, the atmospheric profile retrieval from refractivity can be solved using only eq. (2), 
overcoming the need of knowing the temperature profile at each GPS occultation.  

Also, the networks act as a virtual equation describing the statistical information of the input and 
output data. It is worth noting that even if the GPS LEO retrieved refractivity profiles (input of the 
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neural network) are affected by errors, the neural network outputs (dry and wet refractivity) are more 
consistent with the ECMWF profiles assumed as the truth, showing a kind of multivariate calibration 
ability of the trained networks. 

In the next section, different training techniques will be proposed and compared to evaluate the 
neural network performances. 

4. Tropospheric profiling with neural networks 

As previously described, to solve the atmospheric profiling problem of GPS LEO occultations 
overcoming the need of external information, we have considered different neural network approaches 
for both desert and vegetation databases. For each database and each approach, we have trained three 
neural networks where predictors are the total refractivity profiles N computed from RO data using eq. 
(1), and the targets are the corresponding dry Nd and wet Nw refractivity profiles and the dry pressure 
profiles Pd computed from ECMWF data.  

Over desert area between Tropics, the neural network training and the following independent test 
were performed by using 88 profiles for the training and the remaining 10 for the independent test, that 
represent 90% and 10% of the entire desert data set. 

Over vegetation area between Tropics, we have proceeded in the same way by choosing 312 
profiles for the training and the remaining 35 for the independent test. 

First, before the training phase, we have pre-processed input and target features, with columns 
representing atmospheric parameter profiles, standardizing each row’s means to 0 and standard 
deviations to 1 [11]. After standardization, we have exploited different approaches for the neural 
networks learning, as described in the following section. 

4.1 Early stopping technique 

At first, we have applied the early stopping technique [11] to define the optimal number of training 
epochs for the training of the three neural networks. By using this technique, we have divided the 
available events in two disjoint subsets: the training set and the validation set. The first one is used for 
the learning itself, the second one to choose the number of training epochs. Learning ends when the 
error on the validation set begins to rise even if the error on the training set could be further reduced. 
In practice, the validation set improves the ability of generalization of the network. Since overtraining 
could occur even on the validation set, a further test subset should be used to assess the capacity of 
generalization of the network. Then we have divided the training desert data set (88 samples) and the 
training vegetation data set (312 samples) in three subsets respectively: the training subset used for the 
learning itself, the validation subset and the test subset, by assigning them randomly the 70% (62 and 
218 samples for desert and vegetation lands respectively), the 15% (13 and 47 samples) and the 15% 
(13 and 47 samples) of the whole data sets, respectively. 

Instead of the standard back-propagation, we have used the Levenberg-Marquardt optimization that 
is often the fastest back-propagation algorithm for training moderate-sized feed-forward neural 
networks, in agreement with the early stopping technique [12, 13]. 
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4.2 Early stopping technique with Principal Component Analysis 
 

In the second approach, we have applied the same early stopping technique as described above, 
with the same division of the available data set, but we have processed the input and target matrices by 
the Principal Component Analysis (PCA). The PCA decomposes the 56-level and 54-level profiles, for 
desert and vegetation area respectively, on a basis of empirical orthogonal functions called principal 
components [14]. The PCA permits a reduction of the number of descriptive profile levels by 
exploiting the correlation among values at different altitudes, ensuring a faster processing and a 
reduction of computer memory requirements in comparison with the original data (full profiles). We 
have chosen to employ a number of principal components representing the 99.9% of the total variance 
of the original data [11], leading to the use of only 15 and 14 principal components for the total 
refractivity instead of the original 56 and 54 levels, over desert and vegetation lands respectively. 
Concerning the neural network targets, the number of components for dry refractivity, wet refractivity 
and dry pressure profiles are 11, 14 and 8 for the desert area. The need of a bigger number of wet 
refractivity principal components with respect to dry refractivity and dry pressure is an evidence of a 
greater variability in the troposphere of the wet parameters with respect to the dry ones, particularly 
over desert zones with respect to vegetation ones. In fact, concerning the neural network targets of the 
vegetation area, the number of components for dry and wet refractivity and dry pressure profiles are 
11, 11 and 7 respectively, maybe sign of the perseverance of wet conditions over these sub-tropical 
zones, mainly for those ones closest to the equator. 

4.3 Cross validation technique 

Finally, we have applied the cross validation technique, together with the early stopping, useful in 
the case the available data set contains few profiles for training and testing neural networks. We have 
decided to use this approach for the shortage of profiles belonging to the desert data sets. Cross 
validation technique consists in dividing the whole considered data set in K subsets by training the 
neural networks with the profiles belonging to K-1 subsets and validating them with the profiles of the 
remaining subset. This process recurs K times by changing the validation set every time. The 
percentage of profiles used to train the neural networks is 1-1/K and, in this way, all the profiles are 
used in the learning and validating phase in turn. The only drawback of this technique is the need to 
repeat the learning K times, increasing the computational costs. For this reason, only profiles reduced 
with the PCA technique were employed, so cutting down the overall time processing. 

Therefore, we have trained the neural networks with the cross validation technique applying both 
K=4 and K=8, that is with a validation subset corresponding to 25% and 12.5% of training data set.  

Then we have divided the training desert data set (88 samples) and the training vegetation data set 
(312 samples) in the training subset and in the validation subset by assigning them, for K=4, the 75% 
(66 and 234 samples for desert and vegetation lands respectively) and the 25% (22 and 78 samples) of 
the whole data sets. Similarly, for K=8, the 87.5% (77 and 273 samples for desert and vegetation lands 
respectively) and the 12.5% (11 and 39 samples) of data sets.  
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5. Choice of neural network architectures 

For each technique, we have considered feed-forward neural networks having, besides the input 
layer, a number (1 to 3) of hidden layers with tan-sigmoid transfer functions and an output layer with 
linear transfer functions [11]. To select the most suitable architecture, we have used a growing 
technique adding 1 neuron in the first hidden layer at each training session, until a maximum of 20 
neurons for each hidden layer. We have considered a maximum of 3 hidden layers, choosing among 
the possible combinations the architecture with the lower Root Mean Square (RMS) error computed 
comparing the network outputs of the test session with the corresponding ECMWF profiles, where the 
test session employs the profiles not used in the training phase (10 and 35 observations from desert and 
vegetation databases, respectively).  

The best neural network topologies in terms of performance for the dry refractivity, wet refractivity 
and dry pressure retrieval are reported in Table 1 and in Table 2 for desert and vegetation area, 
respectively. The optimal number of training epochs is greater for the early stopping with full profiles 
(less than 20 epochs), decreasing to about a half applying the PCA and the cross validation. 

Table 1. Best neural network topologies over desert zone obtained for each neural network 
approach: input, HL1, HL2, HL3 and output columns report the number of neurons for the 
input, hidden layer 1, hidden layer 2, hidden layer 3 and output, respectively. Each 
approach employs 3 neural networks, named N Dry (for dry refractivity estimation), N Wet 
(for wet refractivity estimation) and P Dry (for dry pressure estimation). 

  

Desert zone 
EARLY STOPPING - PCA 

 Input HL1 HL2 HL3 Output 
N Dry 15 11 2 - 11 
N Wet 15 15 15 9 14 
P Dry 15 6 6 5 8 

EARLY STOPPING – Full Profile 
N Dry 56 10 10 2 56 
N Wet 56 9 8 - 56 
P Dry 56 19 15 - 56 

CROSS VALIDATION (25%) - PCA 
N Dry 15 20 20 18 11 
N Wet 15 15 15 13 14 
P Dry 15 19 8 - 8 

CROSS VALIDATION (12.5%) - PCA 
N Dry 15 7 4 - 11 
N Wet 15 16 13 - 14 
P Dry 15 6 6 3 8 
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Table 2. Best neural network topologies over vegetation zone obtained for each neural 
network approach: input, HL1, HL2, HL3 and output columns report the number of 
neurons for the input, hidden layer 1, hidden layer 2, hidden layer 3 and output, 
respectively. Each approach employs 3 neural networks, named N Dry (for dry refractivity 
estimation), N Wet (for wet refractivity estimation) and P Dry (for dry pressure 
estimation). 

 

Vegetation zone 
EARLY STOPPING - PCA 

 Input HL1 HL2 HL3 Output 

N Dry 14 6 6 3 11 

N Wet 14 12 8 - 11 

P Dry 14 10 10 10 7 

EARLY STOPPING – Full Profile 

N Dry 54 15 8 - 54 

N Wet 54 12 5 - 54 

P Dry 54 10 10 10 54 

CROSS VALIDATION (25%) - PCA  

N Dry 14 10 10 3 11 

N Wet 14 4 - - 11 

P Dry 14 13 13 9 7 

CROSS VALIDATION (12.5%) - PCA 

N Dry 14 17 9 - 11 

N Wet 14 12 12 12 11 

P Dry 14 13 11 - 7 
 

6. Results 

As a first assessment of the employed training approaches, the vertically averaged RMS error is 
evaluated comparing N obtained as output of the different neural network trainings (N=Nd+Nw), 
hereafter named as the autotest result, with the corresponding ECMWF profiles. Also, the vertically 
averaged RMS error of N computed from Abel transformation, i.e. the input of the networks, and the 
mean standard deviation of the entire ECMWF database are reported in Table 3 and in Table 4, for 
desert and vegetation zone respectively. The ECMWF standard deviation can be assumed as an index 
of the climatological variability of a given atmospheric parameter, than a good accuracy of a retrieval 
algorithm is obtained when its RMS error is clearly below it. From these tables, we deduce the good 
performances of the proposed approaches, with the cross validation technique (12.5%) exhibiting the 
best results. 
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Table 3. Desert zone: mean standard deviation of ECMWF refractivity N, vertically 
averaged RMS error of refractivity N from Abel transformation and vertically averaged 
RMS error of refractivity N as output of neural network autotest (88 events) using the 
different approaches. E.S.: Early Stopping; C.V.: Cross Validation. The best result is 
highlighted. 

 

Desert zone 

Mean standard 

deviation of N 

from ECMWF  

Vertically 

averaged RMS 

error of N 

from Abel 

transformation  

Output autotest (88 events):                               

vertically averaged RMS errors of N (N-units) 

E.S 

PCA 

E.S. 

Full Profile 

C.V. (25%) 

PCA 

C.V. (12.5%) 

PCA 

6.20 N-units 5.33 N-units 4.08 N-units 3.80 N-units 3.91 N-units 2.70 N-units 

 

Table 4. Vegetation zone: mean standard deviation of ECMWF refractivity N, vertically 
averaged RMS error of refractivity N from Abel transformation and vertically averaged 
RMS error of refractivity N as output of neural network autotest (312 events) using the 
different approaches. E.S.: Early Stopping; C.V.: Cross Validation. The best result is 
highlighted. 

 

Vegetation zone 

Mean standard 

deviation of N 

from ECMWF  

Vertically 

averaged RMS 

error of N 

from Abel 

transformation  

Output autotest (312 events):                              

vertically averaged RMS errors of N (N-units) 

E.S. 

PCA 

E.S. 

Full Profile 

C.V. (25%) 

PCA  

C.V. (12.5%) 

PCA  

7.11 N-units 4.76 N-units 3.70 N-units 4.06 N-units 3.80 N-units 3.41 N-units 

 
To evaluate performance and generalization capability of each neural network approach, the RMS 

error profiles for N (N=Nd+Nw) employing the independent test set of 10 and 35 occultations for desert 
and vegetation zones, are shown in Figure 2 and Figure 3, superimposed to the corresponding 
ECMWF standard deviation profiles. 
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Figure 2. Desert zone, neural network independent test (10 occultations): RMS error 
profiles for N using the different neural network approaches.  

 

Figure 3. Vegetation zone, neural network independent test (35 occultations): RMS error 
profiles for N using the different neural network approaches. 

 
 

As underlined in the previous sections, choosing to train three networks for each approach enables 
us to retrieve atmospheric profiles without the constraint of temperature profile availability at each 
GPS occultation, only using eq. (2). In particular, with the availability of Nd, Nw and Pd, first we can 
solve for temperature T in a straightforward way from the dry refractivity using eq. (3),  and then for 
partial pressure of water vapor Pw from the wet refractivity using eq. (4). 

In Figure 4 and Figure 5 the RMS error profiles for T and in Figure 6 and Figure 7 the RMS error 
profiles for Pw are shown superimposed to the corresponding ECMWF standard deviation profiles, for 
desert and vegetation zone respectively. 
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Figure 4. Desert zone, neural network independent test (10 occultations): RMS error 
profiles for T using the different neural network approaches.  

 
 

Figure 5. Vegetation zone, neural network independent test (35 occultations): RMS error 
profiles for T using the different neural network approaches.  
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Figure 6. Desert zone, neural network independent test (10 occultations): RMS error 
profiles for Pw using the different neural network approaches.  

 

Figure 7. Vegetation zone, neural network independent test (35 occultations): RMS error 
profiles for Pw using the different neural network approaches.  

 
 

In order to summarize the performances of each neural network approach on the ability to 
reconstruct all the analyzed tropospheric profiles, i.e. Nd, Nw, N, T, Pw and P (P=Pw+Pd), their 
vertically averaged RMS error values with respect to ECMWF data for the independent test are 
reported in Table 5 and 6. In the tables, the corresponding ECMWF mean standard deviations of the 
entire data set are also reported.  

Analyzing the results, the ability of the neural networks to retrieve the atmospheric parameters is 
evident. By comparing the proposed approaches, it’s noticeable that each one produces good results, 
the best ones provided by using the early stopping with full profiles but especially by the cross 
validation with the PCA. Particularly, adequate accuracy is achieved in the lower troposphere over 
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both the desert and vegetation zone, where the presence and the variability of the water vapour is more 
consistent. However, considering these approaches from the standpoint of the computational cost in 
terms of time and memory requirements, the cross validation with the PCA is less expensive than the 
only early stopping but with the full profiles. 

7. Conclusion 

In this work, we have proposed a method to estimate tropospheric profiles employing GPS RO 
observations over the entire land area between Tropics, during the summer time climatic conditions.  

To overcome the necessity to know the true temperature profile at each occultation, we have trained 
three neural networks, by using different approaches, with targets permitting to solve the atmospheric 
profiling problem by using only RO data as input. 

The results have shown globally good performances for each approach, especially if compared with 
the climatological variability of the data set. Moreover, neural networks trained with the cross 
validation technique exhibit good accuracy, where the use of profiles decomposed with the principal 
component analysis, i.e without preserving all the profile levels, ensures less expensive computational 
costs.  

Table 5. Desert zone: mean standard deviation of ECMWF profiles, vertically averaged 
RMS error of dry refractivity (N Dry), wet refractivity (N Wet), total refractivity (N), dry 
pressure (P Dry), wet pressure (P Wet), total pressure (P) and temperature (T) profiles 
obtained by neural network independent test (10 events) using the different approaches. 
E.S.: Early Stopping; C.V.: Cross Validation. The best results are highlighted. 

 

Desert zone 
Parameters ECMWF 

mean 
standard 
deviation 

Output independent test (10 events):                        
vertically averaged RMS error 

E.S. 

PCA 

E.S. 

Full Profile 

C.V. (25%) 

PCA  

C.V. (12.5%) 

PCA  

N Dry  1.52 N-units 0.94 N-units 0.74 N-units 0.86 N-units 0.79 N-units 

N Wet 6.08 N-units 2.63 N-units 2.64 N-units 2.68 N-units 2.53 N-units 

N 6.20 N-units 3.00 N-units 2.84 N-units 2.87 N-units 2.59 N-units 

P Dry 2.44 mbar 1.42 mbar 1.42 mbar 1.12 mbar 1.21 mbar 

P Wet 1.23 mbar 0.52 mbar 0.53 mbar 0.55 mbar 0.50 mbar 

P 2.17 mbar 1.43 mbar 1.44 mbar 1.14 mbar 1.20 mbar 

T 2.64 K 1.61 K 1.42 K 1.49 K 1.22 K 
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Table 6. Vegetation zone: comparison between mean standard deviation of ECMWF 
profiles, vertically averaged RMS error of dry refractivity (N Dry), wet refractivity (N 
Wet), refractivity (N), dry pressure (P Dry), wet pressure (P Wet), pressure (P) and 
temperature (T) profiles obtained by neural network independent test (35 events) using the 
different approaches. E.S.: Early Stopping; C.V.: Cross Validation. The best results are 
highlighted. 

 

Vegetation zone 
Parameters ECMWF 

mean 
standard 
deviation 

Output independent (35 events):                            
vertically averaged RMS error 

E.S. 

PCA 

E.S. 

Full Profile 

C.V. (25%) 

PCA 

C.V. (12.5%) 

PCA 

N Dry  1.60 N-units 1.12 N-units 1.10 N-units 1.09 N-units 1.06 N-units 

N Wet 7.75 N-units 3.83 N-units 3.82 N-units 3.81 N-units 3.51 N-units 

N 7.11 N-units 3.64 N-units 3.81 N-units 3.74 N-units 3.53 N-units 

P Dry 3.06 mbar 1.99 mbar 1.98 mbar 1.96 mbar 1.92 mbar 

P Wet 1.54 mbar 0.76 mbar 0.74 mbar 0.75 mbar 0.68 mbar 

P 2.49 mbar 1.86 mbar 1.82 mbar 1.77 mbar 1.82 mbar 

T 2.85 K 2.12 K 1.97 K 2.08 K 2.02 K 

Acknowledgements 

The work has been sponsored by the ASI, Italian Space Agency, through the Thales Alenia Space. 
We wish to thank COSMIC Data Analysis and Archive Center (CDAAC) of Boulder (Colorado) for 
the availability of the occultation data. 

References  

1. Ware, R.; Rocken, C.; Solheim, F.; Exner, M.; Schreiner, W.; Anthes, R.; Feng, D.; Herman, B.; 
Gorbunov, M.; Sokolovskiy, S.; Hardy, K.; Kuo, Y.; Zou, X.; Trenberth, K.; Meehan, T.; 
Melbourne, W.; Businger, S. GPS Sounding of the atmosphere from low Earth orbit: preliminary 
results. Bull. Am. Meteorol. Soc. 1996, 77, 19-40. 

2. Kursinski, E.R; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s 
atmosphere with radio occultation measurements using the Global Positioning System. J. 
Geophys. Res. 1997, 102, D19, 429–465. 

3. O’Sullivan, D.B.; Hermann, B.M.; Feng, D.; Flittern, D.E.; Ward, D.M. Retrieval of Water Vapor 
Profiles from GPS/MET Radio Occultations. Bull. Am. Metereol. Soc. 2000, 81(5), 1031-1040. 

4. Anthes, R.A.; Rocken, C.; Kuo, Y.H. Applications of COSMIC to meteorology and climate. Terr. 
Atmos. Ocean. Sci. 2000, 11(1), 115-156. 



Algorithms 2009, 2                            
 

 

45

5. Kursinski, E.R.; Hajj, G.A. A comparison of water vapour derived from GPS occultations and 
global weather analyses. J. Geophys. Res. 2001, 106, D1, 1113–1138. 

6. Beyerle, G.; Schmidt, T.; Wickert, J.; Heise, S.; Rothacher, M.; Konig-Langlo, G.; Lauritsen, 
K.B. Observations and simulations of receiver-induced refractivity biases in GPS radio 
occultation. J. Geophys. Res. 2006, 111, D12, 1-13. 

7. http://www.cosmic.ucar.edu/index.html. 
8. Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The Neutral Atmosphere of Venus as Studied with the 

Mariner V Radio Occultation Experiments. Astron. J. 1971, 76, 123-140. 
9. http://www.ecmwf.int. 
10. Smith, E.K.; Weintraub, S. The constants in the equation for atmospheric refractive index at radio 

frequencies. Proc. IRE 1953, 41, 1035-1037. 
11. Demuth, H.; Beale, M.; Hagan, M. Neural network toolbox for use with Matlab. User’s Guide 

v.6; The MathWorks, 2008. 
12. Marquardt, D. An algorithm for least square estimation on nonlinear parameters, J. Soc. Indust. 

Appl. Math. 1963, 11, 431-441. 
13. Hagan, M.; Menhaj, M. Training feed-forward networks with the Marquardt algorithm. IEEE 

Trans. Neural Networks 1994, 5(6), 989-993. 
14. Smith, W.L.; Woolf, H.M. The use of eigenvectors of statistical covariance matrices for 

interpreting satellite sounding radiometer observations. J. Atmos. Sci. 1976, 33, 1127-1140. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


