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Abstract: A general review of the extended finite element method and its application to the 

simulation of first-order phase transitions is provided. Detailed numerical investigations are 

then performed by focusing on the one-dimensional case and studying: (i) spatial and 

temporal discretisations, (ii) different numerical techniques for the interface-condition 

enforcement, and (iii) different treatments for the blending elements. An embedded-

discontinuity finite element approach is also developed and compared with the extended 

finite element method, so that a clearer insight of the latter can be given. Numerical 

examples for melting/solidification in planar, cylindrical, and spherical symmetry are 

presented and the results are compared with analytical solutions. 
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1. Introduction 

In its original formulation, the Stefan problem is a representation of (temperature-driven) first-order 

phase transitions in matter through a boundary value problem for PDEs in which a discontinuity 

surface, internal to the domain, can move with time. Indeed, the problem was originally formulated in 

relation to ice formation and melting. However, the same mathematical framework can be applied to a 

variety of problems arising in different areas of science and technology, such as the diffusion of gasses 

in biologic tissues, biofilm and hydrogel growth [1, 2], the penetration of solvents in polymers, the 
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flow in porous media, filtration problems, free surface flows, etching, shock propagation, and financial 

mathematics (e.g. [3]). For the formulation details of some of the physical problems mentioned above, 

and for further examples, see Reference [4]. 

Since the topic of this paper is the numerical treatment of the problem, we select a specific physical 

case, that is the solid-liquid phase transition (e.g. [5]). Applicative examples are the casting of metals, 

the freezing and thawing of foods, the production of ice, or ice formation on pipes. As in all the first-

order phase transitions, a discontinuity in the first derivative of the free energy with respect to a 

thermodynamic variable is exhibited and a latent heat is involved. In a solid-liquid transition at 

constant volume, the pressure, i.e. the first derivative of the free energy with respect to the specific 

volume, is discontinuous. During the transition, the system either absorbs or releases a fixed amount of 

energy at a constant temperature. Since the heat cannot be exchanged instantly, a front of solidification 

or melting is present and moves according to the heat transport across the front itself.  

From the mathematical point of view, the solid and liquid regions are subdomains in which the 

coefficients (representing the physical properties of the medium in each phase) of the underlying PDEs 

are continuous and differentiable up to the order of the PDEs. The coefficients are discontinuous 

across the surfaces that separate the adjacent phases and the PDEs are not valid there, so that 

additional equations are needed for closure. These are derived from energy conservation, namely by 

the Stefan condition that expresses the local velocity of the moving freezing/melting front as a function 

of the heat flux evaluated at both sides of the phase boundary. Therefore, the solution of the heat-

conduction equations are required within unknown subdomains (the liquid and the solid regions) and 

their interface must be determined as part of the solution. 

Existence and uniqueness of the solution to Stefan problem are demonstrated in References [6] and 

[7], respectively. However, analytical solutions are available in a close form only for a restricted 

number of simple, particular cases, all characterised by a high degree of symmetry in the geometry and 

in the boundary and initial conditions. For all the other cases a numerical treatment is required. 

For developing a numerical scheme for Stefan problem, two issues must be solved. Firstly, the 

evolving geometry of the phase-interface must be suitably described with a discrete model; secondly, 

the temperature field must be discretised in such a way as the jump in the heat flux, i.e. in the 

temperature gradient, at the phase interface can be reproduced. The description of the phase-interface 

can be done explicitly or implicitly. 

In the explicit methods, a Lagrangian approach is followed and some marker points (finite in 

number) on the phase interface are selected and tracked explicitly. This is the case, for instance, in 

which the temperature field is discretised by standard Finite Element Method (FEM); the mesh is 

generated at the initial time instant in such a way as the element boundaries lay on the phase interface. 

The finite element nodes on the interface are used as marker points and, at each time step, are 

displaced according to the solution of the heat-transfer problem within each phase. Eventually, the 

initial FE mesh will become too distorted and a new mesh must be generated in the solid and liquid 

regions. 

In the implicit methods, on the other hand, the computational grid is usually fixed and the position 

of the interface is obtained indirectly from some field defined over the whole domain (and suitably 

discretised). Examples of implicit methods are the enthalpy method, the phase field method, and the 

level set method. In the enthalpy method (e.g. [8, 9]), the enthalpy field is considered and the position 
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of the interface is determined in a smeared way by a jump of such field. In the phase field method (e.g. 

[10]) a phase function is defined over the domain; it assumes fixed values in each of the phases (e.g. 1 

in solid and -1 in liquid) and varies smoothly between these values in the interface region. In order to 

allow such smooth variation, an artificial ‘interface thickness’ must be added to the model. Hence, the 

interface position is not defined exactly, although it can be chosen conventionally as the surface where 

the phase field assumes an average value (e.g. zero) or as some kind of ‘average surface’ of the 

interface region; hence, a sufficiently fine mesh is required in order to resolve the interface zone. Of 

course, it is necessary to provide additional governing equation for the phase field evolution in a 

thermodynamically-consistent way. Finally, in the level set method a function is defined all over the 

domain and the position of the phase interface is obtained as a level set of this function. In comparing 

the last two methods, we see that, although the level set function is artificial, the physics of the 

problem is fully respected; on the other hand, the phase field has a physical meaning, but it 

necessitates of an artificial ‘thickness’ of the interface. Some comparative analyses in Reference [11] 

lead to the conclusion that methods based on the level set are the most promising and general. For 

these reasons, and since it allows a general, elegant formulation of the extended finite element method, 

the level set method is chosen here for the numerical analyses and it is reviewed in Section 3.  

The second issue in the numerical treatment of the Stefan problem is the discretisation of the 

temperature field. The crucial feature, in order to account for the evolution of the phase interface, is 

the discontinuity in the temperature gradient across the interface itself. 

In the aforementioned enthalpy method the problem is reformulated in terms of enthalpy instead of 

temperature. Although this approach has the advantage of offering a straightforward discretisation of 

the problem, it has two main disadvantages, as the discrete set of equation in terms of enthalpy 

becomes nonlinear and the phase interface is smeared throughout a finite thickness. In the so-called 

boundary immobilisation method, a new set of coordinates is defined in which the phase-boundary is 

fixed. Caldwell and Kwan, in their comparative analysis [12], highlight the effectiveness of this 

method for one-dimensional problems, but discard it for planar or spatial cases because of the 

difficulties in defining the coordinate transform with respect to a reference coordinate system fixed in 

time. Other methods, which are not discussed in depth here due to their lack of generality, are the 

perturbation method, which requires hints from a partial analytical solution, the nodal integral method, 

which only applies to plane symmetric geometries, and the heat balance integral method, which is 

restricted to time-independent boundary conditions. For details on these methods, we remand to the 

last quoted reference and further references therein. 

More general approaches to the temperature field discretisation are based on standard techniques, 

such as the finite difference method with a moving grid (e.g. [11]), the boundary element method, and, 

above all, the finite element method with adaptive mesh (for references on the last two methods applied 

to Stefan problem, see in Reference [13]). As already mentioned while discussing the interface 

tracking methods, Stefan problem can be treated by using standard FEM and a mesh which conforms 

to the phase interface (e.g. [14]). The heat-conduction problem is then solved separately in the solid 

and liquid domains by imposing essential boundary conditions on the phase-interface, i.e. by 

prescribing the phase-transition temperature. Then, the evolution of the interface is obtained from the 

jump in the heat flow across the interface, and the position of the nodes belonging to the interface is 

updated accordingly. The jump in the temperature gradient across the phase interface is possible 
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thanks to the adapted mesh but, of course, remeshing is required every few discrete time-steps. 

Moreover, each time a new mesh is generated, the nodal values of the temperature must be recomputed 

by using the interpolated values from the older mesh. 

In order to avoid remeshing it is possible to enhance the FEM by allowing for discontinuities that 

cross the elements. This can be achieved either by embedding the discontinuity directly within the 

finite elements intersected by the phase-interface and controlling it by additional elemental degrees of 

freedom, or by enriching the interpolation by means of nodal extended shape functions controlled by 

additional nodal degrees of freedom. The former approach we call embedded-discontinuity FEM, 

while the latter is well known as eXtended Finite Element Method (XFEM). In this paper, we focus on 

these two methods by reviewing the XFEM and adapting it to a specific case, and by developing an 

original embedded-discontinuity FEM. In both methods, the nodes of the discretisation are fixed and 

no remeshing is required. It is then natural to adopt an Eulerian approach for the interface description, 

so that the level set method is used. 

The XFEM has been applied to Stefan problem by Merle and Dolbow (2002) [15], who focus on the 

one-dimensional case, by Chessa et al. (2002) [16], who develop the general method that is adapted 

here for the use with different constraint enforcement methods, and by Zabaras et al. (2006) [17], who 

introduce a simplified case of fluid motion and dendritic solidification by using a smeared-interface 

model. An application of XFEM to the problem of biofilm growth in two dimensions is developed in 

Reference [18]. No applications of the embedded-discontinuity FEM to Stefan problem are known to 

the writers. 

Though, as it has been shown, the research is currently tackling planar and spatial cases, the one-

dimensional Stefan problem is the subject of several recent research works [11, 12, 15] and of a 

monographic book [19]. Also the examples that are presented in this paper are developed for cases that 

can be treated as one dimensional due to planar, cylindrical, or spherical symmetry. This is done for 

the sake of simplicity in exposition, implementation, and result visualisation, which allow 

concentrating on the differences between different approaches of the XFEM and between XFEM and 

embedded-discontinuity FEM. Moreover, exact analytical solutions are available in some one-

dimensional cases, so that error and convergence can be studied. In further cases, it is possible to 

develop, as it is done in Sections 6 and 7, simple approximated analytical solutions in the so-called 

pseudo steady state approximation, in which the heat-conduction problem and the evolution of the 

interface can be decoupled. Though the aim of the present one-dimensional analyses is basically 

heuristic, they may also find practical applications. Examples in planar, cylindrical, and spherical 

symmetry are, respectively, the maintenance of ice surface of skating facilities, the freezing of water 

into pipelines, or the solidification of droplets of liquid metal into cooling fluid. The initial review 

provided in this paper includes details that are not strictly necessary for the subsequent one-

dimensional applications but that are advisable for a clearer understanding and propaedeutical for the 

discussion.  

This paper is organised as follows. In Section 2, the governing equations of the 

melting/solidification problem are briefly recalled. Sections 3 and 4 are review sections, dedicated to 

the level set method for the geometrical description of the phase interface and its evolution, and to the 

extended finite element method, respectively. In Section 5, a method for embedding the gradient 

discontinuity into finite elements is developed and a specific element is formulated. In Section 6, the 
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XFEM is thoroughly discussed by means of numerical applications to planar-symmetric problems; 

spatial and temporal discretisation errors, the enforcement of the interface condition, and the treatment 

of the so-called blending elements are studied; moreover, the XFEM is compared to the embedded-

discontinuity FEM. In Section 7, polar-symmetric problems are analysed and the relevant XFEM 

results are compared to analytical solutions. 

2. Governing Equations 

The Stefan problem of melting/solidification in absence of material transport is considered. For the 

case of the melting/solidification of a two-phase flow, see Reference [20]. 

Let   be the domain shown in Figure 1 and   its boundary with outward normal unit vector n . 

The domain is composed of a solid region sol  and a liquid region liq sol\   . We denote by tran  

the interface between the two regions and by soln  the outward normal from sol . The temperature in 

the point x  at time  0,t t  is  ,T tx . 

Figure 1. Schematic representation of the domain. 
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The model accounts for the heat transferred by conduction only; therefore, convection, thermal 

expansion, and buoyancy are not considered. Since deformations are excluded, the mass density   is 

the same in the solid and liquid phases. The energy conservation equation in the domain reads 

   divqcT s
t

 
  


, (1) 

where c  is the heat capacity, q  the heat flux vector, and s  the volumetric heat source. 

The constitutive equation which characterises the conductivity within the material is given by 

Fourier law, 

 T  q k , (2) 

where k  is the thermal conductivity second-order tensor. In the following, we assume isotropy with 

respect to heat conduction, so that kk 1 , where 1  denotes the identity tensor and k  the scalar 

thermal conductivity. k  and c  are taken as constants in each phase and their values in the solid and in 

the liquid are indicated by subscripts ‘sol’ and ‘liq’ respectively. 

The essential and natural boundary conditions are 
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ˆ on ,

ˆ on ,
T

q

T T

T q

 
    k n

 (3) 

where  ˆ ,T tx  and  ˆ ,q tx  are assigned functions defined over  0,T t   and  0,q t   respectively, 

with T q     and T q   . 

The phase-interface is characterised by the constant temperature tranT , so that the condition 

 tran tranonT T   (4) 

holds. It is noted that the temperature field must be continuous through the interface; this requirement 

must be included (or enforced) in the numerical models as discussed in Section 4. 

It is also possible to consider more complicate interface conditions which involve the velocity of 

the interface or its geometrical properties. An example is Gibbs-Thomson relation, which describes the 

unstable dendritic growth of crystals into an undercooled melt, and modifies Eq. (4) as 

tran vT T v     , where   and v  are the surface tension and the kinetic mobility coefficients, 

soldiv  n  is the mean curvature of the interface, and v  its normal speed (negative for melting and 

positive for solidification). 

The evolution of the interface is governed by the Stefan equation, which expresses the energy 

balance of the interface, 

   tran on q Lv   , (5) 

where L  is the latent heat of the phase transition and  q  the jump in the heat flux normal to tran  

given by 

    liq liq sol sol solq T T    k k n . (6) 

The initial condition for the transient problem is provided by the knowledge of the temperature field 

at time 0t  , 

    0,0T Tx x , (7) 

where 0T  is a known continuous function over  . The initial conditions are completed by the 

knowledge of the position of the interface at 0t  . 

3. Description of the interface through level set 

The level set method (e.g. [21]) is a numerical scheme used to describe implicitly geometrical 

objects such as surfaces and lines. The basic concept is to represent a surface  , of co-dimension one, 

in the domain   as the isocontour of some function   x  defined over  . The method can be 

extended to model objects with higher co-dimensions by considering multiple level set functions (as 

many as the co-dimension of the object); for instance, a curve in the three-dimensional space can be 

represented as the intersection of two surfaces, i.e. the isocontours of two functions  1 x  and  2 x . 

In the case of Stefan problem we need to represent the phase-transition interface, i.e. a surface 

tran of co-dimension one, which evolves with the time. Therefore we need one level set function that 

depends also on the time. Let 
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 tran

, min
t

d t


 
y

x x y  (8) 

be the distance of the point x  from the transition interface at time t ; we define the level set function as 

the signed distance function from the interface, 

  
 

    
 

 
tran

liq

ol tran
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, on 

, min sgn 0 on 

, on 
t

d t

t

d t





     
 

s
y

x

x x y x y n y

x

, (9) 

where the arbitrary sign convention in which   is positive in the liquid, negative in the solid, and 

vanishes on the phase interface, is adopted. 

Eq. (9) allows the construction of  , when the position of the interface is known. Vice versa, when 

  is given, the interface tran  is the zero isocontour of  , 

     tran : , 0t t  x x . (10) 

Take note that, whereas the function  ,d tx  is not differentiable in space across the interface, the 

gradient of  , t x  is defined everywhere in   (provided that the interface is sufficiently regular) and 

on the interface it points in the direction of the outward normal from the solid region. Therefore, 

although the interface is obviously the zero level set of d , d  itself is not suitable for describing the 

interface position since it is not sufficiently regular and, in the numerically approximated form used in 

computational models, would not reach the zero level in certain parts or would cross the zero twice in 

others. 

Besides its position, the level set allows one to describe further geometrical properties of the 

interface. The normal unit vector is given by 

 sol








n . (11) 

Since the level set function has been chosen as the signed distance function, 1  , so that Eq. 

(11) simplifies to sol  n . The interface mean curvature, which may have a physical interest in the 

case of Gibbs-Thomson diffusion (see Section 2), can be computed as 

 soldiv div




 


n , (12) 

which simplifies to 2    in the case of signed distance function. 

In order to track the movement of the interface it is necessary to define suitable evolution equations 

for the level-set update. An Eulerian approach is followed by letting the level-set field be advected by 

a suitable velocity field v . The relevant evolution equation is then given in the Hamilton-Jacobi form 

by requiring the material derivative of the level set to vanish, 

 0
D

Dt t

  
   


v . (13) 

In particular, Eq. (13) requires that   be constant on the interface. The field  , tv x  represents an 

extension of the interface velocity, which is physically defined only on tran , to the whole domain  . 

In fact, whereas in a Lagrangian approach, where the position of the interface is tracked explicitly, the 
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velocity on tran  suffices for its evolution, in an Eulerian approach, it is necessary to extend the 

velocity field to the entire domain so that the level set function, which controls the interface position 

and is defined everywhere in  , can be advected by such extended velocity field. It is convenient to 

introduce the scalar normal velocity 

  ,F t




 


x v , (14) 

that is the component of v  in the direction of  ; Eq. (13) rewrites then as 

 0F
t

 
  


. (15) 

The field F  is the extension of the normal interface velocity to the entire domain, and it is known 

only on the interface, where it is physically meaningful and can be obtained by Eq. (5), 

    tran, ,F t v t x x . (16) 

Since the velocity field in tran\   is artificial, there is a certain freedom in its construction, the 

only requirements being that F  be continuous through the interface and satisfy Eq. (16). It can be 

demonstrated [22] that, if F  and   are smooth and their gradients are orthogonal, 

 0F   , (17) 

then F  tends to preserve the initial signed-distance properties of the level set. 

The evolution of  , t x  is controlled by Eq. (15), with the initial condition 

    0,0 x x . (18) 

Practically, in the initial time instant, 0  is constructed by the knowledge of  tran 0  by using the 

definition in Eq. (9), whereas in the subsequent time instants, the updated position of the interface is 

obtained from  t  by Eq. (10). The field F  is constructed by solving Eq. (17) with the essential 

boundary conditions provided by Eq. (16). The problem can be casted in a discrete form by using 

standard finite element techniques developed from the weak forms of Eqs (15) and (17), 

  0, 0F F F
t

   
 

          , (19) 

where   and F  are test fields belonging to  1H  . Essential boundary conditions are provided by 

a discretised version of Eq. (16), which can be obtained, for instance, by considering the projection of 

the interface velocity onto the finite element nodes whose support is intersected by the interface. The 

complete procedure is thoroughfully derived in Reference [16], where the numerical issues arising in 

the integration of first order hyperbolic equations are solved by adding stabilisation and shock-

capturing terms; further stabilisation techniques for the update of the level set function are described in 

Reference [21]. In the numerical analyses, the discretised field   progressively diverges from a signed 

distance function, so that every few steps a reinitialisation must be performed; some relevant 

procedures based on the fast marching algorithm are described in References [22] and [17]. 
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4. Review of XFEM for Stefan problem 

4.1. XFEM approximation 

The basic concept within the XFEM is to locally enrich the finite element approximation so that 

certain features of the considered problem can be reproduced, which are precluded to the standard 

FEM (e.g. [23]) unless ad-hoc elements or mesh adaptivity are used. 

The domain   is partitioned into a set of finite elements  e , such that e
e

   and 

1 2e e    for 1 2e e ; and a finite number n  of points, the FE nodes, whose position is denoted 

by ix  with 1, ,i n   is used for controlling the temperature field. The standard finite element 

approximation of the temperature field is 

      
1

,
n

i i
i

T t N T t


 x x , (20) 

where iN  are the standard finite element shape functions and the parameter iT  represents the value of 

the temperature at node i . In fact, the basis functions iN  are constructed in such a way that 

 i j ijN x , being ij  Kronecker delta, and 

  
1

1,
n

i
i

N


  x x . (21) 

Figure 2 shows an example of 2D shape functions and highlight the support of the i-th shape 

function, denoted as supp iN . If Eq. (21) holds, the set of functions  iN  is called a partition of unity 

of  . 

Additional extended basis functions j , 1, ,j n  , can be tailored on the specific problem so that 

they are able to reproduce the desired local feature, e.g. a discontinuity. In order to recover conformity, 

i.e. continuity between neighbouring elements, the extended basis functions are multiplied by a 

partition of unity, which in FE-based approaches is naturally provided by the set of the FE shape 

functions, see Eq. (21). A general form of the enriched interpolation is 

        
1 1

, , ( )
nn

j j
i i i

i j

T t N T t t a t



 

 
  

 
 x x x , (22) 

where j
ia  are additional nodal degrees of freedom. Eq. (22) characterises the Partition of Unity Finite 

Element Method (PUFEM, e.g. [24]) also called Generalised Finite Element Method (GFEM, e.g. [25, 

26]), which combines the FEM and the Partition of Unity Method (PUM), introduced in References 

[27, 28]. For a recent review see also Reference [29]. The PUM has been also combined with meshless 

approaches (e.g. [30-33]), resulting in enriched meshfree methods (mostly applied to fracture 

mechanics, e.g. [34-38]), and with smoothed finite elements [39], which are less sensitive than 

standard finite elements to mesh distortion and represent an interesting approach in case of remeshing 

(e.g. [40-42]). 

The extended finite element method (e.g. [43-49]) can be regarded to as a local version of the 

PUFEM. In fact, the special feature to be capture, namely a discontinuity, is usually localised; 

therefore, the extended basis is useful only in a restricted region surrounding the discontinuity itself. 

The subset of shape functions, whose support includes one specific element, is a partition of unity on 
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that element. Therefore, it is sufficient to consider the shape functions relevant to the nodes whose 

support is intersected by the discontinuity   and Eq. (22) can be rewritten as 

          
1 1

, , ( )
nn

j j
i i i i

i i A j

T t N T t N t a t



  

 
   

 
  x x x x , (23) 

where 

  : supp iA i N   . (24) 

We define the union of the element intersected by the discontinuity as 

 
e

e
 

    (25) 

and the union of the support of the enriched nodes as 

 suppA i
i A

N


  , (26) 

with A     . It is easy to show that 

   1,i
i A

N 


  x x . (27) 

In order the nodal parameters iT  to maintain the meaning of nodal temperatures they have in 

standard FEM, Eq. (23) can be further rewritten as 

          
1 1

, , ( )
nn

j j
i i i i i

i i A j

T t N T t N t a t



  

 
   

 
  x x x x , (28) 

where 

      , , ,j j j
i it t t   x x x . (29) 

It is straightforward to observe that  , 0j
i i t x , so that  i iT Tx  holds in Eq. (29) as in the 

standard FE approximation of Eq. (20). Although the original enrichment given by  
1

, ( )
n

j j
i

j

t a t




 x  is 

modified and does not simply superimpose to the standard FE approximation as in Eq. (23), its most 

interesting property, i.e. the ability of representing discontinuity, is kept. 

The type and number of enrichment functions must be chosen according to the physics being 

considered: Heaviside function (or some regularised version of it) is the natural choice in case of 

strong discontinuities across an interface such as a crack; suitable enrichment functions can be defined 

around crack tips too (e.g. [43]). In the Stefan problem a discontinuity of the temperature gradient 

normal to the interface must be modelled. One of the simplest functions reproducing such gradient 

discontinuity (and preserving continuity) is the absolute value function. 

The extended finite element method is easily coupled with the level set method, as the latter 

provides a practical and general way for representing the location of the discontinuities. For this reason 

the extended basis functions are expressed in terms of the level set function. In the case of Stefan 

problem,   is the phase-transition interface tran  and the gradient discontinuity in the direction normal 

to the interface is represented by using 1n   and      1 , t   x x x , so that 
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      1 , , ,i i it t t     x x x . (30) 

Then, Eq. (28) simplifies in the form 

        
1

, , ( )
n

i i i i
i i A

T t N T t t a t
 

  x x x , (31) 

with 

         , , ,i i it N t t   x x x x . (32) 

In this way, the temperature field is approximated by using as basis functions the union of the 

standard finite element shape functions with a set of enrichment functions. Take note that since the 

position of the interface evolves with time, the set of enrichment function is time-dependent too. 

Eq. (31) can be rewritten in matrix form as  

      , ,T t t tx N x T , (33) 

where the matrix          1 1, , , , , , ,
An nt N N t t    N x x x x x   collects the standard (time-

independent) and the enriched (time-dependent) shape functions, and the vector 

         1 1, , , , ,
A

T

n nt T t T t a t a t   T   , the standard and additional nodal degrees of freedom. For 

all that is discussed above, this choice of enrichment function, initially proposed by Chessa et al. [16], 

seems the most consistent with the viewpoint of the XFEM. 

A different XFEM model for Stefan problem is proposed for the one-dimensional case in Reference 

[15], where Heaviside function is chosen for the enrichment and the device in Eq. (29) is not used, so 

that       , ,i it N H t x x x . This approach does not guarantee a priori the continuity of the 

temperature field across the interface, which is then (weakly) enforced.  In any case, the continuity can 

be restored exactly only in one-dimensional cases. The choice of Heaviside function, which is natural 

in the case of strong discontinuities (we remind that the XFEM has been initially and intensively 

developed for fracture mechanics, see References [50, 51] and the review in Reference [52]), seems 

complicated in the case of the gradient discontinuity required by Stefan problem. Moreover, with those 

enrichment functions, the parameters iT  lose the meaning of nodal temperatures, since one has that 

      , , ( )i i i iT t T t H t a t x x , which is in general different from  iT t . This issue could be cured 

by using the idea in Eq. (29) and rewriting the enrichment as 

          , , ,i i it N H t H t   x x x x . 

Operatively, in the XFEM the usual FE mesh is firstly produced and then, by considering the 

location of the discontinuities, a few nodal degrees of freedom are added. Only the nodes whose 

support is intersected by the interface are enriched, as shown in Figure 3. For implementing this 

condition, Zabaras et al. [17] suggest to enrich a node if at least one of the element edges containing it 

is intersected by the interface (this criterion hold of course only in the case of finite elements with no 

internal nodes). Since the interface evolves with time, the set of enriched elements and nodes is also 

modified during a numerical simulation. At a given time instant, it is possible to distinguish three types 

of elements, as depicted in Figure 3: (i) elements with all nodes enriched, (ii) elements with only some 

nodes enriched, and (iii) elements with no enriched nodes. 
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Figure 2. Support of a standard FE shape function and its isocontours in a 2D bilinear 

case. 

supp iN

iN

 

Figure 3. Scheme of enrichments. 

 
The first group is formed by the elements intersected by the phase-transition interface and their 

union is  . In the region   the enrichment is fully considered and conformity is ensured, as the 

enrichment is multiplied by a partition of unity, see Eq. (27). 

The union of the elements in the second group is \A   . The treatment of these elements is 

discussed in detail in Section 6.5; here, it is noted that they do not have full enrichment since the 

subset A  of the standard shape functions does not constitute a full partition of unity in this region. 

These elements are often referred to as blending elements, since, there, the interpolation ‘blends’ from 

the enriched to the non-enriched one. 

As to the elements of the third group, their union is \ A  . In this region, according to Eq. (28), 

the enrichment is not accounted at all and only the standard FE approximation holds. 

4.2. Semi-discrete equations 

In order to produce a discrete model, besides introducing an approximation as discussed in the 

previous Section, it is necessary to weaken the continuum problem. Here, the integral version of the 

energy balance is used. The weak form of Eq. (1), with the boundary conditions of Eq. (3) and the 

substitution of the isotropic version of the constitutive model in Eq. (2), reads 
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   ˆ 0
q

T cT T k T Tq Ts
t

    
   


      

    . (34) 

Eq. (34) must be discretised in space, through Eq. (33), and time. Since the shape function matrix 

N  depends on time through the position of the interface, the time derivation of Eq. (33) would require 

deriving the extended shape functions and, in turn, the level set. It is therefore more convenient to 

discretise first in time and then to substitute the spatial discretisation. By using backward Euler scheme 

(e.g. [53]), the semi-discrete version of Eq. (34) is obtained,   

 

 
       

           
1 1

ˆ 0,
q

p p p p
p p p p p p pc T c T

T T k T T q T s
t

    
 

   


      

   
 

(35) 

in which the superscript notation in parentheses denotes the discrete time steps, i.e. 
   ,pT T t p t  x , p , and t  is the selected time step (the symbol   is used here to denote a 

finite difference, as usual in Computational Mechanics). Finally, the discrete form of the problem is 

obtained by substituting Eq. (33) into Eq. (35), 

               11
0p p p p p p p

t
   


M T M T K T q , (36) 

where 
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 (37) 

For the sake of brevity, we rewrite Eq. (36) as 

      p p pK T q  , (38) 

with 

 

     

       1

1
,

1
.

p p p

p p p p

t

t


 


 


K K M

q q M T



 

 (39) 

By solving the linear system of algebraic equations in Eq. (38), it is possible to obtain the discrete 

temperature configuration  pT  at the current time step, given the one  1pT  at the previous time step. 

In order to evaluate  pM   it is necessary to know also the level set at both the current and the previous 

time step. The overall procedure can be explicit, if the level set update is also explicit, i.e. if the level 

set at current time step can be obtained from the temperature field and level set at the previous time 

step (see Section 3 and References [16, 17]). 

On the other hand, if an implicit time stepping is used, an iterative procedure is required for the 

simultaneous solution of Eq. (38) and the update of the level set. This technique is used by Merle and 

Dobow [15], who use a generalised one-step trapezoidal integration algorithm with 
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          1 11p p p pT T t T T         in the case of constant c . They perform an error study by 

testing different values of the parameter  0,1   and conclude that the highest accuracy is obtained 

for 1  , i.e. in the case of backward Euler algorithm. 

Finally, we would like to remark that the evaluation of the matrixes and vector in Eq. (37) requires 

a careful numerical integration, which must take into account the presence of the discontinuity in the 

enriched elements. Several algorithms have been developed in the literature (see Reference [54] and 

further references therein). Examples are Gaussian integration into the sub-elements obtained from the 

enriched elements cut by the interface, and the integration by subdivision into simplexes (triangles in 

2D or tetrahedra in 3D). In the analysis below, the algorithm suggested in Reference [17], is used, 

which is based on rectangular rule and regular grids of sampling points. This integration technique is 

simple to implement, though relatively expensive from the computational point of view. 

4.3. Phase-interface temperature condition 

Eq. (38) represents the discrete form of the problem of heat conduction as from Eqs (1-3). The 

interface temperature condition expressed by Eq. (4) must be also recasted into a discrete form and 

enforced. This can be achieved by following two different approaches: (a) a general one in which the 

enforcement methods (see below) are applied directly to Eq. (4), a weak form is derived, and, then, 

discretised; and (b) a simplified approach in which Eq. (4) is firstly discretised and then the constraint 

enforcement methods are applied to the discrete form. The simplified approach (b) is followed here. 

This can be successfully used for the one-dimensional cases presented in the examples of this paper. 

However, the enforcement of interface conditions in methods derived from the PUM, such as the 

XFEM, is an intensively-researched field, due to the stability issues arising in higher dimensional 

cases (e.g. [55, 56]). 

Eq. (4) is discretised by selecting some points, finite in number, on the interface, namely  * p
hx , 

 
*1, , ph n  , at time step p . By using Eq. (33) one obtains 

             * *
tran tran, , 0p p p p p

h h hg T t T p t T     T x N x T . (40) 

The points where the interface condition is imposed can be individuated as the intersections of the 

interface with the edges of the finite element mesh. At a given time step, Eq. (40) represents a linear 

constraint, which can be rewritten in matrix form as 

      p p p  g G T c 0 , (41) 

where the all components of the vector c  are equal to tranT  and the h-th row of the matrix  pG  is 
  * ,p

h p tN x , which can be determined from the knowledge of the level set. 

Two general numerical methods for enforcing the constraints are considered here: (i) the penalty 

method and (ii) the Lagrange multiplier method. Although these methods can also be applied to non-

conservative problems [57], they are presented here in their conservative version. 

The idea within penalty method is to add to the potential, of which Eq. (38) represent the stationary 

condition, an artificial term 1
2

Tbg g , where b  is a positive constant, in general dimensional, called 

penalty parameter. If b  is sufficiently large, the minimum of the modified potential cannot be achieved 

without g  being very small, i.e. without (approximatively) satisfying the constraints. The stationary 
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condition of the additional potential provide the penalty term  Tb G GT c  to be added to the right-

hand side of Eq. (38), so that the temperature update step becomes 

           
pen pen

p p p p pb b  K K T q q  , (42) 

where 

 
     

   
pen

pen

,

.

p p pT

p p T





K G G

q G c
 (43) 

The solution generated with the penalty method satisfies the condition over the interface only 

approximately. The choice of the parameter b  is crucial, since a value ‘too small’ will lead to 

unacceptable looseness of the constraints, whereas a value ‘too large’ will deteriorate the conditioning 

of the linear problem. Examples of this are provided in Section 6.4, where a suitable dimensionless 

version of b  is defined in order to perform problem-independent analyses. 

In the Lagrange multiplier method, the constraints are appended to the potential minimisation 

problem through Lagrange multipliers, which become additional unknowns. A general approach and a 

stabilisation proposal are discussed in Reference [58]. In the simplified approach followed here, 

Lagrange multipliers are applied to the discretised constraint of Eq. (40), so that that they belong to 

their dual finite-dimensional vector-space. The term added to the potential is T gl , where l  is a 

vector collecting the discrete Lagrange multipliers, and the term TG l  must be added to the right-hand 

side of Eq. (38). The potential stationary condition is sought also with respect to l , so that additional 

equations, i.e. the constraints themselves, become part of the system, 

 
   

 

   p p T p p

p

     
     

      

K G T q

cG 0

 
l

. (44) 

The disadvantages of the Lagrange multiplier method are the increased dimension of the system and 

its possible loss of positive-definiteness. 

5. Finite elements with embedded gradient discontinuity 

An alternative approach to model localised discontinuities within the FEM consists in embedding 

the discontinuity directly into the elements by adding degrees of freedom at elemental level instead of 

nodal level (as in the XFEM). The resulting methods appear in the literature with different names and 

they can be considered somehow as precursors of the XFEM (e.g. [59, 60]). Further references, mainly 

focusing on fracture mechanics, can be retrieved in the comparative study by Jirásek [61]. 

The basic idea is to use standard FE interpolation as from Eq. (20) in all the elements but those 

intersected by  . In these latter, the standard interpolation is enriched by suitable functions ˆ
i  

( 1, ,i n  ), which vanish at the nodes and reproduce the desired discontinuity. The resulting 

interpolation can be written as 

          
1 1

ˆ ˆ, ,
nn

i i i i
i i

T t N T t t a t



 

  x x x , (45) 



Algorithms 2009, 2                            

 

 

1192

where ˆia  are element-level parameters. The enrichment functions ˆ
i  depend on the time through the 

interface-position, which, in turn, is described by the time-evolving level set function. Eq. (45) is the 

embedded-discontinuity version of XFEM’s Eq. (31) and can be rewritten in matrix form as  

      ˆ ˆ, ,T t t tx N x T , (46) 

where the matrix          1 1
ˆ ˆ ˆ, , , , , , ,n nt N N t t


    N x x x x x   collects the standard and 

discontinuity-embedding shape functions, and the vector          1 1
ˆ ˆ ˆ, , , , ,

T

n nt T t T t a t a t


   T    the 

standard nodal degrees of freedom and the additional elemental ones. 

The numerical model is developed by following the same steps as in Sections 4.2 and 4.3, so that 

the same formal expressions obtained there for the XFEM hold for the embedded-discontinuity FEM, 

once Eq. (31) is replaced by Eq. (45). 

In order to explain the procedure, a two-node element with an embedded gradient discontinuity for 

the one-dimensional Stefan problem (see also Section 6) is developed here. In this simple case the 

standard FE shape functions are linear (Figure 4a) and the enrichment of the element containing the 

phase interface can be obtained by a piecewise-linear hat-shaped function  ˆ ,x t  (Figure 4c), whose 

contribution vanishes at the nodes, assumes a unit value at the discontinuity, and it is controlled by the 

elemental degree of freedom â . 

Figure 4. Shape functions within one element in local coordinate x: (a) standard, (b) 

enriched in XFEM, and (c) enriched in embedded-discontinuity FEM. 



1N

2N



̂



1
2

 
It can be observed that the definition of ̂  given above does not cover the case in which the phase 

interface coincides with a node. When the interface reaches the local i-th node ( 1, 2i  ), the function 

̂  coincides with iN , in the element that last contained the interface. However, ̂  is still linearly 

independent from iN  at the global level, as visualised in Figure 5, and no particular indeterminacy 

arises, unless the interface reaches the domain boundary. In the last, quite particular case, the loss of 

linear independency may also compromise the convergence of the gradient discontinuity at the phase 

boundary, as observed by Merle and Dolbow [15], and, in any case, the conditioning of the system 

matrixes deteriorates as the phase interface gets closer to a boundary node. 

Figure 5. Standard FE shape functions and embedded-discontinuity function. 

1

0
x

1N 2N

node 1

̂

x* node 2  
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The case discussed here is particularly simple and further difficulties arise in two and three 

dimensions or in case of stronger discontinuities, as in fracture mechanics. For these reasons, XFEM is 

usually preferred to embedded-discontinuity methods in those fields. However, in the case of one-

dimensional Stefan problem, the approach developed above proves quite effective, as shown by the 

examples in Section 6.6. 

6. Numerical study on the error and applications to planar-symmetric problems 

Exact solutions to Stefan problem exist in a very small number of cases such as those of planar 

symmetry with semi-infinite domain, in which the interface position is proportional to the square root 

of the time (similarity solutions). These cases are reviewed in this Section, so that the numerical results 

can be compared to exact values. The accuracy of XFEM is evaluated with respect to space and time 

discretisations. Penalty and Lagrange multiplier methods to enforce the interface temperature 

condition are compared, and the treatment of the blending elements is discussed. XFEM and 

embedded-discontinuity FEM are compared too. Finally, a second planar-symmetric example with 

finite domain is presented. 

Besides exact solutions and for the cases in which such solutions are not available, we also consider 

the so-called pseudo steady state (PSS) approximations. These are based on the assumption that the 

rate of the interface movement is much slower than the rate of the temperature diffusion within the 

domain, so that the temperature field at a given time instant can be approximated with the steady-state 

field corresponding to a fixed phase-interface, and the interface position can be, in turn, updated from 

the resulting steady-state temperature field. It follows that the PSS solution is a suitable approximation 

for large values of the Stefan number  , defined as 

 
L

c T
 


, (47) 

where T  is some temperature difference, characteristic of the specific problem (e.g. the temperature 

difference between two thermostats providing essential boundary conditions). A PSS approximation 

provides a limit behaviour, useful for comparisons where no exact analytical solution is available, such 

as the cases considered in Sections 6.7 and 7. For further details on the exact and PSS analytical 

solutions, the Reader is referred to Reference [19]. 

From here on, planar-, cylindrical-, and spherical-symmetric problems are considered. These can be 

treated as spatially one-dimensional, allowing for some simplifications in the interface-position 

tracking. In particular, with the phase-transition interface reduced to one point in the one-dimensional 

space (representing a planar, cylindrical, or spherical surface in the original three-dimensional space), 

one coordinate suffices for individuating the interface position and generating the level set. 

In the examples below, we consider one-dimensional extended finite elements with two-nodes and 

linear shape functions, enriched as in Eq. (31). The relevant enriched shape functions are shown in 

Figure 4b. In Section 6.6, we also consider the embedded-discontinuity FEM described in Section 5. 

Where it is not differently stated, the temperature condition on the phase interface is enforced through 

Lagrange multiplier method and no enrichment is used in the XFEM blending elements. 
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6.1. One-phase freezing problem 

A planar-symmetric freezing problem in a semi-infinite domain is considered. Due to symmetry and 

material isotropy, the problem can be reduced to one dimension and the coordinate x  in the direction 

orthogonal to the constant-temperature planes suffices to the problem description. The one-

dimensional domain  0,    is initially at the freezing/melting temperature, with  sol *0, x  , 

 liq *,x   , and  tran *x  . The boundary condition is   0 tran0,T t T T  , whereas the initial 

position of the interface is  * 0x a  . The values used in the numerical examples are reported in 

Table 1. Stefan number is computed with the temperature difference between phase-transition and 

coolant thermostat, 

 
 sol tran 0

15
L

c T T
 


 . (48) 

Table 1. Data used in the numerical examples. 

One-phase 

example data 

Two-phase 

example data 

Polar-symmetric 

example data 

Water-pipe 

example data 

sol 2.18 W/m/Kk   

liq 0.6 W/m/Kk   

sol 2260 J/kg/Kc   

liq 4186 J/kg/Kc   
31000 kg/m   

335000 J/kgL   

tran 0 CT    

0 100 CT     

1 ma   

sol 250 W/m/Kk   

liq 190 W/m/Kk   

sol liq 880 J/kg/Kc c   
32700 kg/m   

267000 J/kgL   

tran 660 CT    

0 652.5 CT    

1 670 CT    

1 m  

0.02 ma   

sol 2.18 W/m/Kk   

liq 0.6 W/m/Kk   

sol 2260 J/kg/Kc   

liq 4186 J/kg/Kc   
31000 kg/m   

335000 J/kgL   

tran 0 CT    

0 1 CT    

0.01 mR   

0.9a R  

sol 18 W/m/Kk   

sol 2260 J/kg/Kc   
31000 kg/m   

335000 J/kgL   

ins 0.05 W/m/Kk   

ins 600 J/kg/Kc   
3

ins 100 kg/m   

tran 0 CT    

0 10 CT     

 

With these initial and boundary conditions, no heat flow occurs in the liquid domain, which remains 

at a constant temperature, and the interface is driven only by the temperature gradient in the solid 

domain, so that the problem can be considered as a one-phase problem with moving boundary. 

Neumann’s exact solution is available for this case. The temperature field in the solid region is 

given by 

      
exact
*

exact tran 0 0 sol

erf
2

, ,
erf

2

x

x t
T x t T T T x





 
 
    

 
 
 

, (49) 

where the non-dimensional coefficient   is the positive real root of 

 
1

exp erf
2 2 2

  


          
, (50) 
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and the position of the freezing front is given by 

  exact sol
* 2

sol

1 2
k

x t a t
c a




  . (51) 

As further comparison, we also consider the PSS solution, although the Stefan number of the 

specific example, see Eq. (48), is not large enough for the PSS solution to constitute a good 

approximation [19]. Under the PSS assumption, the one-dimensional governing equation becomes  

 
2

PSS
2

0
T

x





, (52) 

with the boundary conditions 

    PSS
PSS 0 PSS * tran0, , ,T t T T x t T  . (53) 

Integration of Eq. (52) leads to 

      PSS tran 0 0 solPSS
*

, ,
x

T x t T T T x
x t

    . (54) 

The further integration of Eq. (5), with PSS
*v dx dt  and the initial condition  PSS

* 0x a , results in 

  PSS sol
* 2

sol

2
1

k
x t a t

c a 
  . (55) 

Eqs (54) and (55) are the PSS versions of Eqs (49) and (51) respectively. All of them are written 

into a form in which mutual comparison is straightforward; in particular it is noted that the temperature 

profile becomes linear in the case of PSS solutions, whereas the expression of the position of the 

freezing front only differs on a time scale-factor. 

In the numerical analyses, we use a finite domain  XFEM 0,   , with 5 m . Since no heat flux 

occurs in the liquid phase as long as the position of the interface is contained into XFEM , the 

numerical set-up is completely equivalent to the one studied analytically, provided that the natural 

boundary condition  ˆ 0q x    is imposed. 

In Figure 6, the interface position calculated through Neumann’s and PSS analytical solutions are 

compared with the XFEM simulations obtained with a spatial discretisation in 10 equally-sized 

elements and a time-step 54 10 st   . The numerical results are very close to the exact ones, whereas 

the PSS solution overestimates the freezing-front velocity because it does not account for the thermal 

inertia. At a closer look, the numerical solution lies slightly above the exact one, due to the use of 

backward Euler integration scheme, in which the interface position at current time-step is updated with 

the velocity of the previous time-step, i.e. a slightly overestimated one in this example. Of course, this 

effect is reduced with smaller time-steps and the XFEM solution converges to the exact one as the 

temporal and spatial discretisations are refined (see Sections 6.2 and 6.3). The temperature field at 

some different time-steps is shown in Figure 7, where the numerical and the exact solutions 

superimpose quite well one to the other, whereas the PSS approximation overestimates the phase-

interface positions. 
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Figure 6. Interface position for the one-phase planar-symmetric example. 
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Figure 7. Temperature field for the one-phase planar-symmetric example. 
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6.2. Time discretisation 

As mentioned above, backward Euler integration evaluates the interface position at every time step 

with the temperature gradient computed through finite differences in the previous time-step, so that the 

computed gradient is slightly larger, in the considered example, than the exact one. Figure 8 shows the 

interface position obtained with different time discretisations at a fixed time instant 610 st  . The 

interface position converges to the exact one as t  goes to zero. The non-dimensional relative error 
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   exact XFEM

* *

t

x t x t
t

a



  (56) 

is represented versus the time-step size in Figure 9. 

Figure 8. Convergence of the interface position. 
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Figure 9. Relative error in the interface position. 
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6.3. Space discretisation 

The dependence on the spatial discretisation of the error in XFEM simulations with respect to the 

exact solution is studied by considering the same example of Sections 6.1 with a fixed time step and a 

domain subdivision into different numbers of equally-sized elements. 

The error in a spatial subdomain  1 2,x x   at time t  is evaluated as 

    
   2

1

1 2

exact

,
tran 0 2 1

, , d
x

x

x x

T x t T x t x
t

T T x x





 


, (57) 

which, for the convergence study, is equivalent to the square-root of the non-dimensional error in the 

energy. The convergence to exact solution is shown in Figure 10, where the error in the whole domain 

is averaged on the time and plotted as a function of the normalised element size (i.e. the inverse of the 

number of elements in which the spatial domain is subdivided). Of course, the error on the spatial 

discretisation is increased by the error on the interface position (and vice versa), which is responsible 

of the apparent scatter in the error values, as well as of a reduced convergence rate. In order to 

highlight this effect, the error on the spatial discretisation can be somehow ‘depurated’ from the time-

discretisation error by enforcing the exact analytical interface position in the numerical simulations. In 

this way a higher convergence rate and no ‘scatter’ are obtained, as also shown in Figure 10. 

Figure 10. Error in temperature field versus element size. 
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6.4. Constraint enforcement 

The enforcement of the phase-transition temperature at the interface, described in Section 4.3, is 

discussed here in the same settings of Section 6.1. 

We consider first the penalty method, which is used in most of the research works on XFEM and 

Stefan problem [15-17], because of its robustness and simplicity of implementation. As discussed in 
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Section 4.3, the main disadvantage of this method is that high values of the penalty coefficient b , 

while accurately enforcing the constraint, may lead to a poor conditioning of the numerical problem of 

Eq. (42). We define the error in the enforcement of the constraint at a given time instant as 

  
  tran *

constr
tran 0

T T x t
t

T T






. (58) 

Figure 11. Penalty method: relative error (a) and condition number (b). 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

 [-]

 c
on

st
r [

-]

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

 [-]


co

nd
 [

-]

 
The conditioning of the linear system in Eq. (42) is measured by the condition number with respect 

to inversion, cond , defined as the ratio between the maximum and the minimum singular values of the 

system matrix penbK K ; the higher is cond  and the worse is the conditioning of the numerical 

problem. The error and the numerical conditioning are studied as functions of the non-dimensional 

penalty coefficient, which we define as 

 
1

sol liq

2 e

k k S
b


 

  
 

, (59) 

(a) 

(b) 
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with S  and e  the average cross-sectional area and length of the one-dimensional elements, 

respectively. Since penK  is dimensionless, the term in parentheses in Eq. (59) contains the physical 

dimension and the average magnitude of the coefficients of the stiffness matrix K , which, in turn, 

contributes to K . In this way,   is expected to be less problem-dependent than its dimensional 

version b . 

Figure 11 shows the influence of the penalty coefficient on the quality of the constraint enforcement 

and of the numerical solution (both averaged over several time-steps); low values of   result in a poor 

enforcement of the interface condition, whereas high values lead to a progressive increase of the 

condition number. It is then evident that in practical cases the value of   must be chosen as a 

compromise between accuracy of the constraint enforcement and quality of the numerical solution. 

The error in the constraint enforcement vanishes if Lagrange Multiplier method is used. The 

temperature field in the vicinity of the phase-interface at time 56 10  st    as obtained with penalty 

( 50  ) and Lagrange multiplier methods is shown in Figure 12 (position and temperature are 

indicated by solid dots for the nodes and by a circle for the interface). 

In the analysed case, the condition number with the Lagrange multiplier method is 104.5 with an 

exact enforcement of the constraint; the same condition number can be obtained with the penalty 

method for 18  , with an error in the constrain enforcement exceeding 5%. 

Figure 12. Temperature field in the vicinity of the interface. 

1 1.5 2

-20

-10

0

x [m]

T
 [

°C
]

 

 

Exact solution
XFEM (Lagrange multiplier method)

XFEM (penalty method =50)

 

6.5. On the interpolation in the blending elements 

The treatment of blending elements (i.e. those whose nodal support is only partially enriched, see 

Section 4.1) is discussed here by means of a numerical example. Different approaches to the 

temperature interpolation in this region are possible: (i) the partial enrichment by routinely applying 

Eq. (31), (ii) the adoption of special strategies such as the use of hierarchical functions (e.g. [62]), and 

(iii) the use of standard FE shape functions only (as in the non-enriched elements). 
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The XFEM strategy consists in enriching the nodes whose support is intersected by the 

discontinuity. In this way the subset A  of the standard FE shape functions constitutes a local partition 

of unity in the region   surrounding the discontinuity and does not affect the region far from the 

enriched nodes (where standard FE interpolation holds). However, by following approach (i), the 

enrichment involves a region A    and is only partial in the region \A   , i.e. in the blending 

elements. In a blending element, only some nodes are enriched and the subset of the standard shape 

functions used to weight the discontinuity does not represent a partition of unity. This leads to the 

appearance of pathological terms and, in general, to a sub-optimal convergence rate [62]. 

One possible cure, the approach (ii), is the use of hierarchical, higher-order shape functions as 

proposed in Reference [62]. The idea is that the enrichment functions are obtained by the product of 

the standard FE shape functions (linear, in our case) and the enrichment functions (also linear); 

therefore, it is possible to compensate their pathological contributions by using higher order FE shape 

functions in the blending elements (second grade polynomials). This approach proves very effective as 

demonstrated by their proposer. However, in those cases in which the interface is not fixed, local 

modifications of the topology are required as the interface evolves. When the interface moves from 

one element to another one, new nodes must be enriched and, consequently, some standard elements 

become blending elements. There, in a topological approach, new hierarchical nodes must be added. 

This may complicate the implementation of the method, even though the result is computationally 

cheaper than the remeshing required by standard FEM with adaptive mesh. Tarancón et al. [62], shows 

that the approximation error   in a two-node one-dimensional blending element satisfies the 

inequality 

    
2

2
e 2

e

1 2
max max

8
x y

d T a d
y x

dx dx




 
  

 



, (60) 

where y  and x  are points inside the element and a  is the extended degree of freedom of the enriched 

node. It is clear that the second term in the right-hand side of Eq. (60), which is not present in the 

standard FE case, may lead to an increased error. This pathological term can be compensated by using 

higher-order (second grade, in our case) standard shape functions for the blending element, controlled 

by additional standard degrees of freedom (hierarchical approach). 

Alternatively, as in the approach (iii), it is possible to eliminate the pathological term by 

considering the enrichment functions only in those elements whose support is completely enriched and 

simply using the standard FE shape functions in the blending elements. In fracture mechanics, where 

the XFEM has been originally developed, this approach causes problems, as the displacement field 

may not be well reproduced in the vicinity of the interface boundaries (the crack tips) and conformity 

between enriched and blending elements may be lost. In the case of Stephan problem, however, these 

are not concerns. In fact, the phase-interface has no boundaries inside the body (either it is a closed 

surface or its boundary belongs to the domain boundary) and the considered discontinuity is weaker 

(gradient discontinuity). Incidentally, we observe that non-conforming elements (sometimes called 

‘incompatible’) are not uncommon, and the loss of conformity can be traded for an improved accuracy 

in secondary (but sometimes more relevant for technical applications) variables such as strains and 

stresses (e.g. [63-65]). 



Algorithms 2009, 2                            

 

 

1202

With that said, the approach (iii) seems optimal in the case of phase transitions and it is used in all 

the examples of the present paper. Only in this Section we compare the approaches (i) and (iii). Figure 

13 shows the error as a function of the spatial discretisation, computed as in Section 6.3. The 

temperature fields obtained in the two cases at the same time instant are shown in Figure 14 (where the 

crosses denote the nodal positions and temperatures, and the circle the phase interface). It is noted that, 

not only approach (i) is less accurate than approach (iii), which confirms the estimates by Tarancón et 

al. [62], but it also leads to a poor estimate of the left- and right-gradients of the temperature at the 

interface, altering the rate of its movement. 

Figure 13. Error versus element size with different kind of blending elements. 
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Figure 14. Temperature field with different kind of blending elements. 
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6.6. Comparison with embedded-discontinuity finite elements 

The one-phase problem of Section 6.1 is now analysed by means of the one-dimensional embedded-

discontinuity FEM developed in Section 5. The simulations are performed by using the penalty method 

for the enforcement of the interface condition, with 45 10   . 

As a first analysis, we discretise the spatial domain into 10 equally-sized elements and time with 
54 10 st   , the same discretisations used with XFEM in Section 6.1. Figure 6 shows the evolution 

of the melting front computed with embedded-discontinuity FEM in comparison with XFEM results 

and analytical calculations. The two numerical techniques provide comparable results, with only a 

slightly smaller accuracy in the embedded-discontinuity FEM. The temperature field in the element 

containing the discontinuity at 64 10 st    is shown in Figure 15, where the two numerical methods 

appear as quite equivalent. A particular of the same plot is shown in Figure 16, where the differences 

in the interpolation (linear for embedded-discontinuity FEM and quadratic for XFEM) can be 

appreciated thanks to a strong magnification on the temperature axis. In Figure 15 and Figure 16, the 

dots denote nodal positions and temperatures and the circles highlight the phase interface. 

As a second analysis, the convergence with spatial discretisation is studied in the same way of 

Section 6.3. The results are summarised by the plot in Figure 17, where embedded-discontinuity FEM 

and XFEM are compared. The two methods show, in the present case, comparable accuracy and 

convergence rate. 

Figure 15. Temperature field in the element containing the discontinuity. 
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Figure 16. Particular from Figure 15. 
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Figure 17. Error in temperature field versus element size for embedded-discontinuity FEM. 
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6.7. Two-phase solidification problem 

The planar-symmetric solidification process of aluminium in a case in which the heat conduction 

occurs in both the solid and the liquid phases is considered. The one-dimensional domain is  0,   , 

with  sol 0,a  ,  liq ,a   , and  tran a  . The boundary conditions are   0 tran0,T t T T   and 

  1 tran,T t T T  ; both phases are initially at the temperature 1T . 

Under these conditions, no exact analytical solution is available. Then, Neumann’s solution for the 

case in which the domain is unbounded on the side of positive x  (i.e. when   tends to infinity) and the 
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PSS solutions are used to compare the numerical results. Neumann’s solution is exact in the semi-

infinite domain; therefore, in the finite domain it provides a good approximation only in the earliest 

instants of the melting process. On the other hand, the PSS solution is expected to provide a better and 

better approximation as the system approaches the steady state. 

For the two-phase problem described above, the interface position calculated through Neumann’s 

analytical solution is 

 Neumann sol
* 2

sol

1 2
k

x a t
c a




  , (61) 

where   gamma is the positive root of 

 
     

   
liq 1 tran

sol sol tran 0tran 0

exp 2 exp 2 2

erf 2 erfc 2

k T T L

k c T TT T

     
  
  

 


, (62) 

being    sol sol liq liqk c k c   the solid-to-fluid thermal diffusivity ratio. 

The PSS approximation is developed analogously to the one-phase case of Section 6.1. From 

Eq. (52) we obtain linear temperature fields in the solid and liquid phases, and the evolution of the 

melting front is obtained (in an implicit form) as 

 
   2PSS 2 PSS 2 PSS

* 2 * 1 2 * 1
2 3

1

log
2

x a x a xt

L a

    
     

  
  



  


, (63) 

where the constants  1 sol tran 0k T T   ,  2 liq 1 trank T T   , and 1 2     are introduced for the 

sake of conciseness. 

The numerical data used in the example are reported in Table 1 and the resulting Stefan number is 

 

 liq liq
1 0

17.3

2

L
c c

T T
 




 . (64) 

As it can be evinced from Figure 18, the interface positions evaluated by the XFEM and the two 

analytical models are close in the initial time instants. Afterwards, the numerical solution and the PSS 

approximation converge to the steady state, whereas Neumann’s solution (which matches different 

boundary conditions) diverges. However, in the initial instants, when the position of thermostat 1T  

makes little difference, Neumann’s solution should be considered as reference, since it includes 

thermal inertia, contrarily to the PSS solution. The position of the phase-interface in such initial 

instants is represented in Figure 19, where the better agreement of the numerical simulation to 

Neumann’s results is highlighted. 

The temperature fields within the domain at some time instants are plotted in Figure 20. Initially, 

when the effects of thermal inertia are larger, the PSS (piecewise linear) temperature field poorly 

approximates the expected physical behaviour, which is more suitably represented by Neumann’s 

solution. On the other hand, as the system approaches the steady state (represented by the dashed lines, 

almost superimposed with the fields at 20000 st  ), the thermal inertia becomes less and less 

significant so that the PSS approximation can be considered as reference (we remind that Neumann’s 

solution is computed with a semi-infinite domain so that no steady state can be reached in this case). 
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As a conclusion, the numerical simulations appear quite satisfactory since they stick to Neumann’s 

solution in the initial time steps and to the PSS solution in later stages of the process. 

Figure 18. Interface position. 
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Figure 19. Detail of Figure 18. 
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Figure 20. Temperature field at different time instants. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
652

654

656

658

660

662

664

666

668

670

x [m]

T
 [

°C
]

 

 

Neumann's solution (semi-infinite domain)

PSS approximation

XFEM

t=200s

t=5200s

t=20000s

steady state

 

7. Applications to polar-symmetric problems 

Below, some XFEM applications to problems with cylindrical and spherical symmetry are 

presented. The one-dimensional XFEM model used in the previous Sections can be adapted to the 

present cases by considering the specific symmetry and suitably implanting the volume integration in 

Eqs (37). The one-phase melting of a cylinder and a sphere of iced water are considered in Sections 7.1 

and 7.3, respectively. Since no exact solutions exist for these cases, a sufficiently large value of Stefan 

number is used, so that the PSS approximations, which are developed in the relevant Sections, can be 

considered for comparing the numerical results. In Section 7.2, the problem of technical interest of the 

freezing water into a thermally-insulated pipe is studied. 

7.1. Melting of iced-water cylinder  

We study the melting of an iced water cylinder, whose cross-section is shown in Figure 21. The 

cylinder is initially at the melting temperature and an essential boundary condition   1 tranT R T T   is 

imposed to the external surface so that the initially solid cylinder progressively melts. 

The problem has cylindrical symmetric and can be described by the spatial coordinate r . The 

energy balance equation in cylindrical coordinates and for isotropic heat conduction is 

  
2

2

1T T
cT k

t r r r


   
     

, (65) 

and the position of the phase interface  *r t  is governed by Stefan law, 

 
*

liq sol*
liq sol

r r

T Tdr
L k k

dt r r




 
     

. (66) 

The phase-interface temperature condition is 
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  * tran,T r t T . (67) 

The boundary conditions are 

 

 

 

1 tran

0

, ,

0, 0,
r

T R t T T

T
q t k

r 

 


  



 (68) 

where the latter is due to the symmetry of the problem and expresses the natural boundary condition of 

absence of heat flow in the axis of the cylinder. The initial conditions are 

 
 
 

tran

*

,0 , 0 ,

0 .

T r T r R

r a

  


 (69) 

Figure 21. Cross-section of the melting ice cylinder. 
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We develop the PSS approximation to compare the numerical results. Under the PSS hypotheses, 

Eq. (65) becomes 

 
2

PSS PSS
2

1
0

T T

r r r

 
 

 
. (70) 

By integrating and applying the boundary conditions of Eqs (68), the approximated temperature 

field is obtained as 

    PSS 1 tran tran liqPSS
*

log
, 1 ,

log

r
RT r t T T T r

r

R

 
 

     
  
 

. (71) 

By substituting in Eq. (66) and integrating it with the initial condition in Eqs (69), an implicit 

relation between the interface position and the time is obtained, 

 
   2PSS PSS 2

*liq 1 tran * 1 1
log log

2 2 2 2

rk T T r a a
t

L R R
          

  
. (72) 
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For the numerical analysis we consider the data in Table 1, from which a relatively high value of 

Stefan number is achieved, 

 
 liq 1 tran

80
L

c T T
 


 , (73) 

so that the PSS approximation represents an adequate reference for comparing the numerical results. 

Figure 22 shows the interface position calculated through the PSS approximation and the XFEM 

simulations with two different spatial discretisations, with 10 and 40 equally-sized finite elements. The 

increase in the spatial discretisation improves the quality of the numerical solution especially in the 

last stages of the melting process, when the phase-interface is close to the cylinder axis. This is mainly 

due to the evaluation of the integrals in Eqs (37). In particular, the accuracy of a finite element is 

higher if the areas of the cylindrical surfaces constructed with the radii at the two nodes of the 

considered element are closer. The temperature field at some time instants, 

2400 s, 4800 s ,…, 12000 st  , is represented in Figure 23. Temperature fields evaluated through PSS 

approximation and XFEM simulation differ, if they are evaluated at the same time instant, because of 

the error in the phase-interface position. However, the temperature fields superimpose very well, if 

they are ‘artificially’ compared for the same phase-interface position (at different time instants), as 

shown in Figure 24, attesting the correctness of the simulated temperature profile. 

Figure 22. Interface position in the cylindrical melting example. 
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Figure 23. Temperature field within the cylindrical domain. 
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Figure 24. Temperature field for a given phase-interface position in cylindrical symmetry. 
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7.2. Water freezing in thermally-insulated pipe 

The solidification of water in a thin metal pipe is considered. The water is assumed to be at rest and 

the pipe radium is taken to be 0.05 m. We assume the pipe to be surrounded by a 0.01-m-thick 

thermally-insulating layer as depicted in Figure 25. The initial temperature of the water is taken to be 
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equal to the freezing temperature and the ambient temperature equal to 10 °C  (this results in an 

essential boundary condition at 0.06 mr  ). Further data of the problem are reported in Table 1, 

where the subscript ‘ins’ denotes the thermally-insulating material. The presence of the metal pipe is 

neglected due to its small thickness and its high thermal conductivity. The XFEM model is constructed 

by subdividing the ice/water domain into 5 finite elements and by using an additional element for the 

thermally-insulating material. The time discretisation used is 410 st  . 

Figure 25. Cross-section of the insulated pipe. 
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Figure 26. Temperature field in the pipe and in the insulating material. 
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Figure 26 represents the temperature field at time steps 5 5 51 10  s, 2 10  s, 3 10  st     . Within the 

considered domain, there are two gradient discontinuities in the temperature field; the first one is due 

to the moving phase interface and the second one, to the different thermal conductivity in the ice and 

insulating material. The evolution of the interface position within the pipe is plotted in Figure 27. For 

this example no experimental or analytical comparison is available. However, it is reasonable to 

consider the present simulations as fairly close to the physical case, as the results presented in the 

previous Sections show that the numerical model behaves very well in a variety of planar-symmetric 

examples (Section 6), and it has been validated for cylindrical symmetry (Section 7.1). 

Figure 27. Interface position within the pipe. 
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7.3. Melting of iced-water sphere 

Moulds for ice spheres are advertised for serious on-the-rock drinkers by asserting that the 

minimum surface-to-volume ratio means that the ice melts at a slower pace, preventing the drinks from 

getting watery too quickly. This seems questionable and, indeed, the problem is not well posed, as the 

amount of melted ice depends mainly on the heat transferred from the container to the environment. 

Here, we present a simpler problem, where a sphere of water ice melts in liquid water. We assume the 

heat transferred by convection to be negligible.  

The present problem with spherical symmetry, schematised in Figure 28, is analogous to the 

cylindrical one presented in Section 7.1. The sphere is initially at the melting temperature and the 

essential boundary condition   1 tranT R T T   is imposed, so that the initially solid sphere starts 

melting. Due to the spherical symmetry of the problem, it can be studied by considering only the 

coordinate r  (we use the same symbol r  for the radial coordinate in both cylindrical and spherical 

coordinate systems, the context ensuring the disambiguation). 
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Figure 28. Melting ice sphere. 
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Figure 29. Interface position in the spherical melting example. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

t [s]

r * [
m

]

 

 

PSS approximation

XFEM (10 elements)

XFEM (40 elements)

 
The energy balance in spherical coordinates and for isotropic heat conduction is 

  
2

2

2T T
cT k

t r r r


   
     

, (74) 

whereas Stefan law, phase-interface temperature condition, boundary and initial conditions read as in 

Eqs from (66) to (69). 

Since no analytical solution is available. We develop then the PSS approximation. Eq. (74) becomes 

 
2

PSS PSS
2

2
0

T T

r r r

 
 

 
. (75) 

By integrating and considering the boundary conditions, the temperature field 
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PSS
*

PSS 1 tran tran liqPSS
*

( )
1

, ,
( )

1

r t
r

T r t T T T r
r t

R


   


 (76) 

is obtained. Substituting in Eq. (66) and integrating it with the initial condition of Eqs (69) leads to the 

implicit relation for the time evolution of the phase-interface, 

 
   

PSS
21 tran PSS 2*

*

1 1

3 2 3 2

k T T r a
t r a

L R R
          

  
. (77) 

For the numerical analysis, the same data used in the cylindrical example in Section 7.1 are adopted 

(see Table 1), so that the same value of Stefan number is obtained, high enough for considering the 

PSS approximation as a suitable reference for comparing the numerical results. 

Figure 30. Temperature field within the spherical domain. 
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Figure 29 shows the phase-interface position calculated through the PSS approximation and the 

XFEM simulations with 10- and 40-element discretisations. As for the cylindrical problem discussed 

in Section 7.1, the approximation with the finer spatial discretisation improves especially in the 

vicinity of the sphere centre. In this case, such behaviour is even more pronounced, as it can be 

evinced by comparing Figure 29 and Figure 22. In fact, the accuracy depends on the ratios between the 

areas of the surfaces (cylindrical or spherical) at the two nodes of one element; the cylindrical case has 

then a better behaviour than the spherical one, as the areas are proportional to the radii, instead of the 

squares of the radii. The temperature field at 2400 s, 4800 s, 7200 s, 9600 st   is shown in Figure 30. 

Temperature fields evaluated through PSS approximation and XFEM simulation notably differ, if they 

are evaluated at the same time instant, because of the error in the phase-interface position. Still, the 
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temperature fields compare very well, if they are evaluated for the same phase-interface position (but 

at different time instants), as shown in Figure 31. 

Figure 31. Temperature field for a given phase-interface position in spherical symmetry. 
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8. Remarks 

The Stefan problem for melting/solidification has been approached through two numerical 

techniques that enhance the FEM by allowing a temperature gradient discontinuity across the phase 

interface without remeshing. In the XFEM, the discontinuity is introduced through additional nodal 

shape functions, whereas in the embedded-discontinuity approach it is controlled at elemental level. In 

both cases the position and evolution of the phase interface can be described through the level set 

method. The presented analyses are restricted to one-dimensional cases; therefore, only a speculative 

discussion can be offered for higher-dimensional problems, which are in fact object of intensive 

research at the present time. 

As to the XFEM, the adopted approach is the one proposed by Chessa et al. [16], for which, here, 

different numerical techniques for the constraint enforcement have been used and compared; 

furthermore, a detailed numerical study of the error and a comparative review have been performed. 

Though the penalty approach can be considered for practical applications, Lagrange multiplier method 

enforces the constraint exactly and does not require the calibration of an unphysical penalty 

coefficient. Lagrange multiplier method can be directly applied to the discretised constraint; however, 

as it is inferred from the quoted references, in higher dimensional cases attention should be paid in the 

choice of Lagrange multiplier space in order to achieve stability. The interpolation to be adopted for 

the blending elements has been also discussed; it is concluded that if no enrichment is used in these 

elements the accuracy is improved without any particular disadvantage; this should extend also to 

higher dimensional cases. 
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As to the proposed embedded-discontinuity method, it has been shown to have a comparable 

accuracy and simplicity of implementation with respect to the XFEM. The generalisation of this 

approach to higher-dimensional problems is possible by constructing suitable shape functions; 

however, this is less straightforward than in the case of the XFEM, where the enrichment functions can 

be constructed elegantly and automatically by using Eq. (32). 
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