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Abstract: The theoretical Quantum Key-Distribution scheme of Bennett and Brassard (BB84)
has been proven secure against very strong attacks including the collective attacks and the joint
attacks. Though the latter are the most general attacks, collective attacks are much easier to
analyze, yet, they are conjectured to be as informative to the eavesdropper. Thus, collective
attacks are likely to be useful in the analysis of many theoretical and practical schemes that are
still lacking a proof of security, including practical BB84 schemes. We show how powerful
tools developed in previous works for proving security against the joint attack, are simplified
when applied to the security of BB84 against collective attacks whilst providing the same
bounds on leaked information and the same error threshold.
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1. Introduction

Quantum Theory allows us to have new cryptographic protocols of which we can prove security.
Those protocols are secure against adversaries with unlimited power∗. One of those protocols is the
Quantum Key Distribution (QKD) protocol which is named BB84 after its inventors Bennett and Bras-

∗The only limitations are the laws of physics as we currently know them.
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sard [1]. In this protocol, two users (conventionally named Alice and Bob) wish to set up a common
random key, using a quantum channel and a classical (insecure) authenticated channel. Their adversary
(named Eve) is trying to eavesdrop on both of those channels in order to have as much information as
possible about the agreed key.

The goal of Alice and Bob is to use a protocol that can be proven secure, potentially even un-
conditionally secure, against powerful eavesdropping. In this paper we discuss the security of the BB84
protocol against the collective attacks [2–4], that form a subclass of the joint attacks (which are the most
powerful theoretic attacks). This subclass is conjectured† to contain the strongest joint attacks and there-
fore, to be as informative to Eve as the joint attack [2, 3]. In addition, analyzing the collective attack
is much simpler than analyzing the joint attack. Thus, analyzing the collective attack might be highly
relevant for practical setups of QKD where proving security is still a hard task.

We improve the analysis done in [4] to the BB84 scheme against all collective attacks. The analysis
shown in [4] bounds the information in a non-optimal way which adds a factor of 2r2m to the information
bound, where r is the amount of error-correction bits revealed during the protocol, and m is the final-key
length. Our proof uses methods that are used in [5] for the joint attack, in order to achieve an optimized
bound for the collective attack.

Let H2 be the 2-dimensional Hilbert space with standard (or computational) basis |00〉, |10〉. Let
|01〉 = 1√

2
[|00〉 + |10〉] and |11〉 = 1√

2
[|00〉 − |10〉]; it is clear that |01〉, |11〉 is an orthonormal basis‡; it is

called the Hadamard basis. The unitary map H such that H|00〉 = |01〉 and H|10〉 = |11〉 is called the
Hadamard transform. Due to linearity, H|01〉 = 1√

2
[H|00〉 +H|10〉] = |00〉 and similarly, H|11〉 = |10〉

i.e. H ·H = I (the identity). Those bases are used for measurements in the BB84 scheme; measuring a
state represented as the density matrix ρ in the b basis returns output 0 with probability 〈0b|ρ|0b〉 and 1

with probability 〈1b|ρ|1b〉. Thus if the state |0b〉 (or |1b〉) is measured in the b basis, it results with output
0 (1) with certainty. Yet, when |0b〉 or |1b〉 is measured in the b = 1− b basis, the output is random, i.e. 0

with probability 1/2 and 1 with probability 1/2. This is the principle underlying the BB84 quantum key
distribution protocol [1]. Alice sends Bob qubits (2-dimensional systems), each qubit in one of the four
state |ib〉 with i, b ∈ {0, 1}. In order to send a bitstring i = i1 . . . it to Bob, Alice first draws randomly a
bitstring b = b1 . . . bt and then sends the state |ib〉 = |ib11 〉 . . . |ibtt 〉 = Hb|i〉 where Hb = Hb1⊗ . . .⊗Hbt

and |i〉 = |i1 . . . it〉, with H0 = I and H1 = H . In the conventional setting, Bob measures each qubit in
one of those two bases, and whenever they used the same basis they obtain the same bit i. Using classical
error correction and privacy amplification protocols, Alice and Bob reach a final key of length m < t

bits. In this paper, bitstrings of (an arbitrary) length t are denoted by a bold letter (e.g. we use below the
2n bits string i = i1 . . . i2n with i1, . . . , i2n ∈ {0, 1}) and are identified to elements of the t-dimensional
F2-vector space Ft

2.

1.1. A Formal Description of the BB84 Protocol

Let us describe the BB84 protocol we shall use in this paper.

1. Alice and Bob agree on a large number n, an error threshold pa and on a linear error-correction
†See discussion in Section 4.
‡The notations we use match the physicists “spin-notations” where |00〉 = |0〉z and |10〉 = |1〉z is the standard basis, and

|01〉 = |0〉x and |11〉 = |1〉x is the Hadamard basis.
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code C with parity check matrix PC of order r× n. They agree as well on a linear key-generation
function (privacy amplification) represented by a matrix PK of order m × n. Those matrices can
be publicly known beforehand or they can be determined during the protocol and sent over the
classical channel. The (r + m) × n matrix whose rows are those of PC and PK put together is
required to be of rank r +m.

2. Alice randomly chooses 2n-bit strings i,b ∈ F2n
2 , where F2 denotes the two element field, with

elements {0, 1}, i.e. the field of integers modulo 2. Alice encodes the state |ib〉 = |ib11 〉 . . . |ib2n2n 〉
and sends it to Bob over the quantum channel, one qubit at a time. Each time Bob receives a qubit
he informs Alice, yet he doesn’t measure it§.

3. Alice publicly sends Bob the string b. Bob applies Hb = Hb1 ⊗ . . . ⊗ Hb2n to his state, so that
if Bob had the state |ib〉, once he performs Hb he possesses the state |i〉 = |i1 . . . i2n〉. Bob then
measures these qubits in the computation basis.

We denote by iB the string measured by Bob. If there is no noise and no eavesdropping, he gets
exactly the bitstring i sent by Alice.

4. Alice randomly chooses n-bits that will be used to detect eavesdropping. This is done by choosing
a 2n-bit string that has exactly n ones. Formally, Alice chooses s ∈ F2n

2 such that |s| = n. Alice
publicly sends Bob s.

The bits indexed by j ∈ [1 . . 2n] such that sj = 0 are used for testing, while the rest are used for
generating the final key (via error correction and privacy amplification). We denote the appropriate
substrings of i,b that are relevant for the testing by is̄ and bs̄, while the substrings relevant for
creating the key are denoted is and bs.

5. For each j ∈ [1 . . 2n] such that sj = 0, Alice and Bob publish the value of the jth-bit. Bob and
Alice compare those bit values, and if more than npa bits mismatch, they abort the protocol. The
pre-fixed protocol parameter pa is actually the ratio of allowed bit-flips on the testing bits.

6. Alice and Bob keep the values of the remaining n bits secret. Alice’s string is denoted x = is and
named the information string. The corresponding bitstring on Bob’s side is denoted xB.

7. Alice sends Bob the r-bit error-correction string ξ = xPT
C (where PT

C is the transpose of the parity
check matrix). Bob uses ξ to correct his string xB. The string ξ is called the syndrome of the string
x (with regard to PC).

8. Alice and Bob compute the m-bit final key k = xPT
K .

§ Here we assume that Bob delays measuring each qubit till after learning its basis. In the more realistic case in which
Bob cannot wait with his measurement, or in case some qubits are lost, Alice needs to send more qubits to make sure that 2n
qubits are obtained (in Alice’s bases) as required.
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2. Description of Eve’s attack and its properties

To each qubit |φj〉 (j ∈ [1 . . 2n]) sent by Alice, Eve attaches a separate probe that we assume to be
in a pure state |0Ej 〉 and applies a unitary transform Uj to the composite system |0Ej 〉|φj〉. She then keeps
her probes in a quantum memory for subsequent measurement and sends Bob his part of the system. For
each qubit there is thus a particular Hilbert probe space, and a particular Uj; they are decided beforehand
by Eve and are thus fixed for all possible choices of i, b and s.

2.1. Eve’s attack on a single qubit

Since the attack is bitwise, we now concentrate the analysis on some fixed qubit, drop momentarily
the subindex j, and express the global effect of Eve’s action on this particular qubit with respect to the
basis |0b〉, |1b〉:

U |0E〉|0b〉 = |Eb
00〉|0b〉+ |Eb

01〉|1b〉 = |φb0〉 (1)

U |0E〉|1b〉 = |Eb
10〉|0b〉+ |Eb

11〉|1b〉 = |φb1〉; (2)

|Eb
00〉, |Eb

01〉, |Eb
10〉 and |Eb

11〉 are vectors (“non normalized states”) in Eve’s Hilbert probe space corre-
sponding to this particular qubit. Since U is unitary, |φb0〉 and |φb1〉 are of norm 1 and orthogonal. This
means that

〈Eb
00|Eb

00〉+ 〈Eb
01|Eb

01〉 = 1 (3)

〈Eb
10|Eb

10〉+ 〈Eb
11|Eb

11〉 = 1 (4)

〈Eb
00|Eb

10〉+ 〈Eb
01|Eb

11〉 = 0 〈Eb
10|Eb

00〉+ 〈Eb
11|Eb

01〉 = 0 (5)

2.2. Extending the attack to multiple qubits — the collective attack

For each qubit j ∈ [1 . . 2n], Eve applies the unitary Uj on the space H E
j ⊗H2 where H E

j is her
probe space and H2 is the qubit space. Eve’s view expressed with respect to basis bj is obtained by
tracing out Bob from the states |φbj0 〉j and |φbj1 〉j , resulting with the respective density matrices

(ρ
bj
0 )j = |Ebj

00〉j〈E
bj
00|+ |E

bj
01〉j〈E

bj
01| (6)

(ρ
bj
1 )j = |Ebj

10〉j〈E
bj
10|+ |E

bj
11〉j〈E

bj
11|. (7)

If Alice sends the string i using bases b, then Eve’s global state is the tensor product of all those states
(ρ
bj
ij

)j . After the test bits are revealed, Eve needs only those (ρ
bj
ij

)j for which sj = 1. The set {j | sj =

1} has n elements; let us denote it {j1, . . . , jn}, so that sjl = 1 for 1 ≤ l ≤ n. Eve’s global state
corresponding to s, b and x can now be written

ρbs
x = (ρ

bj1
ij1

)j1 ⊗ . . .⊗ (ρ
bjn
ijn

)jn =
n⊗
l=1

(
ρ
bjl
ijl

)
jl
. (8)

We can rewrite Eq. (8) using the n-bit strings x and b′ = bs with the index l running from 1 to n (instead
of the 2n strings i and b indexed by {j1, . . . , jn}),

ρbs
x = ρb′

x = ρb
′
1
x1
⊗ . . .⊗ ρb′nxn =

n⊗
l=1

ρ
b′l
xl . (9)
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It is the state ρbs
x (or a mixture of such states) that Eve measures collectively to guess the string x (or

directly the final key k) once b, s and the information for error correction and privacy amplification is
known to her.

2.3. The probability of error

Assuming a qubit is attacked by U as defined by (1) and (2), an error occurs if Alice sends 0 and Bob
measures 1 or if Alice sends 1 and Bob measures 0. Let k be the value measured by Bob, i the value sent
by Alice for a specific qubit, and b the basis used by Alice to encode i. The probability of Bob measuring
an error is then given by

p(k = 1 | i = 0)p(i = 0) + p(k = 0 | i = 1)p(i = 1) = 〈Eb
01|Eb

01〉
1

2
+ 〈Eb

10|Eb
10〉

1

2
,

and we denote
pbe ,

1

2

[
〈Eb

01|Eb
01〉+ 〈Eb

10|Eb
10〉
]
. (10)

2.4. The probability of error in the conjugate basis

We are now interested in pbe where b = 1− b (i.e. 0 = 1 and 1 = 0) corresponds to the basis conjugate
to that given by b. The attack U is always the one described by (1) and (2) in the b basis but, in order to
calculate the probability or error when Alice encodes ij as |ibj〉 instead of |ibj〉, we now need to express U
in the b basis. From (10), we know that the probability of error for this situation is given by

pb̄e =
1

2

[
〈Eb

01|Eb
01〉+ 〈Eb

10|Eb
10〉
]
.

Using the fact that

|0〉b =
1√
2
[|0b〉+ |1b〉], |1〉b =

1√
2
[|0b〉 − |1b〉]

and using the linearity of U , we deduce directly from (1) and (2) that

U |0E〉|0b〉 =
1√
2

(
|Eb

00〉+ |Eb
10〉
)
|0b〉+ 1√

2

(
|Eb

01〉+ |Eb
11〉
)
|1b〉, (11)

U |0E〉|1b〉 =
1√
2

(
|Eb

00〉 − |Eb
10〉
)
|0b〉+ 1√

2

(
|Eb

01〉 − |Eb
11〉
)
|1b〉. (12)

Replacing |0b〉 and |1b〉 on the right-hand sides with their values in terms of |0b〉 and |1b〉 i.e. |0b〉 =
1√
2
[|0b〉+ |1b〉] and |1b〉 = 1√

2
[|0b〉 − |1b〉] we obtain

U |0E〉|0b〉 =
1

2

[
|Eb

00〉+ |Eb
10〉+ |Eb

01〉+ |Eb
11〉
]
|0b〉

+
1

2

[(
|Eb

00〉 − |Eb
11〉
)

+
(
|Eb

10〉 − |Eb
01〉
)]
|1b〉 (13)

U |0E〉|1b〉 =
1

2

[(
|Eb

00〉 − |Eb
11〉
)
−
(
|Eb

10〉 − |Eb
01〉
)]
|0b〉

+
1

2

[
|Eb

00〉 − |Eb
10〉 − |Eb

01〉+ |Eb
11〉
]
|1b〉 (14)
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where the terms for |Eb
01〉 and |Eb

10〉 are parenthesized so that we can easily see that

pbe =
1

2

[
〈Eb

01|Eb
01〉+ 〈Eb

10|Eb
10〉
]

=
1

4

[
(〈Eb

00| − 〈Eb
11|)(|Eb

00〉 − |Eb
11〉) + (〈Eb

10| − 〈Eb
01|)(|Eb

10〉 − |Eb
01〉)
]
.

We expand this result by using the identities 〈φ|ψ〉 = 〈ψ|φ〉 and z + z = 2Re(z) for z ∈ C (here the
overline indicates the complex conjugate). Using equalities (3) and (4) we get

pbe =
1

4

[
2− 〈Eb

00|Eb
11〉 − 〈Eb

11|Eb
00〉 − 〈Eb

01|Eb
10〉 − 〈Eb

10|Eb
01〉
]

pbe =
1

2

[
1− Re

(
〈Eb

00|Eb
11〉+ 〈Eb

01|Eb
10〉
)]
. (15)

This Formula will be used to connect the disturbance induced by Eve when Alice encodes in the bj
basis bits ij such that sj = 1 to the information Eve can get when Alice encodes them in the bj basis.
Following the “Information versus Disturbance” [6] principle we will show that the more information
Eve gets when the encoding is in the b basis, the more disturbance she causes when the bits are encoded
and tested in the conjugate basis. Hence, we can bound Eve’s knowledge about the key by bounding the
allowed error-rate in the protocol.

2.5. Flat attacks with respect to basis b

Assume now that Eve’s attack U is fixed, and that P b̄
e is given by Eq. (15). We will present a virtual

attack that is proven to be better for Eve, as it induces a smaller error-rate. This virtual attack cannot be
executed by Eve since it requires knowledge of the basis b used by Alice (a knowledge that, of course,
Eve does not have at the stage in which she chooses her transformation U ). Still, the existence of such
an attack that is proven to be better for Eve, allows us to derive bounds on Eve’s knowledge when the
original attack (actually used by Eve) is applied.

Proposition 1. For each attack U with ρb0, ρb1 and pbe given by (6), (7) and (10), that satisfy

〈Eb
00|Eb

11〉+ 〈Eb
01|Eb

10〉 = eiθr for r ∈ R+ (16)

there exists U ′b with the same ρb0, ρb1 and pbe as U , which satisfy

〈E ′b00|E ′b11〉+ 〈E ′b01|E ′b10〉 = r. (17)

Proof. Let Sbθ : H2 → H2 be defined by Sbθ|0b〉 = |0b〉 and Sbθ|1b〉 = eiθ|1b〉. Sbθ is clearly unitary
and consequently so is 1Ej ⊗ Sθ : HE

j ⊗ H2 → HE
j ⊗ H2 where 1Ej is the identity on HE

j . Let U ′b =

U(1Ej ⊗ S−θ). U ′b is such that

U ′b|0〉|0b〉 = |Eb
00〉|0b〉+ |Eb

01〉|1b〉 = |φ′b0 〉, (18)

U ′b|0〉|1b〉 = e−iθ|Eb
10〉|0b〉+ e−iθ|Eb

11〉|1b〉 = |φ′b1 〉. (19)
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From those equalities it follows that ρb0 and ρb1 are left unchanged as can be seen from equations (6) and
(7). In the same way, the right hand side of (10) is also clearly left unchanged and so pbe is left unchanged.
Finally

〈E ′b00|E ′b11〉+ 〈E ′b01|E ′b10〉 = 〈Eb
00|e−iθEb

11〉+ 〈Eb
01|e−iθEb

10〉
= e−iθeiθr by (16)

= r.

The attack U ′b provides the same “view” ρb0, ρb1 to Eve, and the same probability of being detected if
the b basis is used. However, from Eq. (15) we see that it reduces pbe to the minimum value (15) can take,
because Re(z) ≤ |z| for any z ∈ C. This means that by replacing U by U ′b Eve’s probability of being
detected had the other basis been chosen can only decrease; U ′b is thus better for Eve, since she needs
to take into account all possible bases used by Alice. U ′b will be coined the “flat” attack associated to U
with respect to basis b. Since Eve is not aware of the basis b used, the flat attack is merely a mathematical
tool. Moreover it depends on b. However, by bounding Eve’s information when that basis is used we
will eventually get a bound on Eve’s information under the original attack.

In the more general case of bitstrings, since Eve’s view comes from the tensor product of density
matrices on individual qubits, using the flat attacks on all qubits does not change Eve’s global view, nor
the probability of error in the b basis. A flat attack will thus be flat for each qubit. In a flat attack (one
qubit case), there exist r ∈ R+ such that

〈Eb
00|Eb

11〉+ 〈Eb
01|Eb

10〉 = r, (20)

pbe =
1

2
(1− r). (21)

A short summary: we consider two possible cases for a specific qubit sent by Alice to Bob that is
attacked by Eve with a flat unitary transform U :

1. Alice and Bob use the b basis. Eve’s attack causes a bit-flip with probability
pbe = 1

2

[
〈Eb

01|Eb
01〉+ 〈Eb

10|Eb
10〉
]
.

2. However, if Alice and Bob use the b basis, Eve’s attack causes a bit-flip with probability pbe =
1
2

[
1− Re

(
〈Eb

00|Eb
11〉+ 〈Eb

01|Eb
10〉
)]

= 1
2
(1− r).

2.6. A purification

We now assume the attack is flat, i.e. it satisfies equations (3)–(5), (20), and also, as a result, equation
(21). Still working on a single qubit let us now define |ψb0〉 and |ψb1〉 as

|ψb0〉 = |Eb
00〉|0〉+ |Eb

01〉|1〉; |ψb1〉 = |Eb
11〉|0〉+ |Eb

10〉|1〉. (22)

where the (normalized and orthogonal) states |0〉 and |1〉 live in some Hilbert space H that need not
correspond to any physical reality (they are useful mathematical entities). If we trace states |ψb0〉〈ψb0| and
|ψb1〉〈ψb1| over the span of |0〉 and |1〉 in H , we get the states ρ0 and ρ1 respectively. The states |ψb0〉 and
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|ψb1〉 are thus called lift-ups of ρ0 and ρ1. Since they are also pure, they are said to be purifications of ρ0

and ρ1. Moreover they are normalized and by Eq. (20) their overlap is

〈ψb0|ψb1〉 = 〈Eb
00|Eb

11〉+ 〈Eb
01|Eb

10〉 = r. (23)

This establishes a direct relation between the overlap of |ψb0〉 and |ψb1〉 and the probability of error pbe.
Since the overlap r is real and positive, with 0 ≤ r ≤ 1, there is an angle α such that

cos(2α) = r = 〈ψb0|ψb1〉 0 ≤ α ≤ π/4.

As a consequence, we get

pbe =
1

2
[1− cos(2α)] = sin2(α) or sin(α) = (pbe)

1/2. (24)

Since 〈ψb0|ψb1〉 is real, it is equal to 〈ψb1|ψb0〉 and consequently the (non normalized) states |ψb0〉 + |ψb1〉
and |ψb0〉 − |ψb1〉 are orthogonal and their norms are

√
2 + 2 cos(2α) = 2 cos(α) and

√
2− 2 cos(2α) =

2 sin(α) respectively. We thus let

|0bH〉 =
1

2 cos(α)
[|ψb0〉+ |ψb1〉]; |1bH〉 =

1

2 sin(α)
[|ψb0〉 − |ψb1〉]. (25)

Using this basis, we can re-write the purification for x ∈ {0, 1}, as

|ψbx〉 = cos(α)|0bH〉+ (−1)x sin(α)|1bH〉. (26)

3. Proof of security of BB84 against collective attacks

3.1. Parity strings for the code and the key

We recall that bitstrings of length n are identified with elements of Fn
2 . Vector addition thus corre-

sponds to component-wise sum modulo 2 and thus to the eXclusive-OR of the corresponding bitstrings.
We denote a · b the scalar product (modulo 2) of the two strings a and b of the same length, e.g., for
n-bit strings, a · b =

∑n
i=1 aibi = a1b1 + . . . + anbn. Let {v1, . . . , vn} be a basis of Fn

2 . For any r′ let
Vr′ denote the span of {v1, . . . , vr′} and V c

r′ the span of {vr′+1, . . . , vn}; it is clear that Vr′ + V c
r′ = Fn

2 ;
moreover, if we let v, w ∈ Vr′ and v′, w′ ∈ V c

r′ then

v + v′ = w + w′ =⇒ v = w and v′ = w′. (27)

This property is normally summarized by saying that Fn
2 is the direct sum of Vr′ and V c

r′ , i.e., Vr′ +V c
r′ =

Fn
2 and Vr′ ∩ V c

r′ = {0}.
The vectors v1, . . . , vr are used as the rows of PC , the parity check matrix for the error correcting

code which yields the syndrome ξ = xPT
C ; the vectors vr+1, . . . , vr+m are used as the rows of a privacy

amplification matrix PK such that if x is the string sent by Alice, then the m-bit key is xPT
K . Let

dr,m , min
r≤r′<r+m

dH(vr′+1, Vr′) = min
r≤r′<r+m

dr′,1. (28)

This parameter on which security depends relates in terms of Hamming distance the parity strings used to
generate the key k to the parity strings used to generate the error correction information ξ. A large value
of dr,m will be shown to imply little information for Eve on the key k, given she knows ξ (Theorem 8).
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3.2. The Shannon distinguishability

We shall use SD(α, β) as it is defined in [4, 5] to denote the Shannon Distinguishability between
the state (or density matrix) α and the state (or density matrix) β. Consider the following protocol:
Sam chooses ‘0’ or ‘1’, randomly with equal probability. If Sam chooses ‘0’, he sends the state α
over to Rachel. Otherwise, he sends β. SD(α, β) is by definition Rachel’s accessible information i.e.
the maximum mutual information between Sam’s encoded bit and Rachel’s measurement of the state
she received. Notice that when α and β are orthogonal (thus they form a basis), Rachel can always
distinguish between them, and has information of exactly 1 bit about Sam’s chosen bit. On the other
hand, if α = β, Rachel can never distinguish between those states, and she has 0 bits of information.
Important result of the SD function are summarized in the following lemma:

Lemma 2. (a) If ρ̃x is a lift-up of ρx (where x ∈ {0, 1}), then SD(ρ0, ρ1) ≤ SD(ρ̃0, ρ̃1); (b) The
Shannon Distinguishability of two states can be bounded by half the Trace Norm of their difference:
SD(ρ0, ρ1) ≤ 1

2
tr |ρ0 − ρ1|

Proof. See [4, Theorem 1 and 2].

3.3. Representing states for bitstrings

Let s be a fixed string of length 2n with a 1 in positions j1, . . . , jn corresponding to the n information
bits. As in Eq. (9), given the basis string b′ = b′1 . . . b

′
n = bj1 . . . bjn and x = x1 . . . xn = ij1 . . . ijn we

define the state |ψb′
x 〉 =

⊗n
l=1|ψ

b′l
xl〉. Using (26), we write the state as

|ψb′

x 〉 =
n⊗
l=1

[cos(αl) |0l〉+ (−1)xl sin(αl) |1l〉] , (29)

where |0l〉 and |1l〉 represent the vectors |0b
′
l
H〉 and |1b

′
l
H〉 corresponding to the attack Ujl on the jl-th qubit

(the l-th information qubit). If for c = c1 . . . cn ∈ {0, 1}n we define

dc,l =

cos(αl) if cl = 0

sin(αl) if cl = 1
dc = dc,1 . . . dc,n

then
|ψb′

x 〉 =
∑

c∈{0,1}n
dc(−1)x·c |c〉 (30)

where |c〉 stands for |(c1)1 . . . (cn)n〉; for instance if c = 0100 then |c〉 is |01〉|12〉|03〉|04〉 with |0l〉 and
|1l〉 as defined above, and dc = cos(α1) sin(α2) cos(α3) cos(α4). We notice that the factors of d2

c can be
interpreted as probabilities, and from (24) we deduce

d2
c,l =

cos2(αl) = q
b′l
l if cl = 0

sin2(αl) = p
b′l
l if cl = 1

where pb
′
l
l is the probability of an error on the bit of index jl (the l-th information bit) when encoded and

measured in the conjuguate basis and qb
′
l
l = 1 − pb

′
l
l is the probability of no error on the same bit under

the same conditions.
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Due to the above, d2
c is the probability of having exactly the error string c on the bits ij such that sj = 1

when those bits are encoded and measured in the other basis. Since, according to the protocol, the bits
such that sj = 1 are the “information bits”, we will say, by abuse of language, that this is the probability
of error on information bits. If we represent by CI the random variable corresponding to the error in
Bob’s measurement of the information bits, and by BI the random variable giving the corresponding
basis string chosen by Alice then we can write, for c ∈ {0, 1}n, b ∈ {0, 1}2n and s ∈ {0, 1}2n such that
|s| = n,

d2
c = P [CI = c | BI = bs, s] (31)

where bs = b′ = b′1 . . . b
′
n. This probability is not conditional on the syndrome ξ; all possible errors are

taken into account here, even with values of x inconsistent with ξ.

3.4. Case of a one-bit key

We begin with proving the security of a 1-bit key, and then extend our proof to an arbitrary m-bit
length key. This case corresponds to m = 1 and the key (when not discarded) is x · vr+1 where x is
the string sent by Alice (that is, PK has only one row, which equals vr+1). Let ξ = xP T

C be the r bit
syndrome announced publicly by Alice and let us denote ρ̂0 and ρ̂1 Eve’s states corresponding to key 0
and key 1 respectively. Those states are obtained by normalizing the operators¶

ρk =
∑

x

∣∣ xPTC = ξ

x · vr+1 = k

ρb′

x

and, since tr(ρ0) = tr(ρ1) = 2n−r−1, ρ̂0 and ρ̂1 are equally likely, and

ρ̂k =
1

2n−r−1

∑
x

∣∣ xPTC = ξ

x · vr+1 = k

ρb′

x . (32)

Changing the attack to a flat one, does not change ρb
′
l
xl , and therefore does not change ρ̂k. Moreover, since

|ψb
′
l
xl〉〈ψ

b′l
xl | as defined in Equation (26) is a purification of ρb

′
l
xl , it follows that

ρ̃k =
1

2n−r−1

∑
x

∣∣ xPTC = ξ

x · vr+1 = k

|ψb′

x 〉〈ψb′

x | (33)

is a lift-up of ρ̂k. According to lemma 2, SD(ρ̂0, ρ̂1) ≤ SD(ρ̃0, ρ̃1) and SD(ρ̃0, ρ̃1) ≤ 1
2
tr |ρ̃0 − ρ̃1| and

thus
SD(ρ̂0, ρ̂1) ≤

1

2
tr |ρ̃0 − ρ̃1|. (34)

3.5. Calculating and bounding the trace norm for one bit: the Biham basis.

We now wish to bound 1
2
tr |ρ̃0 − ρ̃1| according to the specific attack Eve has performed. Taking

advantage of the fact that Vr′ + V c
r′ = Fn

2 and Vr′ ∩ V c
r′ = {0} (i.e. the sum is “direct”), equation (30)

¶State ρb
′

x is defined by (9) and (8).
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rewrites as
|ψb′

x 〉 =
∑
v∈V cr

(−1)x·v
∑
v′∈Vr

(−1)x·v
′
dv+v′ |v + v′〉. (35)

For each ξ ∈ {0, 1}r, let iξ be a fixed n-bit string such that iξP T
C = ξ. By definition of the syndrome,

ξ = xP T
C and thus (x − ξ)P T

C = 0, i.e. (x − iξ) is a code word of C. Since every string v′ in the dual
code C⊥ = Vr is orthogonal to every code word, we get that v′(x − iξ) = 0 and thus v′x = v′iξ. It
follows that

|ψb′

x 〉 =
∑
v∈V cr

(−1)x·v
∑
v′∈Vr

(−1)iξ·v
′
dv+v′|v + v′〉.

If we define |ηv〉 =
∑

v′∈Vr(−1)iξ·v
′
dv+v′ |v + v′〉, we conclude with

|ψb′

x 〉 =
∑
v∈V cr

(−1)x·v|ηv〉. (36)

Lemma 3. The non normalized states |ηv〉 for v ∈ V c
r are orthogonal.

Proof.

〈ηv1|ηv2〉 =
∑
v′1∈Vr

(−1)iξ·v
′
1dv+v′〈v1 + v′1|

∑
v′2∈Vr

(−1)iξ·v
′
2dv2+v′2

|v2 + v′2〉.

If 〈v1 + v′1|v2 + v′2〉 6= 0, then v1 + v′1 = v2 + v′2 which, by (27), implies v1 = v2 (and v′1 = v′2).

The |ηv〉 thus provide an orthogonal (but not orthonormal) basis with which we can simply represent
|ψb′

x 〉, as shown in (36).
Using (33) we get

ρ̃0 − ρ̃1 =
1

2n−r−1

∑
x

∣∣ xPTC = ξ

x · vr+1 = 0

|ψb′

x 〉〈ψb′

x | −
1

2n−r−1

∑
x

∣∣ xPTC = ξ

x · vr+1 = 1

|ψb′

x 〉〈ψb′

x |.

The set of elements {x | xP T
C = ξ} is the code coset containing the string iξ, namely, {c + iξ | c ∈ C},

where for every different element c, the string c+ iξ represents a different possible x. Moreover, the final
key bit k can be written as (c+ iξ) · vr+1 and using (36), we get

ρ̃0 − ρ̃1 =
1

2n−r−1

∑
c∈C

(−1)(c+iξ)·vr+1|ψb′

c+iξ
〉〈ψb′

c+iξ
|

=
1

2n−r−1

∑
c∈C

(−1)(c+iξ)·vr+1

∑
m∈V cr

(−1)(c+iξ)·m|ηm〉
∑
m′∈V cr

(−1)(c+iξ)·m′〈ηm′ |

which can be written as

ρ̃0 − ρ̃1 =
1

2n−r−1

∑
m,m′∈V cr

(−1)(m+m′+vr+1)·iξ

(∑
c∈C

(−1)(m+m′+vr+1)·c

)
|ηm〉〈ηm′ |. (37)

Lemma 4. For every Linear Code C,

∑
c∈C

(−1)c·w =

{
|C| w ∈ C⊥

0 else,
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Proof. If w ∈ C⊥ then c · w = 0 for every c ∈ C by the definition of C⊥. Otherwise, let {β1 . . . βk}
be a basis of C over F2. Every codeword c ∈ C can be written in a unique way as a linear combination
c = α1β1 + . . . + αkβk with (α1, . . . , αk) ∈ Fk

2. Since w /∈ C⊥ there is i such that βi · w 6= 0. Assume
wlg that β1 · w = 1; then∑

c∈C

(−1)c·w =
∑

(α1,...,αk)∈Fk2

(−1)(α1β1+...+αkβk)·w

= [(−1)0 + (−1)1]
∑

(α2,...,αk)∈Fk−1
2

(−1)(α2β2+...+αkβk)·w = 0.

By Lemma 4, the parenthesized factor in the right-hand side of (37) is zero unless m +m′ + vr+1 ∈
C⊥ = Vr, however, m,m′, vr+1 ∈ V c

r , and so is their sum. Thus, when the parenthesized factor is not
zero, m+m′ + vr+1 must equal 0, since Vr ∩ V c

r = {0}. The resulting sum must equal |C| = 2n−r. The
equality m+m′ + vr+1 = 0 rewrites as m′ = m+ vr+1 and (37) reduces to

ρ̃0 − ρ̃1 = 2
∑
m∈V cr

(−1)(m+(m+vr+1)+vr+1)·iξ |ηm〉〈ηm+vr+1 |

= 2
∑
m∈V cr

|ηm〉〈ηm+vr+1|.

Therefore we conclude that

1

2
tr |ρ̃0 − ρ̃1| = tr

∣∣∣∣∣∣
∑
m∈V cr

|ηm〉〈ηm+vr+1|

∣∣∣∣∣∣ . (38)

By Lemma 3, 〈ηm|ηn〉 = 0 if m 6= n with m,n ∈ V c
r . If we let 〈ηm|ηm〉 = d2

ηm we get,
∑

m∈V cr
d2
ηm = 1

by (36). Let us rewrite the |ηm〉 for m ∈ V c
r as |ηm〉 = dηm|η̂m〉 with 〈η̂m|η̂n〉 = δm,n for m,n ∈ V c

r . It
is known that for any operator A, |A| =

√
A†A and thus‖

tr

∣∣∣∣∣∣
∑
m∈V cr

|ηm〉〈ηm+vr+1 |

∣∣∣∣∣∣ = tr

√∑
m∈V cr

|ηm〉〈ηm+vr+1|
∑
m′∈V cr

|ηm′+vr+1〉〈ηm′|

= tr

√ ∑
m,m′∈V cr

|ηm〉〈ηm+vr+1|ηm′+vr+1〉〈ηm′|

= tr

√∑
m∈V cr

d2
ηm+vr+1

d2
ηm|η̂m〉〈η̂m|

=
∑
m∈V cr

dηm+vr+1
dηm

where the last equation follows directly from the spectral decomposition that figures under the square
root. Using the fact that V c

r = V c
r+1 ∪

(
vr+1 + V c

r+1

)
and that this union is disjoint, we deduce

1

2
tr |ρ̃0 − ρ̃1| = 2

∑
m∈V cr+1

dηmdηm+vr+1
. (39)

In order to bound this result we use the following Lemma,

‖Here A is Hermitian, therefore |A| =
√
AA†.
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Lemma 5. Let I be any set, s : I → I be such that s2 = 1I and pi ≥ 0 with
∑

i∈I pi ≤ 1. Let I ′ ⊆ I

and E ⊆ I such that I ′ ∩ s(I ′) = ∅ and I ′ ⊆ E ∪ s(E); then∑
i∈I′

√
pips(i) ≤

√∑
i∈E

pi .

Proof. For i ∈ I ′, if i /∈ E let h(i) = s(i) ∈ E and h(s(i)) = i, else let h(i) = i ∈ E and h(s(i)) = s(i).
This function is well defined because i and s(i) cannot be both in I ′. Moreover h(h(i)) = i and h is thus
1–1 on I ′. ∑

i∈I′

√
pips(i) =

∑
i∈I′

√
ph(i)
√
ps(h(i)) ≤

√∑
i∈I′

ph(i)

√∑
i∈I′

ps(h(i)) ≤
√∑

i∈E

pi

the first inequality being justified by Schwartz inequality.

We now use the lemma. Let I = V c
r , I ′ = V c

r+1, s(m) = m + vr+1; clearly I ′ ∩ s(I ′) = ∅ and
s2 = 1I . Let also E = {m ∈ I | dH(m,Vr) ≥ dr,1/2} where dr,1 was defined as the smallest Hamming
distance between vr+1 and the elements of Vr. For the lemma to apply, we need to show that I ′ ⊆
E ∪ s(E). If m ∈ I ′ was such that m /∈ E and m /∈ s(E) then s(m) /∈ E, dH(m,Vr) < dr,1/2 and
dH(m + vr+1, Vr) < dr,1/2; this implies dH(vr+1, Vr) < dr,1, contrary to the definition of dr,1. By the
definition of E, if c = m+ v′ for m ∈ E and v′ ∈ Vr then |c| ≥ dr,1/2. Consequently, letting pm = d2

ηm

for m ∈ I ,
∑

m∈I pm = 1 and

(
1

2
tr |ρ̃0 − ρ̃1|

)2

= 4

 ∑
m∈V cr+1

dηmdηm+vr+1

2

By (39)

≤ 4

√∑
m∈E

d2
ηm

2

By Lemma 5

= 4
∑
m∈V cr

dH(m,Vr)≥dr,1/2

∑
v′∈Vr

d2
m+v′ ≤ 4

∑
|c|≥dr,1/2

d2
c .

Using Lemma 2 (Eq. 34), we get

SD(ρ̂0, ρ̂1) ≤
1

2
tr |ρ̃0 − ρ̃1| ≤ 2

√ ∑
|c|≥dr,1/2

d2
c . (40)

Note that this result is identical to the bound derived in [5, Lemma 4.5 (Eq. D.8)]. This result is much
better than the loose bound [5, Lemma D.2 (Eq. D.3)] which is based on the methods of [4].

As a consequence, using (31) we get

SD(ρ̂0, ρ̂1) ≤ 2
√
P
[
|CI | ≥ dr,1/2 | BI = b′, s

]
. (41)

3.6. Bounding Eve’s accessible information

We now rewrite more carefully inequality (41) so as to be able to take into account all the parameters
that were fixed and that we will now let vary in order to average Eve’s information on the entire range of
these parameters.
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Let c = i + iB, the exclusive-or of the 2n-bit string sent by Alice and of the one measured by Bob.
Each index 1 ≤ l ≤ 2n such that cl = 1 corresponds to a mismatch in Bob’s bit value with respect to
the value sent by Alice. If sl = 1 the bit is an “information bit” and if sl = 0 it is a “test bit”. The
corresponding “error on the information bits” is thus cs and the error on the test bits is cs. The random
variable corresponding to cs and cs̄ are denoted CI and CT respectively; they depend on b and s. In
order to lighten the notation, we will write P [CI = cs | b, s] to mean the probability that the error
string on the bits such that si = 1 be cs conditional to Alice having used the basis string b and the
selection string s. As a consequence, P [CI = cs | b + s, s] denotes the probability that the error string
on information bits be cs if the selection string is s and the basis string is b + s, i.e. is just the same as
b but all the bases corresponding to the positions selected by s (of the information bits) are replaced by
their conjuguates. Equations (31) and (41) can now be rewritten more cleanly as

d2
cs

= P [CI = cs | b + s, s] = P [CI = cs | cs̄,b + s, s] (42)

SD(ρ̂0, ρ̂1) ≤ 2
√
P [|CI | ≥ dr,1/2 | b + s, s] (43)

where in the right hand side of (42) we use the fact that qubits are attacked independently, the error on
information bits thus being independent of the error cs̄ on test bits. Equation (43) was derived for a
(virtual) flat attack associated to b. That flat attack had the same ρ̂0 and ρ̂1 as the original attack, and
could only give a lower error rate in the conjuguate bases. As a consequence equation (43) also holds for
the original attack U and from now on, the probability of error on the right-hand side will be understood
to be the one induced by the original attack U = U1 ⊗ . . .⊗ U2n.

For any such fixed attack U , Eve’s information depends only on the syndrome ξ, the characteristic
string s for the information bits, and the corresponding bases of the information string bs (yet, as said,
we use the entire 2n-bit string b).

Corollary 6. For a 1-bit key k,

I(K;E | b, s, ξ, cs̄) = I(K;E | b, s, ξ) ≤ 2

√
P

[(
|CI | ≥

dr,1
2

)
| b + s, s

]
(44)

where K is the random variable giving as output key k and E is the random variable corresponding to
the outputs of Eve’s (optimal) measurement.

Proof. This follows from the fact that SD(ρ̂0, ρ̂1) is Eve’s accessible information on k if she holds ρ̂k
given by (32). These states correspond to Eve’s state when Alice encodes the key-bit k assuming Eve
learns ξ, b and s. Eve’s information also depends in principle on cs̄ but since her attack on a qubit is
independent of the other qubits, the bits of cs̄ have no influence on her state and may be omitted from
the parameters on which Eve’s information I depends.

Proposition 7. For an m-bit key k,

I(K;E | b, s, ξ, cs̄) = I(K;E | b, s, ξ) ≤ 2m

√
P

[(
|CI | ≥

dr,m
2

)
| b + s, s

]
. (45)
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Proof. This follows from Corollary 6 by applying the chain rule for mutual information. Details of the
proof can be found in [5, Section 4.5].

The value we want to bound is Eve’s expected information, assuming Eve gets no information if the

test fails, which happens when
|cs̄|
n

> pa. If we let

I(pa)(K;E | b, s, ξ, cs̄) =

I(K;E | b, s, ξ) if
|cs̄|
n
≤ pa

0 otherwise
(46)

then the accessible information to bound, denoted∗∗〈I(pa)
Eve 〉, is given by

〈I(pa)
Eve 〉 =

∑
b,s,ξ,cs̄

I(pa)(K;E | b, s, ξ, cs̄)p(b, s, ξ, cs̄). (47)

Theorem 8.

〈I(pa)
Eve 〉 ≤ 2m

√
P

[( |CI |
n
≥ dr,m

2n

)
∧
( |CT |

n
≤ pa

)]
(48)

where
|CT |
n

is the random variable corresponding to the error rate on test bits and
|CI |
n

is the random
variable corresponding to the error rate on the information bits.

Proof. The function x2 is convex, i.e. (
∑

i pixi)
2 ≤

∑
i pix

2
i for pi ≥ 0,

∑
i pi = 1. We apply this to the

square 〈I(pa)
Eve 〉2 of the information we want to bound.

〈I(pa)
Eve 〉

2 =

 ∑
b,|s|=n,ξ,cs̄

I(pa)(K;E | b, s, ξ, cs̄)p(b, s, ξ, cs̄)

2

by (47)

≤
∑

b,|s|=n,ξ,cs̄

I2
(pa)(K;E | b, s, ξ, cs̄)p(b, s, ξ, cs̄) by convexity of x2

≤
∑

b,|s|=n,ξ, |cs̄|
n
≤pa

I2(K;E | b, s, ξ)p(b, s, ξ, cs̄) by (46)

≤ 4m2
∑

b,|s|=n,ξ, |cs̄|
n
≤pa

P

[(
|CI | ≥

dr,m
2

)
| cs̄,b + s, s

]
p(b, s, ξ, cs̄) by (45) and (42)

= 4m2
∑

b,|s|=n, |cs̄|
n
≤pa

P

[(
|CI | ≥

dr,m
2

)
| cs̄,b + s, s

]
p(b, s, cs̄).

Since the test bits are unaffected by replacing the basis of the information bits:

p(b, s, cs̄) = p(cs̄ | b, s)p(b, s) = p(cs̄ | b+ s, s)p(b, s) = p(cs̄ | b+ s, s)p(b+ s, s) = p(cs̄,b+ s, s),

and, letting b̃ = b + s,

〈I(pa)
Eve 〉

2 ≤ 4m2
∑

b̃,|s|=n, |cs̄|
n
≤pa

[(
|CI | ≥

dr,m
2

)
| cs̄, b̃, s

]
p(cs̄, b̃, s)

∗∗The notation in [5] is 〈I ′Eve〉, the value pa being fixed.
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= 4m2
∑

b̃,|s|=n

P

[(
|CI | ≥

dr,m
2

)
∧
(
|CT |
n
≤ pa

)
| b̃, s

]
p(b̃, s)

= 4m2P

[(
|CI | ≥

dr,m
2

)
∧
(
|CT |
n
≤ pa

)]
(49)

3.7. Proof of security

Following the point of view of [5] we choose a code such that
dr,m
2n

> pa + ε for some ε; the right-

hand side of (48) is then less than P
[(
|CI |
n

> pa + ε

)
∧
(
|CT |
n
≤ pa

)]
which itself is exponentially

small in n. For each particular string c1 . . . c2n corresponding to a measurement of all qubits in some
admissible basis b we can apply Hoeffding’s sampling (Theorem 10). LetX = |CI |

n
be the average of the

sample corresponding to erroneous information bits; µ = |CI |+|CT |
2n

is the expectancy of X . |CT |
n
≤ pa

is equivalent to 2µ − X ≤ pa, or equivalently, to X − µ ≥ µ − pa. For the population c1, . . . , c2n the

conditions
(
|CI |
n

> pa + ε

)
and

(
|CT |
n
≤ pa

)
then rewrite to

(
X − µ > ε+ pa − µ

)
∧
(
X − µ ≥ µ− pa

)
(50)

which implies 2(X − µ) > ε and using Hoeffding’s theorem (Theorem 10)

P

[(
|CI |
n

> pa + ε

)
∧
(
|CT |
n
≤ pa

)]
≤ P

[
X − µ > ε

2

]
≤ e−

1
2
nε2 . (51)

The above discussion gives the following

Theorem 9. Let us be given δ > 0,R > 0 and, for infinitely many values of n, a family {vn1 , . . . , vnrn+mn}
of linearly independent vectors in Fn

2 such that δ ≤ drn,mn
n

and mn
n
≤ R. Then for any pa > 0 and

εsec > 0 such that pa + εsec ≤ δ
2
, Eve’s accessible information satisfies the following bound

〈I(pa)
Eve 〉 ≤ 2Rne−

ε2sec
4
n.

All we need to guarantee security is thus vectors {vn1 , . . . , vnrn+mn} satisfying the conditions of the
theorem. Such families were proven to exist in [5].

3.8. Reliability

For the key to be reliable, we need to be sure that the error rate on the information bits is less than
the maximal rate that the error correcting code can handle. The maximum number of errors for our code
will be fixed to n(pa + εrel). For the code to be reliable with exponentially small probability of failure,
we need

P

[(
|CI |
n

> pa + εrel

)
∧
(
|CT |
n
≤ pa

)]
≤ e−

1
2
nε2rel .

For any fixed set of used bits, the test bits and the information bits is a random partition with two subsets
of size n and the argument used in the previous section applies. The same requirement figures in [5].
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4. Conclusions and Discussion

In this paper we have analyzed the security of the BB84 protocol against any collective attack using
the methods and tools used in proving security against the more powerful joint attack. By doing this we
maintain the security proof relatively simple, yet we achieve a far more meaningful result than previously
achieved for the collective attack [4]. The basic idea of this paper can also be found in a presentation
given by one of us (M.B.), at the Technion [7].

The same theorems (8 and 9) proven in this paper, are also obtained by [5] for the joint attack. This
result leads to an asymptotic error-rate threshold of 7.56%††, the same asymptotic result obtained for the
joint attack in [5, 8]. Note that these results are not just asymptotical but also explicit in the sense that
for every ε and every threshold smaller than (7.56 − ε), a sufficiently large number n can explicitly be
calculated such that the final key is reliable and secure. Explicit numbers expressing the reliability and
security can also be obtained. To the best of our knowledge, such explicit results were not obtained via
the methods shown in [9]. The threshold of 7.56% obtained here and in [5, 8] still has a gap from the
asymptotical threshold of 11% reported by [9]. This gap can be explained by the different choice of
privacy amplification, see for instance [5, 10, 11].

Other researchers also reached very interesting results regarding the collective attack and its relations
to the joint attack, via other methods. See for instance [12, 13] in which it is proven that security against
collective attacks implies security against joint attacks. However, their definition of the collective attack
is not identical to the definition given in [2], which is used in [3, 4] and in the current paper. Furthermore,
the conjecture that the strongest joint attack is a collective attack is not addressed by [12, 13] and remain
an open problem. We leave the comparison of our result to the results obtained via these other methods
for a future research.
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A Hoeffding’s theorem

Theorem 10 (Hoeffding 1963). Let X1, ..., Xn be either

1. independent random variables with finite first and second moments such that ai ≤ Xi ≤ bi

(1 ≤ i ≤ n)

2. or a random sample of size n without replacement taken from a population c1, ...cN such that
ai ≤ ci ≤ bi (1 ≤ i ≤ N )

let X = (X1 + ...+Xn)/n and µ = E[X] be the expectancy of X , then for any ε > 0

Pr
[
X − µ ≥ ε

]
≤ e−2n2ε2/

∑n
i=1(bi−ai)2

.

In the same way Pr
[
µ−X ≥ ε

]
≤ e−2n2ε2/

∑n
i=1(bi−ai)2 . In case (2), µ = 1/N

∑N
i=1 ci, i.e. the

expectancy of a sample mean is equal to the population mean. Theorem 10 can be found in [14].
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