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Abstract: Wireless sensor networks are a relatively new area where technology is developing
fast and are used to solve a great diversity of problems that range from museums’ security
to wildlife protection. The geometric optimisation problem solved in this paper is aimed at
minimising the sensors’ range so that every point on a polygonal region R is within the range
of at least two sensors. Moreover, it is also shown how to minimise the sensors’ range to
assure the existence of a path within R that stays as close to two sensors as possible.
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1. Introduction and Related Work

Problems related to wireless ad-hoc networks (or just sensor networks) have emerged in the last
few years as a result of the fast development of the associated technology. These networks have great
long-term economic potential and pose many new system-building challenges [1]. Sensor networks are
used to solve a great diversity of problems that range from battlefield monitoring to weather detection,
museums’ security and even wildlife protection [2]. The problems solved in this paper are related to
coverage. Since each sensor, antenna (or any device able to send or receive some sort of signal) can be
located anywhere within a specific region, coverage measures the quality of this placement. Let R be a
region on the plane that is monitored by a given sensor network. Does this network cover R completely?
If not, is it still an acceptable coverage? These questions are obviously fundamental issues in this area.
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Coverage can be seen from two opposite perspectives. In the worst-case coverage there is an attempt to
locate the regions of R that are hidden from the sensors, that is, not monitored. These areas are known
as breach regions. On the other hand, the best-case coverage is characterised as an attempt to locate
the areas that are are within reach of as many sensors as possible, thus identifying the “best” monitored
regions of R. The following optimisation problems aim to tune a sensor network so that a given region is
well covered and assure the existence of a path between two points within the region that stays as close
to the sensors as possible. In other words, a best-coverage path.

Let S = {s1, s2, . . . , sn} be a set of n points on the plane that represent the location of n devices
that are able to send or receive some sort of signal, like antennas. The devices of S are homogeneous in
the sense that they all have the same power transmission range r ∈ R+. It is also assumed that they are
in general position. Let R be a polygonal region that models a street network (see Figure 1, the back-
ground image was taken from Google Maps). People and vehicles can move within R to reach specific
locations there.

Figure 1. The blue polygonal region models a street network.

In this example, the set S of antennas is located at the buildings’ tops and not on the streets, so no
antennas are found on R. However, the algorithms in this paper work for both cases. The regions within
reach of at least two antennas are considered to be well covered. Therefore, the larger these regions
the better the coverage of R. This restriction is derived by several real-life problems that may occur in
situations where stronger monitoring is needed, such as military applications. This is also the case when
multiple sensors are required to detect an event.

In Figures 2 and 3 there are two examples of a polygonal region each with a set of homogeneous
antennas (represented by black dots) whose coverage area is shown in white. The antennas’ range in
Figure 2 is shorter than in Figure 3. The best covered regions, that is, regions that are within reach of
at least two antennas are shown in dark blue. In these zones, any traffic would get a signal transmitted
from at least two antennas.

http://maps.google.com/
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Figure 2. The areas of the polygonal region that are covered by at least two antennas are
shown in dark blue.

Figure 3. The areas of the polygonal region that are covered by at least two white antennas
are shown in dark blue.

As stated before, it can be seen that larger transmission ranges provide better coverage. However,
as larger ranges also result in higher costs, it is appropriate to balance one against the other. Moreover,
the optimisation of the antennas’ transmission range also improves the life span of wireless-enabled
devices [3]. Consequently, the main problem in this paper is to minimise the antennas’ range in order
to provide a good coverage of region R and/or to assure the existence of a well covered path within
R. What follows is therefore a formal definition of the problem. Assuming all distances are Euclidean,
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the distance between a point q on the plane and a set S of points is defined as the minimum distance
between q and any one point of S. Point q is said to be covered by a set S of antennas with power
transmission range r if the distance between q and S is less or equal to r. Therefore, the antennas’
minimum transmission range that covers q is the distance between q and S. A point covered by two
or more antennas of S is said to be 2-covered by S (see Figure 4(a)). This definition aims towards
quality coverage, as previously explained. The minimum power transmission range of S that 2-covers an
object x is denoted by MRS(x). For example, if the object is a point q, MRS(q) is the minimum power
transmission range of S that 2-covers q.

Figure 4. Set S is represented by dots. (a) Point q1 is covered by antenna s2 with minimum
range r1 = d(s2, q1). Point q2 is 2-covered by S with minimum range r2 = d(s3, q2). (b) The
lens formed by D(s1, r) and D(s2, r) is shown in dark purple. (c) Regions 2-covered by S

with range r are shown in dark purple. Point q1 is 2-covered by S, whilst q2 is not.

Let D = {D(si, r) : si ∈ S} be the set of discs of radius r each centred at an antenna of S. Each
nonempty intersection between two discs of D is called a lens (see Figure 4(b)). The union of these
lenses encloses all the points on the plane that are 2-covered by S, thus defining 2-covered regions (see
Figure 4(c)). Every point within such regions clearly is 2-covered. The problems presented in the next
sections aim to 2-cover a given region while minimising the antennas’ range r. Note that the minimum
range of the antennas that covers a point can be easily calculated in O(n) time since such range is given
by the distance between the point and its closest antenna. However, the Voronoi diagram of S [4] is a
useful geometric structure that answers each query inO(log n) time. This diagram can be constructed in
O(n log n) time, so its construction is only justified when the number of queries regarding S is larger than
log n. The two closest antennas to a given point can be found using the second order Voronoi diagram of
S, denoted by VD2(S). The second order Voronoi diagram of S divides the plane into several regions by
grouping points that share the same two closest antennas [4]. It has the same complexity as the ordinary
Voronoi diagram [5]. This diagram is naturally related to the optimisation problems studied in this paper
since a point is 2-covered if it is within range of its two closest antennas.

Following the previous terminology, there are several works related to geometric optimisation using
1-coverage. For example, Abellanas et al. [6] and Mehta et al. [7] study routes that are always close
(or always far) to a given set of sensors on the plane. Agnetis et al. [8] compute a subset of a given set
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of discs with variable radii whose costs depend on their radii, as well as the same subset but with fixed
costs to cover a given line segment at minimum cost. After Meguerdichian’s work [1], others followed
either by studying different versions of the coverage problem or by improving and proving previous
results as are the cases of Boukerche et al. [2], Li et al. [9] and Mehta et al. [7]. Recently, Zhang et
al. [10] developed two localised algorithms to identify whether a sensor is on the boundary of the area
covered by a sensor network. In this work, one of the proposed algorithms is based on a technique called
the localised Voronoi diagram and the other on neighbour embracing polygons. Contrary to some of
the previous work, their algorithms can be applied to arbitrary topologies of the sensor network. Using
variable radii sensors, Zhou et al. [11] address the problem of selecting a minimum energy-cost coverage,
where each sensor can vary its sensing and transmission radius. They propose several centralised and
distributed algorithms to compute a small subset sensors that are sufficient to cover the region required to
be monitored. Das et al. [12] study efficient location of base stations to cover a convex region when the
base stations are interior to the region. Making use of Voronoi diagrams, they developed a fast iterative
algorithm to solve this problem. In their paper there are also some citations related to the coverage of a
square or an equilateral triangle. Also employing Voronoi diagrams, Stoyan and Patsuk [13] consider the
problem of covering a compact polygonal set using identical discs of minimum radius. Boukerche et al.
[2] address sensor networks by studying how well a large wireless sensor network can be monitored or
tracked while keeping a long lifetime. Their solution outperforms previously known techniques. Bezdek
and Kuperberg [14] research an intermediate problem between 1-coverage and 2-coverage. They study
the minimum coverage of the plane using homogeneous discs so that the region remains covered even
when the radius of one of the discs decreases. This concept provides a continuous transition from 1-
coverage to 2-coverage.

This paper is organised as follows: in Section 2. it is shown how to minimise the power transmission
range of a set S of antennas to 2-cover a polygonal region R (with or without holes). In Section 3.,
it is introduced an algorithm to minimise the power transmission range that assures the existence of a
2-covered path between two points on R. This problem is solved using the respective decision problem
that is also addressed in this section. The cases where region R is not polygonal are discussed in Section
4., which is followed by a brief discussion of the results.

2. Minimum Transmission Range to 2-Cover a Polygonal Region

Let R be a polygonal region (with or without holes) and S a set of antennas with the same power
transmission range. The boundary of R, denoted by B(R), is considered to be part of the region R.
Region R is said to be 2-covered by S if every point on R is 2-covered. The algorithm introduced in this
section calculates the minimum power transmission range of S to 2-cover R, MRS(R). Such range is
calculated as being the largest distance between a point q ∈ R and its second closest antenna. Let the
antennas’ range be large enough to 2-cover R. Now suppose this range is reduced until there is just one
point q ∈ R that is no longer 2-covered. The antennas’ minimum range to 2-cover q is exactly MRS(R).
The following proposition characterises the location of point q on R.

Proposition 1 Let R be a polygonal region, q a point on R and S a set of antennas. If MRS(R) =

d(q, si) for some antenna si ∈ S, then q can only be one of the following:



Algorithms 2009, 2 1142

(a) A vertex of R;

(b) An intersection point between B(R) and VD2(S);

(c) A vertex of VD2(S) interior to R.

Proof: Let q ∈ R be such that MRS(R) = d(q, si) for some antenna si ∈ S. Given an edge e of
R, it is easy to see that MRS(e) is calculated using the intersection points between e and VD2(S) plus
the endpoints of e. The minimum range of S that 2-covers all these points is exactly the minimum
transmission range needed to 2-cover e (see Figure 5(a)). Consequently, if q ∈ B(R) then q must be a
vertex of R or an intersection point between B(R) and VD2(S). If q is an interior point then the situation
gets trickier since it does not depend on the shape of R but on the way lenses interact with each other.
As the antennas’ range increases, the lenses grow larger and fill the interior of R. The last interior point
to be 2-covered must be a point lying in the last “hole” (meaning a region of R not yet 2-covered). These
holes are filled when three lenses intersect at a time since not only the intersection point is 2-covered but
also its whole neighbourhood (see Figure 5(b)). Since three lenses intersect at a vertex of VD2(S) [15],
if q is interior to R then it has to be a vertex of VD2(S).

Figure 5. (a) Line segment e is 2-covered with minimum range MRS(e) = r. (b) Point q is
the last point to be 2-covered on R. It is a vertex of VD2(S) (shown in a dashed line).
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According to this proposition, there are several candidates on R to be the point needing the largest
range in order to be 2-covered. Since every point on R has to be 2-covered, MRS(R) is calculated as the
minimum range to 2-cover every such candidate. Therefore, there is the need to analyse every vertex of
R, intersection points between B(R) and VD2(S) and vertices of VD2(S) interior to R (see Figure 6(a)).
In Figure 6(b) there is an example of a 2-covered polygonal region R with minimum power transmission
range. The point of R defining MRS(R) is q ∈ B(R) and so R is 2-covered if the antennas’ transmission
range is at least MRS(R) = d(q, s4) = d(q, s9). The following algorithm calculates MRS(R).
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Figure 6. (a) The candidates are represented by squares: vertices of R, points of B(R) ∩
VD2(S) and a vertex of VD2(S) interior to R. (b) MRS(R) = MRS(q) = r.
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ALGORITHM Minimum Range to 2-Cover a Region

INPUT: Set S of n antennas and polygonal region R

OUTPUT: MRS(R)

1. Compute VD2(S), the second order Voronoi diagram of S.

2. Compute the intersection set I ← B(R) ∩ VD2(S).

3. Add the vertices of VD2(S) that are interior to R to set I .

4. Add the vertices of R to set I .

5. MRS(R)← max{MRS(q) : q ∈ I}.

The following result is a direct consequence of the algorithm Minimum Range to 2-Cover a Region.

Theorem 1 Given a set S of n antennas and a polygonal region R with m vertices, MRS(R) can be
calculated in O(mn) time and space.

Proof: Computing VD2(S) takesO(n log n) time since S is formed by n antennas on the plane [5]. The
cardinality of set I = B(R) ∩ VD2(S) is at most mn since VD2(S) has n faces and R has m edges.
Adding all the vertices of VD2(S) that are interior to R to set I takesO(nm) time. The region’s vertices
can be added to I in O(m) time. For each intersection point q ∈ I , MRS(q) is calculated in constant
time using VD2(S) as it is the distance between q and its second closest antenna. The largest of these
distances is MRS(R). Overall, the time complexity of this procedure is O(mn). Regarding the space
complexity, there is the need to store at most mn intersection points while VD2(S) can be stored inO(n)

space [5]. Consequently, this algorithm runs in O(mn) time and space.

Corollary 1 Given a set S of n antennas and a convex polygonal region R with m vertices, MRS(R)

can be calculated in O(m + n log n) time and O(m + n) space.

Note that, for a convex polygonal region R, MRS(R) can be calculated in O(m + n) time and space
if VD2(S) has been previously built.
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3. Minimum Transmission Range to 2-Cover a Path on a Polygonal Region

Given two points p and q on a polygonal region R, the objective of this section is to calculate the
minimum transmission range of the antennas such that there is a 2-path on R connecting p and q, P (p, q).
In Figure 7(a), the black path connecting p and q is not a 2-path since some of its points are only covered
by one antenna. On the other hand, the yellow path in the same figure is a 2-path between p and q.
Not only it is 2-covered by S as it exists within R which makes it the interesting type of 2-path for this
section. In the following, whenever 2-path is mentioned, it is understood as a 2-path within R.

Figure 7. Region R is shown in blue. (a) The yellow path is a 2-path on R connecting p to
q while the black is not. (b) It is not possible to find a 2-path on R between p and q because
they lie in different connected component of lenses.
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3.1. Decision Problem

In this subsection, it is proposed an algorithm to solve the following decision problem: given a set S

of n antennas with power transmission range r ∈ R+ and two points p and q on R, decide if there is a
2-path connecting p and q. This algorithm will then be used to solve the main problem. As mentioned
before, a 2-path from p to q exists if and only if p and q lie in the same connected component of the union
of lenses (see Figure 7(b)). If it exists, such 2-path only crosses the regions of R that are 2-covered. With
this in mind, let A be the arrangement of the union of lenses confined to region R and intersected by
VD2(S) (see Figure 8). If there is a 2-path between p and q on R, then it exists within A. If R is
not convex, then there can be more than one face of A per Voronoi region. For example, there are two
non-connected faces of A defined by the spikes of R on the lower leftmost Voronoi region in Figure 8.

According to Corollary 1, working with convex regions is easier since the number of intersection
points decreases sharply. Moreover, there is only one face of A per Voronoi region. Consequently, the
first step to solve this problem is to decompose R in convex pieces (see Figure 9(a)). It can be easily
done using Steiner points: for each reflex vertex vr ∈ R extend a ray from vr, which bisects the internal
angle of R at vr, until it reaches B(R) or a previous ray. It can be shown that if R has k reflex vertices,
then this set of rays divides R into k +1 convex pieces. There are some works on the optimisation of the
final number of convex pieces, either using Steiner points [16] or diagonals [17]. However, the partition
technique used in this paper does not optimise the resulting number of convex pieces.
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Figure 8. Polygonal region R is shown in blue and VD2(S) in a dashed line. The arrange-
ment of the union of lenses confined to R and intersected by VD2(S) is shown in dark blue.

Figure 9. (a) Polygonal region partitioned in three convex pieces: R1, R2 and R3. (b) The
arrangements A1, A2 and A3 are shown in pink, blue and green, respectively.
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The strategy to decide if there is there a 2-path between p and q is based on the construction of an
intersection graph G of the arrangement A. Since R is partitioned in several convex regions, each will
be solved separately. According to this, the following algorithm constructs an intersection graph of the
arrangement Ai defined by A restricted to convex piece Ri ⊆ R (see Figure 9(b)). The complete graph G

is later constructed by properly uniting these smaller graphs. Let VR2(si, sj) be the second order Voronoi
region of antennas si and sj and lr(si, sj) the lens resulting from the intersection of discs D(si, r) and
D(sj, r).
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ALGORITHM Preprocess (PRE)

INPUT: Set S of n antennas, range r, VD2(S), convex piece Ri

OUTPUT: Arrangement Ai and graph Gi

1. Compute the arrangement Ai:

For each VR2(si, sj) do

(a) Compute lr(si, sj), the lens resulting from D(si, r) ∩
D(sj, r)

(b) Compute the face ak of arrangement Ai, which is the region
resulting from the non-empty intersection VR2(si, sj) ∩
lr(si, sj) ∩Ri

2. Construct graph Gi:

For each face ak ∈ Ai do

(a) Add node nk to Gi

(b) For each neighbouring face aj ∈ Ai of ak do

If ak ∩ aj 6= ∅ then add edge nknj to Gi

The temporal complexity to construct the restricted arrangement and corresponding graph is given in
the following result.

Theorem 2 Let S be a set of n antennas with transmission range r and Ri a convex region with
mi vertices. Arrangement Ai and graph Gi can be constructed in O(nmi) time if VD2(S) has been
previously built.

Proof: Let S be a set of n antennas with range r and Ri a convex region with mi vertices. Each
lens lr(si, sj) is intersected at most four times by VR2(si, sj) and lr(si, sj) ∩ VR2(si, sj) is convex.
Consequently, the intersection between that convex region and Ri also is convex and can be found in
O(mi + ni) time, ni being the complexity of VR2(si, sj). As the Voronoi diagram has amortised linear
complexity, the arrangement Ai can be found in O(n + nmi) = O(nmi) time. An intersection graph of
Ai has n nodes since there is at most one node per Voronoi region that intersects Ri (see Figure 10(a)).
Two nodes of Gi are connected if their corresponding faces of Ai intersect. The vertices of each face
of Ai can be used to check if it intersects another face of Ai. It suffices that each vertex is identified
as an apex of a lens, a point on B(R) or a point on a Voronoi edge. The latter is the important type of
vertex for this procedure. Suppose face ak has a vertex v that is a point on a Voronoi edge that separates
VR2(sk, sl) from VR2(sl, sj). Then v belongs to lenses lr(sk, sl) and lr(sl, sj), which means faces ak

and aj intersect each other. Therefore, to construct Gi it suffices to connect the nodes corresponding to
the faces of Ai that share at least one vertex on the same Voronoi edge. Overall, this arrangement and
corresponding graph can be constructed in O(nmi) time.

Note that Gi has as many edges as the Voronoi diagram and that it may not be connected (see graph
on green region in Figure 10(a) Sec:Conclusions). To decide if a 2-path between points p and q exists,
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there is the need to unite all the restricted graphs to form the final intersection graphs G of arrangement
A. Obviously, a node of Gi is merged with another node of Gj if the faces of A they correspond to
intersect each other (see Figure 10). The following algorithm solves the decision problem.

ALGORITHM Power Transmission Range Test (TRT)

INPUT: Set S of antennas, range r, VD2(S), region R, points p and q

OUTPUT: YES or NO

1. Decompose R in convex pieces by adding a set L of rays.

2. For each convex piece Ri ⊆ R do

{Ai, Gi} ← PRE(S, r, VD2(S), Ri).

G← G ∪Gi.

A← A ∪ Ai.

3. For every ray li ∈ L do

Fi ← {a ∈ A : an edge of face a is on li}.

Merge the nodes of G whose corresponding faces of Fi lie on the
same lens.

4. Assign p to node np and q to node nq.

5. Traverse G starting at p using the DFS algorithm [18].

6. If node q is found then return YES. Otherwise return NO.

Figure 10. (a) Three subgraphs corresponding to the three convex pieces, the one in the
green region is disconnected. (b) There is not a 2-path between p and q because they lie in
different connected components of the complete graph.

(a) (b)
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Point p is assigned to node np that is the node of G whose corresponding face of A contains p. In a
similar way, point q is assigned to node nq. Consequently, the existence of a 2-path connecting p and q

depends on np and nq being within the same connected component of G (see Figure 10(b)). The method
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chosen to traverse G is the Depth-First Search since its complexity is linear on the number of edges of
the graph [18].

Theorem 3 Let S be a set of n antennas with transmission range r and R a polygonal region decom-
posed in convex pieces by adding k rays. Let M be the largest complexity of the convex pieces. Deciding
if a 2-path between points p and q exists takes O(k × nM) time if VD2(S) has been previously built.

Proof: Decomposing region R with m vertices in convex pieces by adding a set L of k rays takes
O(m + k2 log(m

k
)) time [16]. Consequently, R is decomposed in k + 1 convex pieces. Supposing each

convex piece Ri has mi vertices, let M = max{m1, . . . ,mk+1}. According to Theorem 2, constructing
Gi for each convex piece takesO(nmi) time, so constructing a first version of G takesO(k×nM) time.
For the same reason, constructing arrangement A also takes O(k × nM) time. Studying the vertices of
every face of A on a convex piece takesO(nM) time. Consequently, finding the sets of faces which have
an edge on the same ray of L takes O(k × nM) time. Computing the lens that contains a face of A can
be done in constant time. Every ray of L can intersect n Voronoi regions and so n faces of A. Therefore,
each set of faces Fi has cardinality at most n. The vertices of the rays of L can have degree 3 at most
[16], so the number of nodes of G to be merged at a time is at most 3, which can be done in constant
time. Consequently, the construction of G is concluded in O(kn) time. Locating p and q on A can be
done in O(nM) time. In the worst case, the Depth-First Search algorithm has to visit every node of G

twice [18]. Therefore, traversing G to decide if there is a 2-path between points p and q takes O(kn)

time. Overall, this decision problem can be solved in O(k × nM) time.
Note that if R is a convex polygonal region with m vertices, then deciding if a 2-path between points

p and q exists takesO(nm) time if VD2(S) has been previously built (Theorem 2). It suffices to compute
the arrangement and the corresponding graph just for one convex piece.

3.2. Minimising the Antennas’ Transmission Range

The optimisation algorithm presented in this subsection calculates the minimum power transmission
range of S that assures the existence of a 2-path on R between p and q. Such range is denoted by
MRS,R(P (p, q)). Note that, for n ≥ 2, this problem always has a solution because, if the range r is large
enough, all discs of radius r centred at points of S contain R. In this case, any path connecting p to q

on R is a 2-path. Following the idea presented in Section 2., as the range increases, there is the need to
locate point b that is the first intersection between the connected component of lenses containing p and
the one containing q. As before, this point can either be on B(R) or interior to R. The first case was
discussed in Proposition 1 and so b can be a vertex of R or an intersection point between VD2(S) and
B(R). The second case is more complicated since now there is no need to completely cover R, in fact,
all that is needed is that p and q lie in the same connected component of lenses (see Figure 11). This
intersection point is called a bottleneck-point for 2-paths between p and q and it is denoted by bS(p, q).

Definition 1 ([15]) Let p and q be two points on the plane and S a set of antennas with range r =

MRS(P (p, q)).

(a) A point b = bS(p, q) is a type I bottleneck-point if there is only one antenna si ∈ S such that
b ∈ int(D(si, r)) and there are two other antennas sj, sk ∈ S such that D(sj, r)∩D(sk, r) = {b}.
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(b) A point b = bS(p, q) is a type II bottleneck-point if there are exactly three antennas si, sj, sk ∈ S

such that D(si, r) ∩ D(sj, r) ∩ D(sk, r) = {b} and there is no antenna sl ∈ S such that b ∈
int(D(sl, r)).

Figure 11. he antennas’ range is r = MRS(P (p, q)) and a 2-path connecting p to q is shown
in yellow. (a) Point b = bS(p, q) is a type I bottleneck-point. (b) Point b = bS(p, q) is a type
II bottleneck-point.

Without loss of generality, degenerate input data is not considered, so for all purposes, bottleneck-
points are regarded as unique for every pair of points. This subject will be further discussed in Section
5.. With this in mind, it is clear that every 2-path between p and q has to cross bS(p, q). Moreover, any
bottleneck-point falls into one of these categories, that is, it is either a type I or type II bottleneck-point
[15]. According to the last definition, it is easy to see that a type I bottleneck-point for 2-paths between
p and q is the midpoint of the segment sjsk (see Figure 11(a)). The next proposition explains the relation
between bottleneck-points and the second order Voronoi diagram of S. This relation helps to locate
bottleneck-points on the referred diagram. Let4(si, sj, sk) be the triangle formed by the antennas si, sj

and sk.

Proposition 2 ([15]) Let p and q be two points on the plane and S a set of antennas with range r =

MRS(P (p, q)).

(a) If b = bS(p, q) is a type I bottleneck-point covered by si, sj, sk ∈ S and such that b ∈ int(D(si, r)),
then b is the intersection point between sjsk and the second order Voronoi edge that separates
VR2(si, sj) from VR2(si, sk);

(b) If b = bS(p, q) is a type II bottleneck-point covered by si, sj, sk ∈ S, then b is a vertex of VD2(S)

and c ∈ int(4(si, sj, sk)).
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Figure 12. The antennas’ range is r = MRS(P (p, q)) and VD2(S) is shown in a dashed
line. (a) Point b = bS(p, q) is a type I bottleneck-point. (b) Point b = bS(p, q) is a type II
bottleneck-point.
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ALGORITHM Minimum Transmission Range

INPUT: Set S of n antennas, points p and q on region R

OUTPUT: MRS,R(P (p, q))

1. Compute VD2(S), the second order Voronoi diagram of S.

2. Compute set I ← {p, q} ∪ {B(R) ∩ VD2(S)}.

Add the vertices of R to set I .

3. Find set B of candidates for bottleneck-points using Proposition 2.

4. I ′ ← {MRS(x) : x ∈ {I ∪B}}.

Calculate r0 = max{MRS(p), MRS(q)}.

5. Perform a binary search on I ′ = {ri ∈ I ′ : ri ≥ r0} ∪ {r0}:

For the median range ri ∈ I ′ do

If TRT(S, VD2(S), ri, R, p, q) = YES

Then proceed the search on I ′ ← {rj ∈ I ′ : rj ≤ ri}.

Otherwise proceed the search on I ′ ← {rj ∈ I ′ : rj > ri}.

6. The final range is MRS,R(P (p, q)).

Figure 12 shows the two types of bottleneck-points and their relation to the second order Voronoi
diagram of S. According to Proposition 2, candidates to bottleneck-points are found on the edges of
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VD2(S) that are intersected by the line segment joining the two antennas defining such edge and ver-
tices of VD2(S) that are interior to the triangle of the antennas responsible for them. To conclude,
MRS,R(P (p, q)) is calculated using a binary search on a list of ranges. Each range of the list is the min-
imum transmission range needed to 2-cover a candidate and each candidate is either p, q, a vertex of R,
a point of B(R) ∩ VD2(S) or a bottleneck-point. In every step of the binary search, the corresponding
range is tested to check if it is large enough to allow a 2-covered path connecting p and q. The algorithm
Power Transmission Range Test (TRT) introduced in the last subsection will be used to this end. If the
range is indeed large enough then the search proceeds on the lowest half of the ranges. Otherwise, the
search continues on the highest half of the ranges.

In Figure 13 there is an example of a 2-path between p and q shown in yellow. Any 2-path between
these points only exists if the antennas’ transmission range is at least MRS,R(P (p, q)) = r. This range is
represented by r = d(s2, b) = d(s4, b). The union of lenses on R is shown in light blue and point b is a
type I bottleneck-point for 2-paths between p and q on R. Having this algorithm in mind, the following
theorem concludes this subject.

Figure 13. The yellow 2-path between p and q on R only exists if the antennas’ transmission
range is at least MRS,R(P (p, q)) = r. The 2-covered regions of R are shown in light blue.

Theorem 4 Let S be a set of n antennas and R a polygonal region with m vertices decomposed in
convex pieces by adding k rays. Let M be the largest complexity of the convex pieces. Given two points
p and q on R, MRS,R(P (p, q)) can be calculated in O(knM log mn) time.

Proof: Computing VD2(S) takes O(n log n) time since S is a set of n antennas on the plane [5]. Set
I = {p, q} ∪ {B(R) ∩ VD2(S)} has cardinality mn since VD2(S) is linear on n and R has m vertices.
Adding m vertices to I plus the n candidates to bottleneck-points for 2-paths between p and q takes
O(m + n) time. Therefore, the set I can be found in O(mn) total time. Computing MRS(x) for
all x ∈ I also takes O(mn) time, consequently sorting I ′ in ascending order takes O(mn log mn)

time. Supposing each convex piece has mi vertices, let M = max{m1, . . . ,mk+1}. Then according to
Theorem 3, each step of the binary search runs in O(k × nM) time. Consequently, the binary search
runs in O(knM log mn) time, which is the overall complexity to calculate MRS,R(P (p, q)).
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4. 2-Covering a Nonpolygonal Region

This work is focused on in the case that the region is a street network, therefore it is modelled by a
polygonal region. Nevertheless, this street network can also be modelled by a connected graph that can
be seen as a degenerated version of the case presented above. Given a set S of n antennas, calculating
the minimum power transmission range to assure the existence of a 2-covered path between two nodes
of a street graph G = (N, E) takes O(|E| × n) time, assuming |E| > log n [19].

If an user can move within the whole plane (like an airplane flying through the sky), then region R is
actually R2. This situation has also been addressed before. Calculating the minimum power transmis-
sion range to assure the existence of a 2-covered path between two points on the plane can be done in
O(n log n) time [15]. This work also shows how to compute a 2-path between two points.

5. Discussion of the Results

This article studies the 2-coverage of a polygonal region R. First it is shown how to completely cover
R using a set of n antennas with minimum transmission range and then how to minimise the antennas’
range so that a 2-path between two points exists on R. The first problem is solved using an algorithm
that runs in O(mn) time and space, m being the number of vertices of R. However, this complexity is
lowered toO(m + n log n) time andO(m + n) space if the region is convex. With this in mind, the next
problem was solved using a decomposition of R in convex pieces. The minimisation of the antennas’
range to assure the existence of a 2-path between two points on R proved to be harder to solve and so
the first approach was directed at the decision problem. Therefore, if the antennas’ power transmission
range is r ∈ R+ then decide if there is a 2-path between two points on R takes O(k × nM) time (k is
the number of rays added to decompose R in convex pieces and M the complexity of the convex piece
with more vertices). Using the decision algorithm together with a binary search finally solves the main
problem in O(knM log mn) time. The binary search is performed on a set of ranges which are needed
to 2-cover particular points found on R and VD2(S).

Although it is assumed throughout the paper that the point defining the minimum range to 2-cover a
particular object is unique, this is not true in degenerate cases. The antennas’ distribution might result
in a scheme where there can be more than one of these points. However, bottleneck-points can be found
using the same technique and they still fall into only two types. The classification of bottleneck-points
does not change in the presence of degenerate cases.

Although the antennas’ range is optimised to assure the existence of a 2-path on R, it is never shown
how to construct such path. Future work obviously passes through explaining how to construct a 2-path
between two points and even how to construct the shortest 2-path between those points. It is not clear
how to do this efficiently because the space where the 2-path exists has a shape that is uncommon, some
edges are arcs, others are line segments.
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