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Abstract: As the rapid advance of digital imaging technologies, the content-based image 

retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the 

last several years, developing computer-aided detection and/or diagnosis (CAD) schemes 

that use CBIR to search for the clinically relevant and visually similar medical images (or 

regions) depicting suspicious lesions has also been attracting research interest. CBIR-based 

CAD schemes have potential to provide radiologists with “visual aid” and increase their 

confidence in accepting CAD-cued results in the decision making. The CAD performance 

and reliability depends on a number of factors including the optimization of lesion 

segmentation, feature selection, reference database size, computational efficiency, and 

relationship between the clinical relevance and visual similarity of the CAD results. By 

presenting and comparing a number of approaches commonly used in previous studies, this 

article identifies and discusses the optimal approaches in developing CBIR-based CAD 

schemes and assessing their performance. Although preliminary studies have suggested that 

using CBIR-based CAD schemes might improve radiologists’ performance and/or increase 

their confidence in the decision making, this technology is still in the early development 

stage. Much research work is needed before the CBIR-based CAD schemes can be accepted 

in the clinical practice. 

Keywords: computer-aided diagnosis (CAD); content-based Image Retrieval (CBIR); 

medical imaging; technology assessment 
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1. Introduction 

In the clinical practice of reading and interpreting medical images, clinicians (i.e., radiologists) 

often refer to and compare the similar cases with verified diagnostic results in their decision making of 

detecting and diagnosing suspicious lesions or diseases. However, searching for and identifying the 

similar reference cases (or images) from the large and diverse clinical databases (either the 

conventional film/paper based libraries or advanced digital image storage systems) is a quite difficult 

task. The advance in digital technologies for computing, networking, and database storage has enabled 

the automated searching for clinically relevant and visually similar medical examinations (cases) to the 

queried case from the large image databases. There are two types of general approaches in medical 

image retrieval namely, the text (or semantic) based image retrieval (TBIR) and the content-based 

image retrieval (CBIR). Currently, the most of available search systems (or tools) developed and 

implemented in medical informatics and picture archiving and communication systems (PACS) use 

TBIR schemes that are based on the annotated textual information to select similar or clinically 

relevant references (cases) [1-4]. This approach is typically limited to retrieve or select the same type 

of medical images (i.e., mammograms or CT brain images). However, the relevant clinical information 

depicted on medical images is locally presented (i.e., breast masses depicted on mammograms and 

emphysema lesions depicted on lung CT images). In the clinical practice of reading and interpreting 

medical images, the nature of the queried suspicious regions is often un-determined. Thus, the CBIR is 

the only available and reliable approach to retrieve the clinically relevant (reference) cases along with 

the proven pathology and other related clinical information. As a result, developing CBIR schemes has 

been attracting extensive research interest in the areas of medical informatics and PACS for the last 

decade [5-10]. Despite the fact that CBIR approach is still in its early development stage facing many 

technical challenges (i.e., region segmentation, semantic gap, and computational efficiency), as the 

digital medical images are produced in ever increasing quantities and used for diagnosis and therapy, 

the researchers believe that the advance of CBIR development will play more and more important role 

in future medical image diagnosis and patient treatment (or management) [11]. 

In medical imaging areas, developing computer-aided detection and/or diagnosis (CAD) schemes 

has also been a very active research topic for the last two decades. The CAD schemes have been 

developed for variety of medical images including but not limited to mammograms (i.e., detecting 

breast masses and micro-calcification clusters [12]), lung CT images (i.e., detecting lung nodules [13], 

interstitial lung diseases [14], chronic obstructive pulmonary disease [15], and pulmonary embolism 

[16]), CT colonography [17], and pathology images (i.e., fluorescent in situ hybridization (FISH) 

images for diagnosing breast cancer [18] and metaphase chromosome images for detecting leukemia 

[19]). Among these different types of CAD schemes, CAD of mammograms is the most mature one. 

The commercialized CAD systems of mammograms have been routinely used in the clinical practice 

in a large number of medical institutions in USA and other countries to assist radiologists in detecting 

breast abnormalities (by highlighting or cueing the locations depicting the suspicious micro-

calcification clusters and masses) [12]. Previous studies have shown that using CAD improves 

radiologists’ efficiency in searching for and detecting micro-calcification clusters as well as helps them 

detect more cancers associated with malignant micro-calcifications [20, 21]. However, the majority of 

CAD-cued false-negative cancers associated with malignant masses (that are overlooked by 
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radiologists in their originally image interpretation) are discarded again by the radiologists as false-

positives in the clinical environment [22, 23]. Such errors are primarily caused by (1) the relatively 

low performance of CAD schemes in mass detection (i.e., the higher false-positive rates [24] and cuing 

the majority of subtle masses only on one view [25]) and (2) the inability to explain the reasoning of 

the CAD decision-making (the “black-box” type approach). While the clinical benefit of using current 

commercially available CAD systems is still under debate and test [26, 27], researchers have been 

actively working on developing a new type of CAD schemes using CBIR approaches [28-36].  

Unlike the conventional CAD schemes that detect and cue the suspicious abnormalities based on a 

“global” optimization function trained using the completely available image database, the CAD 

schemes using CBIR approaches apply an adaptive approach to generate each detection and/or 

diagnostic result based on the selection of different hypotheses or local approximations as the target 

function for each unknown query (a suspicious testing region) [37]. Specifically, for each initially 

automatically detected or manually queried suspicious “lesion” depicted on one testing image, the 

CAD scheme segments the suspicious region and computes the likelihood of this “lesion” being 

associated with true-positive lesion (i.e., cancer) based on comparison with a set of “similar lesions” 

that are retrieved and selected by the CBIR algorithm from the available reference databases. Because 

the status of all selected references (“similar lesions”) have been previously verified, researchers have 

also proposed to develop the intelligent or interactive CAD schemes that aim to provide radiologists 

“visual aid” by displaying both CAD-generated detection (or diagnostic) scores and the selected 

“similar” images on CAD workstations. Preliminary observer performance studies suggested that using 

this “visual aid” tool could improve radiologists’ performance in classifying between malignant and 

benign masses [38] as well as increase radiologists’ confidence to accept CAD-cued results (detection 

scores) in their decision making [39].  

Despite of great research interest and the significant progress made in the last several years, 

developing CAD schemes using CBIR approaches is still in its early stage. Before such a CAD scheme 

can be routinely accepted and applied in the clinical practice, much research work is still needed. This 

article takes CAD of breast masses depicted on mammograms as an example to review and discuss 

several primary issues in developing CAD schemes using CBIR approaches and evaluating their 

performance and reliability. The discussed development and evaluation concepts should also be 

applicable to CAD schemes for other types of medical images and diseases. 

2. Overview of CAD scheme using CBIR approach 

Figure 1 illustrates a dataflow diagram of a typical CAD scheme using the CBIR approach. The 

scheme includes following primary components. First, the scheme either automatically searches for 

and detects the initial seed of a suspicious region or accepts the queried seed of a suspicious region 

identified by the human observer (i.e., a radiologist). This step allows the observers to either examine 

the originally CAD-cued suspicious masses or require (force) CAD to detect and analyze the specific 

suspicious mass regions that are not initially cued by the CAD scheme. Second, from the detected or 

queried seed, CAD scheme applies a region growth algorithm to segment the suspicious mass region 

(defining the boundary contour). The accuracy of suspicious region segmentation determines the 

accuracy of extracted and computed image features used in CBIR algorithm. Third, the scheme 
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extracts and computes a set of image features from the segmented region and its surrounding 

background. This step aims to search for and identify effective image features that should reduce the 

“semantic gap” between computer vision and human vision. Fourth, the scheme may early discard a 

substantial fraction of images stored in the reference image database. Although the performance and 

robustness of all CAD schemes heavily depends on the size and diversity of reference databases, the 

CAD schemes using CBIR approaches use an adaptive and “local” approximation method in which 

only a small number of references have direct impact on the detection or classification of the 

specifically queried ROI when using the CBIR algorithm. Thus, early discarding the majority of 

reference ROIs with relatively lower correlation to the queried ROI is also an important step to 

improve the computational efficiency of the CAD scheme. Fifth, the scheme applies a CBIR algorithm 

to compare and retrieve a set of K reference images (or ROIs) that are considered the “most similar” to 

the queried mass (or ROI). The searching and retrieving result of the CBIR algorithm depends on the 

effectiveness of the summary index or criterion (i.e., distance metric) to measure the “similarity” level 

among the selected images. Sixth, based on the similarity levels of the retrieved reference ROIs to the 

queried ROI and their verified outcomes (i.e., either positive or negative), CAD scheme computes a 

likelihood (detection or classification) score of the queried ROI being associated with a positive (or 

malignant) mass.  

Figure 1: Illustration of a CAD scheme using the CBIR approach. 
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Unlike the conventional CAD schemes (i.e., the current commercialized CAD) that only highlight 

the locations of the detected suspicious regions depicted on each image, the CAD schemes using CBIR 

approaches can typically display CAD-generated detection scores along with a set of similar images or 

ROIs on the CAD workstation. For example, when applying an interactive CAD scheme to process one 

image (Figure 2), the CAD scheme automatically detects one suspicious mass region. If the detected 

region is queried by the observer, the CAD scheme applies all processing steps as shown in Figure 1 to 

analyze this queried ROI. Finally, the scheme will provide observers two likelihood scores and a set of 

the “most similar” reference ROIs depicting suspicious masses with verified outcome. Figure 2 shows 

the location and automatically segmented boundary contour of the queried ROI depicted on the image 

(mammogram), a set of 12 “similar” ROIs selected by the CBIR algorithm, and two likelihood scores. 

The detection score of 0.96 indicates that the likelihood of this region representing a true-positive mass 

region is 96%, while the classification score of 0.74 represents that the likelihood of this region being 

malignant is 74% (if this is a true-positive mass). The detection score is computed using the similar 

approach of the conventional CAD schemes (i.e., a globally pre-optimized artificial neural network 

(ANN) [40]) in the first step of the CAD scheme before the region is queried (Figure 1). The 
classification score ( TPP ) is typically computed based on the distribution of similarity levels (w) of K 

reference images (ROIs) selected by the CBIR algorithm using either one of the following two 

equations: 
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where N is the number of malignant mass regions (TP) and M is the number of non-cancer regions 

(FP) including ROIs depicting either benign masses or CAD-cued false-positive regions [41].  
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Figure 2: Example of applying a CAD scheme using CBIR approach to detect and classify 

a suspicious breast mass region. A suspicious mass is automatically detected by CAD 

scheme and queried by the observer (pointed by the arrow). In CAD workstation, the mass 

region segmentation (boundary contour), 12 CBIR-selected similar ROIs, and both 

detection and classification scores are displayed. Among the 12 similar ROIs, 8 depict 

malignant masses (marked by Red frame), 2 depict benign masses (marked by Green 

frame), and 2 depict CAD-cued false-positive regions (marked by Blue frame). 

 

 

Using the CBIR-based CAD scheme as demonstrated in Figure 1, radiologists can query any 

suspicious mass regions depicted on the testing images and view both CAD-generated results (the 

detection score) and CBIR-generated results (a set of similar reference images or ROIs) for each 

queried ROI. Although the CAD schemes using CBIR approaches provide radiologists “visual aid,” 

developing this type of CAD scheme is much more difficult. The performance and reliability of this 

type of CAD schemes depends on a number of factors (or issues) including the optimization of lesion 

segmentation, feature selection, reference database size, computational efficiency, and relationship 

between the clinical relevance and visual similarity of the CAD results. The following sections of this 

article discuss the research progress and remaining challenges in these issues. 
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3. Region Segmentation 

Since in medical images the diseases are typically represented by local-oriented patterns surrounded 

and/or overlapped by the normal tissues, accurately segmenting the targeted suspicious regions is an 

important step in CAD development. Studies have shown that in general, the region segmentation error 

had substantially higher negative impact on (1) the CAD schemes that are used to classify between 

malignant and benign lesions than those that are applied to detect the presence of the suspicious lesions 

[42, 43], and (2) the CAD schemes using the CBIR approaches than the conventional CAD schemes 

because the adaptive or “local” based optimization methods used in CBIR algorithm is much more 

sensitive to the segmentation error than many of the “globally” optimized classifiers (i.e., an artificial 

neural network) [37]. Therefore, segmentation of images into meaningful and homogenous regions is 

the first key method for image analysis within CBIR applications [44].  

To improve accuracy and reliability of mass region segmentation, a large number of computing 

algorithms have been proposed, developed, and tested in this area, which include but not limited to 

multi-layer topographic region growth algorithm [45, 46], active contour (snake) modeling [47, 48], 

adaptive region growth [49], a radial gradient index (RGI)-based modeling [50], a dynamic 

programming-based boundary tracing (DPBT) algorithm [51], and level set algorithm [52]. Due to the 

diversity of breast masses and overlap of breast tissue in the 2D projected images as well as the limited 

testing datasets, it is very difficult to compare the performance and robustness of these segmentation 

methods as well as to find out which one is always superior to the other segmentation algorithms in 

different image databases [11, 53]. The mass region segmentation accuracy determines whether CAD 

schemes enable to accurately extract and compute useful image features to detect and classify 

suspicious regions. For example, the spiculation level of mass boundary margin plays an important 

role in detecting and classifying breast masses [54]. However, since the majority of CAD schemes for 

detecting breast masses are applied to the sub-sampled images (i.e., sub-sampling the originally 

digitized image of 50µm × 50µm pixel size by 8 folds in two dimensions to generating the lower 

spatial resolution image with 400µm × 400µm pixel size), accurately segmenting the spiculated breast 

mass regions becomes quite difficult. A number of research groups have developed different image 

processing algorithms to detect spiculated masses and measure the spiculation related features [34, 55-

57]. These studies typically presented or concluded the segmentation results by showing a few 

examples and did not report or compare the actual accuracy of detecting spiculation levels of the mass 

regions. Recently, one study developed another algorithm to segment mass regions and detect the 

region spiculation levels [58]. The unique characteristic of this study is that the researchers applied the 

algorithm to a publicly available image dataset with the subjective classification results provided by 

the radiologists and used the receiver operating characteristic (ROC) method to assess the performance 

of the algorithm in classifying this set of images into two groups of images depicting either spiculated 

or non-spiculated (circumscribed) mass regions. Although the reported classification performance was 

relatively lower (with the area under ROC curve = 0.701±0.027), it provided an example and 

comparison base of how to assess and report the progress in segmenting spiculated masses for the 

future studies. 

Despite of great research efforts, accurately segmenting mass regions remains a technical challenge 

[53] and its results substantially affects the accuracy of computed image features (i.e., mass region size 
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or volume and boundary margin spiculation level). Hence, due to the lack of a reliable (or robust) 

algorithm for segmenting masses surrounded and overlapped by complex (e.g., heterogeneously dense) 

breast tissues using 2D projected mammograms [11], some of previous studies used the semi-

automated method with manual correction to segment identified mass regions with fuzzy boundary in 

an attempt to improve accuracy of computed image features [32, 34]. To avoid the issue of mass region 

segmentation, the other researchers used ROIs with fixed size (i.e., 512 × 512 pixels) and pixel-value 

distribution based template matching method (i.e., mutual information) in developing CAD schemes 

[59]. Due to the large variation of mass region sizes, it is extremely difficult to identify a universal 

fixed ROI size that can optimally compensate the diverse masses depicted on a large image database. 

One recent study compared the performance difference when applying the CAD schemes using either 

mutual information or Pearson’s correlation based CBIR algorithms to a set of testing ROIs with either 

the fixed size (512 × 512 pixels) or adaptively adjusted size based on the actual mass region 

segmentation results. The study demonstrated that the performance of CAD schemes using both of 

these two similarity measurement indices achieved significantly higher performance when applying the 

CAD schemes to the mass size-based ROIs [60]. Therefore, similar to the conventional CAD schemes 

[53], improving the accuracy of mass region segmentation is also the first important step in developing 

CAD schemes using CBIR approaches. 

4. Feature Selection 

By definition, CBIR is the process of retrieving related (or similar) images from the large databases 

using their image content. Since applying CBIR algorithms to search for similar images (or ROIs) by 

simply comparing large sets of pixels between a query image and the reference images in the database 

is not only computationally expensive but is also very sensitive to and often adversely impacted by 

noise in the image or changes in views of the imaged content [61], many of effective pixel value based 

similarity measures for template matching or image registration [62] are not suitable to be used in the 

CAD schemes. In the CAD applications, the image content should be represented by a set of extracted 

image features that meet following two criteria. First, since a highly performed CAD scheme using 

CBIR approach should not only achieve the high performance in detecting suspicious masses 

(measured by the area under ROC curve), but also generates smaller “semantic gap” between human 

vision (the high-level image scene understanding) and computer vision (the low-level pixel based 

image analysis) [63]. Thus, the CAD scheme should include at least some of the features that are 

closely correlate with visual similarity in a multi-feature based CBIR algorithm. Second, because the 

clinically and visually similar lesions or disease patterns can depict on different sections of the 

examined organ (the locations of medical images) with different orientations, the selected features 

should be invariant to the linear shift and rotation of the targeted lesions. For the potentially clinical 

utility, this criterion is very important. Since when applying CBIR algorithms in the CAD scheme, the 

requirement in the computational efficiency does not allow scheme spending significant time to 

optimally align the lesions depicted on the images. As a result, if the selected features or similarity 

measurement indices do not meet this criterion, CBIR algorithm may generate a quite lower similarity 

score between two actually similar lesions if they have different orientations and thus discards this 

similar reference image. Many morphological features computed from the segmented mass regions 
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meet these two criteria. For example, one CBIR algorithm used in the CAD scheme selects a set of the 

K “most” similar mass regions that all have the similar or comparable size, circularity, and boundary 

margin spiculation level to the queried mass regions [41].  

In selecting effective features used in CBIR schemes for medical images, great research efforts have 

been focused on identifying and extracting the better features to capture the texture of images and 

improve correlation to the human visual similarity. Among them, wavelets and Gabor filters have been 

extensively investigated and compared [64, 65] in which study found that Gabor filters performed 

better and corresponded well to the human vision (in particular for the sensitivity of edge detection) 

[66]. Other popular texture features derived from the co-occurrence matrices [67] and Fourier 

transformation [68] have also been tested in developing CBIR schemes. Based on the analysis of 

medical domain knowledge, one recent study reported that the similarity evaluated based on the 

combination of four types of image features (color histogram, image texture, Fourier coefficients, and 

wavelet coefficients) using the feature vector dot product as a distance metric was correlated well with 

the observed visual similarity [63].   

Recently, another study reported that one image feature (namely, the fractal dimension) could be 

more effectively and efficiently used as an objective index or quantitative measure to assess and 

control the texture similarity of reference ROIs selected by the CBIR algorithms without reducing 

CAD performance in detecting and classifying suspicious breast mass regions [69]. Fractal dimension 

is not only a well known feature to classify between malignant and benign breast masses [70], it is also 

a well recognized measure of the texture similarity that has relatively higher correlation to the visual 

similarity [71, 72]. Unlike other pixel value based measurement features (or indices) that are computed 

in the spatial domain, the fractal dimension is the feature computed in the frequency domain. As a 

result, fractal dimension has two unique advantages to be used in the CBIR algorithms. First, it is 

invariant to the lesion position shift, rotation, and scale (or size) changes. Second, since similar to 

many of other morphological features, fractal dimension of all ROIs stored in the reference database 

can be pre-computed (off-line processing), the increase of computational cost and time by adding 

fractal dimension to the CBIR algorithm is ignorable. The study showed that adding fractal dimension 

into a multiply morphological feature based CBIR algorithm could increase CAD performance in 

detecting and classifying suspicious breast masses indicating that the fractal dimension was not 

redundant to other features extracted in spatial domain. In addition, using fractal dimension as a 

prescreening tool in the CBIR algorithm could also increase the textural (or “visual”) similarity of 

retrieved images as well as the computational efficiency by early discarding the large fraction of 

unrelated reference images [69] (which will be further discussed in the following section).     

5. Reference Databases 

It is well known that performance and robustness of the CAD schemes that use machine learning 

classifiers also depends on the size of training databases and the case difficulty level [73, 74]. In 

general, as the increase of training database size and diversity, the performance and the robustness of 

the CAD schemes improve when they are tested using the independent testing datasets [75]. CAD 

schemes using CBIR approaches share two common characteristics. First, they use the “lazy” machine 

learning methods in that the decision of how to generalize beyond the training data is deferred until a 
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new query (instance) is observed. Second, the new query is classified by comparing to and analyzing a 

small set of similar instances while ignoring others that are quite different from the query. One 

advantage of CAD schemes using CBIR approaches is that increasing (or updating) reference 

databases is relatively easy without repeating the often complicated process to re-generate the “global” 

optimization function. The new image data collected from the clinical practice may be directly added 

to the reference database to gradually increase the size and diversity of the reference database at any 

time. However, CAD schemes using CBIR approaches also have a major disadvantage when using the 

limited reference databases. Unlike the CAD schemes using “global” optimization based machine 

learning classifiers (i.e., artificial neural networks and support vector machines) that are relatively 

robust (insensitive) to the local image noise, the CAD schemes using CBIR approaches are much more 

sensitive to the local image noise and feature selection [76]. Study has shown that when applying to 

the same training database and the same independent testing dataset, the CAD scheme using a “global” 

data-based machine learning classifier achieved substantially higher performance than the CAD 

scheme using a CBIR approach (i.e., 75.8% versus 65.9% detection sensitivity at 0.3 false-positives 

per image) [37]. 

 To investigate the relationship between the CAD performance and the selection of the reference 

databases, a number of studies has been recently conducted and reported. In one study, the researchers 

assembled a reference database that includes 3153 ROIs depicting either malignant masses (1592) or 

CAD-cued false-positive regions (1561) and an independent testing dataset involving 400 ROIs 

depicting 200 masses and 200 false-positive regions. A CAD scheme using a distance-weighted k-

nearest neighbor (KNN) algorithm based CBIR approach was applied to retrieve ROIs from the 

reference database that are considered the “most similar” to each queried ROI of the testing dataset. 
The area under ROC curve ( zA ) was used as a measurement index to evaluate the CAD performance. 

The study included two experiments to investigate (1) the relationship between CAD performance and 

size of reference database and (2) whether randomly adding new cases (ROIs) into the reference 

database could always improve CAD performance. In the first experiment, the researchers 

systematically increased the size of reference database from 630 ROIs to 3153 ROIs and then tested 

the change of CAD performance. In the second experiment, based on the hypothesis that an ROI 

should be removed if it performs poorly compared to a group of similar ROIs in a large and diverse 

reference database, the researchers applied a strategy to identify and remove the “poorly effective” 

references from the database. The experimental results (Table 1) indicated that scheme performance 
monotonically improved from zA  = 0.715 to 0.874 and then plateau happened when the database size 

reached approximately half of its maximum capacity. By removing 174 identified “poorly effective” 

ROIs from the reference database (reducing the original 3153 ROIs to 2979 ROIs), CAD performance 
significantly increases to zA  = 0.914 (p < 0.01). The study demonstrated that increasing reference 

database size and removing “poorly effective” references could significantly improve the CAD scheme 

performance [77].  
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Table 1: The change of CAD performance as the increase of reference database size and 

eliminating a fraction of “poorly effective” reference ROIs (the “optimized” database). 

 
Reference 
Database 

Originally (randomly) Selected Database  “Optimized” 
Database 

Number of 
ROIs 

630 1262 1591 2523 3153 2979 

Area under 
ROC Curve 

0.715 0.794 0.874 0.875 0.872 0.914 

Standard 
Deviation 

0.026 0.023 0.017 0.017 0.017 0.012 

 

The contradictory result was also reported in this research topic. One research group focused on 

developing new methods to recognize and eliminate superfluous and/or detrimental samples (ROIs) 

from the reference database to improve searching efficiency [78, 79]. The first study reduced size of 

the reference database from 1820 randomly selected ROIs to 600 ROIs with higher entropy [78]. The 

second study reported that by applying several intelligent reference ROI searching methods (including 

genetic algorithm, greedy selection, and a random mutation hill climbing), over 96% to 98% of ROIs 

stored in the previously optimized and reduced reference database could be further eliminated. The 

study reported that CAD performance maintained at the same level when using both the initially 

reduced reference databases with 600 ROIs and the new database including only 10 or 20 intelligently 

selected ROIs [79]. As a result, some researchers dedicated to build the large and diverse reference 

databases, while the other researchers suggested that assembling the small databases with intelligently 

selected cases was the better choice in developing CAD schemes. Besides several incomparable 

differences including (1) reference databases, (2) CBIR algorithms (multiple morphological features 

versus one similarity index of mutual information), and (3) overall achieved CAD performance levels (

zA  = 0.87 versus zA  = 0.76), the reported studies in this research topic [77, 79] used different testing 

methods to test CAD performance changes. For example, one used an independent testing dataset [77], 

which means that although the reference database size was changed, the testing dataset remains the 

same; while the other used a leave-one-out testing or ten-fold cross-validation method [79], which 

means that as the reduction of reference database size, the number of testing ROIs also reduces. Since 

both testing methods could have potential bias when applying to the limited databases [80], it is clear 

that this issue needs to be further investigated.   

Based on the machine learning concepts [76] and results of previous studies [75, 77], one can 

conclude that in a limited reference database (or a multi-dimensional feature domain) the selected 

reference ROIs in the database are typically not uniformly distributed. As a result, the CBIR 

algorithms can retrieve reference ROIs that have very high level of similarity to some queried ROIs 

but relatively lower level of similarity to the other queried ROIs. All current CAD schemes using 

CBIR approaches compute the detection or classification score for a queried ROI only based on the 

relative ratios (scales) of the similarity levels between the selected positive and negative reference 

ROIs. To test the relationship between CAD performance and the actual similarity level between the 

queried ROI and the retrieved ROIs, the author and his colleagues recently applied a set of similarity 

thresholds to systematically remove the queried ROIs whose similarity level to their most “similar” 
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reference ROIs are less than the threshold. The study used a reference database involving 1500 ROIs 

depicting verified masses and 1500 ROIs depicting CAD-cued false-positive masses but actually 

negative breast tissue. After normalization of similarity levels (or scores) from 0 to 1, the experimental 

results based on a pre-optimized KNN algorithm and the leave-one-out validation approach [41] 

showed that as threshold increase (removing more queried ROIs that have relatively lower similarity 

scores to the retrieved reference ROIs), the area under ROC curve was monotonically increased from 

0.854±0.004 to 0.932±0.016 (Table 2). This preliminary study indicated that using a limited reference 

database and forcing the CAD scheme to make the decision based on the comparison of a set of 

reference ROIs that have lower similarity scores was likely to reduce the overall CAD performance. 

To take full advantages of the CBIR approach in developing CAD schemes, one needs to build a large 

and diverse reference database in which the selected reference ROIs are more uniformly distributed in 

the image feature space. Meanwhile, one also needs to make the CAD scheme enable to monitor and 

report the similarity score (level) between the queried ROI and the retrieved reference ROIs. By taking 

these two steps, using CAD schemes can minimize the risk of misleading the radiologists and increase 

their confidence in accepting CAD-cued results, in particular when CAD is used as a “visual aid” tool. 

Therefore, assessing the reliability of the CAD-generated detection and/or classification scores based 

on the similarity measurement is important in application of the CBIR-based CAD schemes when the 

limited database was used. This issue needs to be further investigated.  

Table 2: The change of CAD performance as the increase of threshold values on the 

queried ROIs. 

 
Threshold on 

Similarity 
Level 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Area under 
ROC Curve 

0.854 0.859 0.859 0.864 0.877 0.888 0.908 0.911 0.919 0.932 

Standard 
Deviation 

0.004 0.004 0.005 0.007 0.008 0.011 0.011 0.014 0.016 0.016 

 

6. Similarity Searching Methods and Computational Efficiency 

Another long-standing challenge in developing CBIR systems is the definition of a suitable distance 

function to measure the similarity levels between images in an application context which complies 

with the human perception of similarity. The most common types of queries based on image similarity 

are k-nearest neighbor and range queries. A k-nearest neighbor query involves searching for the k most 

similar reference ROIs to the queried ROI. A range query consists of searching for all reference ROIs 

similar to the queried ROI up to a given degree (or range) [63]. Current CAD schemes using CBIR 

approaches typically use the k-nearest neighbor type searching method. The CAD schemes force the 

CBIR algorithms to retrieve the fixed k “most similar” reference ROIs without considering the given 

degree of similarity level between the queried ROI and each of the retrieved reference ROIs. This can 
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be an issue that reduces the reliability of CAD-generated results including both clinical relevance of 

detection scores and visual similarity of retrieved reference ROIs. 

In the application of multi-feature based k-nearest neighbor (KNN) algorithm, one of the most 

popular and relatively effective methods to measure the similarity level between two compared ROIs is 

the Euclidean distance based measurement [33]. In this method, similarity is measured by the 
difference in feature values, )(xfr , between a queried ROI ( qy ) and a reference ROIs ( ix ) in a multi-

dimensional (n) feature space.  

 
                 (3) 

 

The smaller the difference (“distance”), the higher the computed “similarity” level is between the 

two compared ROIs. Although this approach is easy to implement and relatively robust, the limitation 

is that the distance between two instances (the queried ROI and the reference ROI) is calculated based 

on all attributes (the selected features) of the ROIs with equal weights. If the contribution of the 

selected features is not the same, this equally weighted Euclidean distance based measurement can 

generate misleading results [76].  

To improve the performance and reliability of similarity measurement, a number of other advanced 

technologies or approaches have been investigated and tested. One type of approaches is using 

principal component analysis (PCA) [81] or minimum description length (MDL) [82] to reduce the 

dimensionality of feature space. Recently, one research group compared several supervised distance 

metric learning methods and investigated their feasibility and advantages when applying to the CBIR 

algorithms used in CAD scheme of mammograms [83]. In this framework, the feature data is 

supplemented by side information in the form of pairwise of “similarity” and “dissimilarity” 

relationship between two compared ROIs. The goal is to learn a distance function that achieves the 

optimal results in searching for the clinical relevant and feature similar ROIs. The researchers 

compared three learning methods namely, the global distance metric learning, local distance metric 

learning, and boosted distance metric learning. The results showed that using a relatively large 

reference database with 2522 ROIs, all three distance metric learning methods generated higher 

performance levels than using the Euclidean distance based measurement in classifying between ROIs 

depicting either malignant masses or benign masses and normal breast tissue with CAD-cued false-

positive regions. Among three distance metric learning methods, the boosted distance metric learning 

method was superior to two other methods. 

Although the CBIR algorithms implemented in CAD schemes share many common approaches and 

requirements of CBIR algorithms used for other applications (i.e., biomedical informatics or PACS), 

CAD schemes requires much higher computational efficiency. Thus, some of effective techniques 

commonly used in other types of CBIR approaches (i.e., relevance feedback [81, 84]) are not suitable 

for CAD. To make the system acceptable in the routine clinical practice, the CAD scheme must 

produce the detection and/or diagnostic results in “real-time” (i.e., less than one or two seconds) after 

the observer queries a suspicious ROI. As the rapid increase of the size of the clinical medical image 

databases (i.e., more than 12,000 digital medical images produced per day at the Radiology 
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Department of one University Hospital [11]), developing more efficient searching method is an 

important and practical issue in developing CAD schemes using CBIR approach. Since CAD generates 

the detection or classification results for each queried ROI only based on a small number of retrieved 

“similar” reference ROIs, extensively searching for and comparing all reference ROIs stored in the 

reference database wastes the majority of processing time and substantially increases the 

computational cost. Besides the selection of computationally efficient image features, another effective 

approach to reduce computational cost is to make CBIR algorithm enable to early discard a substantial 

fraction of un-related (low-correlated) ROIs to the queried ROI before conducting the detailed 

similarity comparison using a multi-feature based distance metric.       

One research group developed and reported a special metric access method (MAM) to search for the 

similar reference ROIs. The method used a distance function to organize the reference ROIs in a tree-

like scheme that allows the use of the triangular inequality property to prune subsets of ROIs that do 

not need to be compared with the queried ROI. The study demonstrated that using this method CBIR 

scheme could early discard a large fraction of un-related ROIs and provided fast and more effective 

retrieval of the similar reference ROIs to the queried ROI [85]. In the CAD schemes, another popular 

approach is to add a prescreening step using one or two texture or morphological features. For 

example, using the fractal dimension as a prescreening feature to early discard all reference ROIs in 

which the difference of their fractal dimension to the queried ROI is larger than the predetermined 

threshold, one study showed that at least 53% of reference ROIs could be early discarded for all 3000 

queried ROIs without reducing the overall CAD performance [69].  

As the advance of computing technologies, researchers have also developed more powerful and 

user-friendly open-source frameworks that enable parallel execution of early discarding un-related 

reference images and conducting image similarity comparison among several reference databases. For 

example, a CBIR system has been developed (“Diamond” [86]), which embodies the new software 

architecture for rapidly scanning large volumes of distributed data and filtering the data with domain-

specific software (i.e., CAD schemes). The key concept of the “Diamond” architecture is the concept 

of early discard: the ability to reject irrelevant data (or reference ROIs) very close to their point of 

storage, thus creating low data transmission overhead in executing CBIR algorithm for similarity 

comparison [87]. This system has been applied and tested in a number of CBIR applications including 

CAD of mammograms [83].             

7. Assessment of CAD Performance  

The clinical relevance and visual similarity are the two common assessment indices to evaluate 

performance of CAD schemes using CBIR approaches. The clinical relevance indicates the scheme’s 

capability of correctly detecting and/or classifying suspicious abnormalities (i.e., breast masses). It is 

commonly evaluated using either ROC method (i.e., comparing the areas under ROC curves) or FROC 

method (i.e., comparing detection sensitivity levels under a predetermined CAD operating threshold or 

a fixed false-positive detection rate). When the CAD provides “visual aid” to the radiologists, 

assessing the visual similarity level between the queried ROI and the retrieved similar reference ROIs 

becomes an important issue, which has great impact on radiologists’ confidence of whether to accept 

or reject CAD-cued results in their decision making [39]. A number of research groups have 
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investigated and applied different methods to assess the improvement of visual similarity using 

different CBIR approaches. 

Since visual similarity is a subjective concept, it often has large inter-observer variability [88]. To 

minimize the impact of the inter-observer variability, two evaluation methods namely, comparing with 

average subjective rating results provided by a group of observers (i.e., radiologists) and a two-

alternative forced-choice (2AFC) observer preference method, have been reported and applied to 

assess the visual similarity of CBIR selected similar images in developing CAD schemes. The first 

method aims to establish a “ground-truth” and then compare the “absolute” difference or correlation of 

similarity ratings between the CAD schemes and human observers. One research group has conducted 

a number of studies to search for better psychophysical similarity measure using this method [89]. In 

the study, a set of ROIs involving 60 pairs of breast masses was selected and five radiologists 

subjectively rated the similarity scores for these 60 pairs of masses (using normalized 0 to 1 scale). 

Then, an artificial neural network (ANN) was employed to learn the relationship between radiologists’ 

average subjective similarity ratings and computer-extracted image features. The study showed that 

comparing to the commonly used similarity measure based on Euclidean distance, using ANN 

achieved substantially higher similarity correlation with the radiologists’ subjective rating (r = 0.798 

versus r = 0.644). The second visual similarity evaluation method (2AFC) only conducts the relative 

comparison of whether a new (or modified) searching algorithm achieved improved visual similarity 

[90]. In a 2AFC observer preference or visual similarity assessment experiment, a panel of observers 

independently reviews two sets of “similar” reference ROIs that are selected by two CBIR algorithms 

and simultaneously displayed side-by-side on the image screen. Each observer is forced to make a 

decision on which set is more visually similar to the queried ROI. Using a statistical data analysis 

method (i.e., one sample test for a binomial proportion with correction for continuity [91]), the average 

observer preference results are then used to compute and determine whether the reference ROIs 

selected by two CBIR algorithms have significant difference in visual similarity levels [34, 41].  

The researchers have also compared the correlations of subjectively determined similarity ratings 

obtained by these two assessment methods (the “absolute” similarity rating and the 2AFC based 

“relative” similarity rating). Using a very limited testing dataset with eight pairs of masses and eight 

pairs of micro-calcification clusters, the study reported that the similarity rating scores of two 

assessment methods were highly correlated. The Pearson’s correlation coefficients were 0.94 and 0.98 

for rating similarity levels of masses and micro-calcification clusters, respectively [92]. This 

preliminary comparison result is very encouraging if it can be validated in future studies with large 

and/or different testing datasets. In theory, the “absolute” rating with “ground-truth” is a more reliable 

choice. However, building “ground-truth” is a very difficult and time-consuming task. Its reliability 

can also be severely affected by the inter-reader variability. Therefore, the 2AFC method is a more 

practical and easy implemented approach to assess and compare the potential improvement of “visual 

similarity” achieved by the CAD schemes using different CBIR approaches.     

8. Summary 

Both CAD and CBIR have been important research topics in the medical imaging areas for the last 

decade. Recently, combining CAD and CBIR technology has also been attracting much research 
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interest. CAD schemes using CBIR approaches have been investigated and developed for detecting 

abnormalities depicted on mammograms, lung CT images, and many other types of radiographic and 

pathological medical images. In CAD of mammograms, current commercialized CAD schemes 

achieved very high performance on detecting micro-calcification clusters but relatively lower 

performance on mass detection (including the lower specificity and cuing majority of subtle masses 

only on one view). In order to improve CAD performance and increase radiologists’ confidence in 

accepting CAD-cued results, the CAD schemes using CBIR approaches may allow radiologists to 

query any suspicious mass region (whether initially cued or not cued by the CAD scheme) and provide 

radiologists both detection/classification scores and a set of similar reference ROIs depicting 

suspicious masses with verified outcome. Preliminary studies have showed that such “visual aid” 

approach in CAD applications could be helpful to radiologists in interpreting mammograms. However, 

developing CAD schemes using CBIR approaches faces a number of technical challenges (or issues) 

including the accurate region segmentation, selection of features that are effective on both target 

classification and correlation with visual similarity, assembly of an optimal reference database, and 

improvement of computational efficiency. Despite of the substantial progress made in developing 

CBIR algorithms used in medical informatics or PACS as well as the CAD schemes using CBIR 

approaches in recent years, many of these technical challenges remain. Comparing to the much 

matured TBIR (text-based image retrieval) searching method, CBIR is still in the early development 

stage. Therefore, to develop highly performed and clinically acceptable CAD schemes using CBIR 

approaches, much more research work is needed.      
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