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Abstract: Artificial neural networks as a major soft-computing technology have been 

extensively studied and applied during the last three decades. Research on backpropagation 

training algorithms for multilayer perceptron networks has spurred development of other 

neural network training algorithms for other networks such as radial basis function, 

recurrent network, feedback network, and unsupervised Kohonen self-organizing network. 

These networks, especially the multilayer perceptron network with a backpropagation 

training algorithm, have gained recognition in research and applications in various 

scientific and engineering areas. In order to accelerate the training process and overcome 

data over-fitting, research has been conducted to improve the backpropagation algorithm. 

Further, artificial neural networks have been integrated with other advanced methods such 

as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and 

modeling and to avoid subjectivity in the operation of the training algorithm. In recent 

years, support vector machines have emerged as a set of high-performance supervised 

generalized linear classifiers in parallel with artificial neural networks. A review on 

development history of artificial neural networks is presented and the standard 

architectures and algorithms of artificial neural networks are described. Furthermore, 

advanced artificial neural networks will be introduced with support vector machines, and 

limitations of ANNs will be identified. The future of artificial neural network development 

in tandem with support vector machines will be discussed in conjunction with further 

applications to food science and engineering, soil and water relationship for crop 

management, and decision support for precision agriculture. Along with the network 

structures and training algorithms, the applications of artificial neural networks will be 

reviewed as well, especially in the fields of agricultural and biological engineering. 
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1. Introduction 

 

Soft computing is a partnership of computing techniques. The partnership includes fuzzy logic, 

Artificial Neural Networks (ANNs), and genetic algorithms. Conventionally, a huge set of techniques 

are referred to as hard computing, such as stochastic and statistical methods bound by the concept 

called NP (verifiable in Nondeterministic Polynomial time)-complete. Unlike hard computing, soft 

computing techniques offer “inexact” solutions of very complex problems through modeling and 

analysis with a tolerance of imprecision, uncertainty, partial truth, and approximation. In fact, soft 

computing is an integration of biological structures and computing techniques. In the partnership, 

ANNs provides configurations made up of interconnecting artificial neurons that mimic the properties 

of biological neurons.  

There are a variety of ANN architectures, such as Multilayer Feedforward Network (MFN), Radial 

Basis Function (RBF) network, recurrent network, feedback network, and Kohonen Self-Organizing 

Map (SOM) network. Each of these networks has a training algorithm to memorize what it “sees” and 

project what it does not “see” in the same population. Typical training algorithms include Back-

Propagation (BP) for Multi-Layer Perceptron (MLP, which is a MFN model), data clustering and 

linear weight solution for RBF networks, and unsupervised SOM for Kohonen SOM networks. In 

1986, Rumelhart et al. [1] reported the BP training algorithm by implementing the Delta rule, a 

gradient descent learning rule for updating the weights of the artificial neurons in the perceptron-type 

ANNs, for MFNs in the monograph of the Parallel Distributed Processing (PDP) research group [2]. 

This work introduced and enhanced recognition of the BP algorithm, gave a strong impulse to the 

study of the mechanisms and structure of the brain, and provided the catalyst for much of the 

subsequent research and application of ANNs. 

There are many issues and problems in applying ANNs which have inspired studies and research 

for improving the standard methods to solve problems. Determination of network structure is an issue 

in identification of ANN models, such as before implementing a MFN, the optimal numbers of hidden 

layers and nodes need to be decided on [3-5], and network pruning for redundancy connection 

reduction to improve network generalization capacities [6]. The slow convergence speed and local 

minima sticking with suboptimal solutions of BP training for MLPs have been studied [7-14]. 

Research has been conducted to improve the standard BP algorithm to overcome data over-fitting [15-

21]. 

With the development of research and applications, ANNs have been integrated or fused with other 

methods of soft computing and signal processing such as fuzzy logic [22-27] and wavelet analysis  

[28-31]. The fusion is to combine or cascade different computing methods with ANNs to improve 

system performance over an individual technique. In many cases, the problems can be solved more 

effectively by combining one or two other techniques rather than implementing ANNs exclusively. In 
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this way, the fused methods complement each other to enhance the ability of data interpretation and 

modeling and to avoid subjectivity in the operation of the training algorithm with ANNs individually. 

Support Vector Machines (SVMs) emerged as a method in parallel with artificial neural networks 

as a set of supervised generalized linear classifiers and often provide higher classification accuracies 

than MLP neural networks [32,33]. SVMs have a number of advantages over ANNs and have been 

attracting more and more interest in recent years.  

In agricultural and biological engineering, although some early research and applications exist  

[34-36], the interest of ANNs has been growing greatly in the last fifteen years in studies of soil and 

water regimes related to crop growth, analysis of the operation of food processing, and support of 

decision-making in precision farming. In summary of papers and reports collected from various 

sources, particularly through searching in the technical library of ASABE (American Society of 

Agricultural and Biological Engineers; http://asae.frymulti.com/) and the National Agricultural Library 

of USDA (United States Department of Agriculture; http://www.nal.usda.gov/), it was found out that, 

from early 1990s to the present, there have been 348 related reports and papers (193 peer reviewed) on 

ANNs. It is interesting that of the 20 reports and papers (13 peer reviewed) on SVMs from 2003 to the 

present, seven (two peer reviewed) came out in 2008. This may signify more interest of SVMs in the 

next decade in agricultural and biological engineering.  

The purpose of this paper is to overview ANN methodology, to determine the state of the art, to 

identify the limitations, and to project the future. Specifically, this paper will review the history of the 

development of ANNs. Then, the standard architectures and algorithms of ANNs will be described. 

Furthermore, a number of advanced ANN models will be introduced with SVMs, and the limitations of 

ANNs are identified. The future of research and applications of ANNs will be discussed with the 

development of SVMs. With the concepts, network structures, and training algorithms, the applications 

of ANNs will be reviewed with a focus on agricultural and biological engineering as well.  

 

2. History of ANN Development 

 

ANNs provide a method to characterize synthetic neurons to solve complex problems in the same 

manner as the human brain. For many years, especially since the middle of the last century, an interest 

in studying the brain’s mechanism and structure has been increasing. This growing research interest 

has led to the development of new computational models, connectionist systems or ANNs, based on 

the biological background, for solving complex problems like pattern recognition, and fast information 

processing and adaptation.  

In the early 1940s, McCulloch and Pitts [37] studied the potential and capabilities of the 

interconnection of several basic components, based on the model of a neuron. Later on, others, like 

Hebb [38], were concerned with the adaptation laws involved in neural systems. In 1958, Rosenblatt 

[39] coined the name Perceptron and devised an architecture which has subsequently received much 

attention. In 1960, Widrow and his student, Hoff, [40] presented an important generalization of the 

perceptron training algorithm as the Least Mean Square (LMS) learning procedure, also known as the 

Delta rule. The learning rule was applied as the adaptive linear element in the ADALINE (ADAptive 

LInear Neuron) networks. Then, Minsky and Papert [41] introduced a rigorous analysis of the 

Perceptron, of which they proved many properties and pointed out limitations of several related 
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models. In the 1970s, the work of Grossberg [42] came to prominence. His work, based on biological 

and psychological evidence, proposed several novel architectures of nonlinear dynamic systems. In 

1982, Hopfield [43] applied a particular nonlinear dynamic structure to solve problems in 

optimization. All of them conducted pioneer studies on the theoretical aspect of ANNs, particularly 

starting in the 1950s and 1960s.  

In 1986, the PDP research group published a series of algorithms and results [2]. This publication 

contains an article entitled “Learning Internal Representations by Error Propagation” [1]. This article 

made the recognition of the BP training algorithm although it was already described in 1974 [44]. The 

BP algorithm implemented with the general Delta rule [1,7], as the representative of supervised 

training algorithms, gave a strong impulse to the subsequent research and has resulted in the largest 

body of research and applications in ANNs although a number of other ANN architectures and training 

algorithms have been developed and applied at the same time. In 1982, Finnish Professor Teuvo 

Kohonen [45] first described a different ANN architecture which is trained using an unsupervised 

SOM learning procedure. This Kohonen SOM algorithm has been populated in many research and 

practical applications later on. In 1988, RBF neural networks were first used [46], although RBFs were 

introduced earlier in 1977 [47]. RBF networks have also been widely used with the strong capability of 

function approximation and, along with MLP perceptron, had the impact on the emergence of SVMs 

[32,33,48]. In the late 1980s, the standard MFNs were proven as universal approximators on a compact 

subset of Rn [49,50]. The MFNs have a single hidden layer containing finite number of hidden 

neurons. The neurons use arbitrary activation function The theory assures that MFNs, including MLP 

networks, RBF networks and even SVMs under certain conditions [51] can handle problems which are 

highly complex and nonlinear.  

So far, ANNs have been used in many industrial and commercial applications such as process 

modeling and control [52], character recognition [53], image recognition [54], credit evaluation [55], 

fraud detection [56,57], insurance [58], and stock forecasting [59]. In a later section, applications of 

ANNs in agricultural and biological engineering will be reviewed. 

 

3. ANN Architectures and Training Algorithms 

 

3.1. MLP and BP 

 

Because the original perceptrons, single layer feedfoward networks, which were introduced by 

Rosenblatt [39], are limited to learning linearly separately patterns, nonlinear layers between the input 

and output are added to separate the data with enough training to model any well-defined function to 

arbitrary precision. This MFN model is known as a multilayer perceptron. The neural networks formed 

using the model are universal approximators [49,50]. Figure 1 shows the diagram of a one-hidden-

layered MLP network structure. The MLP networks are typically trained with the BP algorithm. The 

BP algorithm is supervised, which is to map the process inputs to the desired outputs by minimizing 

the errors between the desired outputs and the calculated outputs driven from the inputs and  

network learning.  
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Figure 1. MLP network structure. 

 
 

The standard BP algorithm [1] is a gradient descent algorithm to minimize the mean square error 

between the calculated outputs and the desired outputs of the MLP network. Assuming that there are n 

process inputs, x, and m desired outputs, d, with the network with a sample size of N: {xit, djt | i = 1, 2, 

… n; j = 1, 2, …, m; t = 1, 2, …, N}, then the mean square error of the network outputs is: 
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where yjt is the calculated output. 

Based on the gradient descent method, each of the network connection weights is updated as 

follows: 
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where  is a small constant such as 0.1 as the learning rate in the training process of the algorithm. For 

the MLP in Figure 1, all the weights are the sets of {wik | i = 1, 2, …, n; k = 1, 2, …, h} and {wkj | k= 1, 

2, …, h; j = 1, 2, …, m} where h is the number hidden nodes. Each of the output is as follows: 
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where s(z) is the activation function of each hidden node and output node. It typically is a sigmoid 

function as s(z) = 1/(1 + e-z). Therefore,  
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and s’(z) = s(z)(1 - s(z)) is the first derivative of s(z).  

Earlier than Rumelhart et al. [1], Werbos [44] gave a different derivation of the BP algorithm. This 

derivation is more general and mathematically rigorous than the one given by Rumelhart et al. In 

Werbos’ derivation, the chain rule is expressed in a convenient form by ordered derivatives. Even so, 

most research and applications of the BP algorithm still referred to the results of Rumelhart et al. due 

to their milestone publication in 1986 with the PDP research group.  

 

3.2. Radial Basis Function Network 

 

Due to adding hidden nodes and layer(s) and the nonlinearity of the sigmoid activation function of 

each hidden nodes and/or output nodes in MLPs, the BP algorithm has the possibility to produce 

complex error surfaces which contain many minima. Since some minima are deeper than others, it is 

possible that the algorithm will not find a global minima. Instead, the network may fall into local 

minima, which represent suboptimal solutions. The RBF networks [46] were introduced with the 

centers of data clustering means, and then the linear solution for the connection weights to the network 

output directly to a unique local minimum, the global minimum, which shortens network training 

process greatly.  

Figure 2 is a diagram of a one-hidden-layered RBF network structure. The RBF networks also are 

MFNs. With sufficient larger number of hidden nodes, they are universal approximators as well. The 

RBF network training also is supervised, involving determination of data clustering centers, ck (k = 1, 

2, …, hc), where hc also is the number of the centers to be determined, and network connection weights 

from the hidden layer to the network outputs, wkj (k = 1, 2, …, hc; j = 1, 2, …, m). Similar to BP 

training, the RBF training is to establish the map between process inputs and desired outputs by 

minimizing the errors between the desired outputs and the calculated outputs driven from the inputs 

and network learning. The objective function of error minimization is defined as: 
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where R( ) is a RBF function.  

A RBF function is any function R that satisfies R(x) = R(||x||). It is a real-valued function that 

depends on the distance from the origin as R(x) = R(||x||) or from other point or center, c, as  

R(x - c) = R(||x - c||). The norm ||.|| is usually Euclidean distance. 
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The linear solution of output layer weights in equation (7) guarantees the objective function (6) to 

get the global minima and greatly speed up the training process. 

RBF networks integrate nonlinear RBF activation functions in hidden layer and linear combination 

of weights in output layer. In input data clustering, different techniques can be used, such as k-means 

clustering [60] and fuzzy c-means [61]. There are choices of RBF functions, such as Gaussian RBF, 

multiquadric RBF, polyharmonic spline, and thin plate spline. Some of the RBFs will bring more 

parameters to determine in training process, such as Gaussian RBF, R(x - c) = exp(-||x - c||2), which 

brings one more parameter, , to determine. 

Figure 2. RBF network structure. 

 
 

3.3. Recurrent and Feedback Networks 

 

A recurrent neural network is a type of ANN where network nodes may have a directed connection. 

A typical example of this is that either the network’s hidden node activation values or network output 

values are fed back into the network input nodes. These types of networks are good at characterizing 

process temporal dynamics. Examples of simple recurrent networks are Elman and Jordan  

networks [62,63].  

MLP networks are good for mapping the static relationship of process input and output: x   y. 

They have been used for identification of dynamic systems [64,65]. However, they require a large 

number of input nodes which may result in long computing time and being affected by external noise 

[66]. Recurrent neural networks have been attracted in the field of dynamic system identification since 

they can avoid the problems MLP networks have [67-69]. 
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In time series analysis, ANNs can establish AR (AutoRegressive) function map between process 

input and output: {y(t-i) | i = 1, 2, …, p}   y(t). In process modeling and control, ANNs can help 

establish ARX (AutoRegressive with eXogenous input) function map of process input and output:  

{y(t - i), x(t - j) | i = 1, 2, …, p; j = 1, 2, …, q}   y(t) where p and q are the orders of time lags of y 

and x, respectively. Figure 3 shows a network structure to map the dynamic process input/output 

relationship with the ARX function map. Internally, this network is identical to a MLP. Externally, it 

feeds back the network output back to the network input with a lagged time shift. This network is 

named External Recurrent Neural Network (ERNN) [70]. Obviously, training of this network should 

be different from standard BP. Around the network, y(t - i) is a time-delayed output from the network 

itself. This network model is determined as a specific form of time-lag recurrent networks [4]. For the 

time-lag recurrent networks with only one recurrent connection, i.e. i = 1, a number of training 

algorithms have been proposed [71-73]. Among the proposed algorithms, the BP Through Time 

(BPTT) is able to be modified for multiple recurrent connections, i.e. i > 1 using ordered derivatives 

from Werbos’s derivation of the BP algorithm [44]. When the external feedback signal y(t) replaces 

the input of the network, the change of weights will affect y(t + 1) and thus y(t + 1) all the way to y(N) 

where T is the length of the data. Thus, the gradient computation has to account for this chaining from  

t = 0 to t = N. The input layer at time t+1 can be considered as a part of the 3rd layer of the network at 

time t. When calculating the error of the output layer at time t, it is necessary to calculate the error for 

the input nodes at time t + 1 up to t + p, all of which are connected to the corresponding output node at 

time t. In the regular BP algorithm, the error term for the network nodes propagates the required 

information all the way from t = N back to the current time instant. This is what the BPTT signifies. 

Based on Werbos’s work [44], a modified BPTT algorithm was derived for the ERNN [74] as 

described above. 

This modified algorithm was used for training over the whole trajectory of the training data. The 

maximum number of prediction steps is equal to the total number of observations. In controller design, 

the prediction steps would be much smaller. In order to solve this problem, the network can be trained 

to do shorter prediction with the modified training algorithm [74]. The modified training algorithm is 

still BPTT, but at each time instant the error term is propagated from the specified prediction step t + L 

(L << N) back to the current time instant t. This work resulted in an ERNN-based multiple-step-ahead 

prediction for process controller design [70]: 

L1,2,...,

otherwise ) d(t

0 when ) y(t
t)|y(t

W)q),-x(t1),...,-x(tt),|p-y(tt),...,|1-f(y(tt)|y(t













l

l

ll
l

lllll

  (8) 

where t)|y(t l  is the l-step-ahead predictor of y(t) at the time instant t, f( ) is the approximation of 

the function map, and W is the set of weights and bias terms in the network. 
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Figure 3. ERNN network structure. 

 
 

3.4. Kohonen SOM Network and Unsupervised Training 

 

Unlike the trainings of MLP, RBF and ERNN networks, Kohonen SOM networks are trained using 

an unsupervised algorithm, by which the input data are self-organized into clusters or classes, i.e. 

similar input data will activate the same network output node. The networks construct one-

dimensional, two-dimensional, and even three-dimensional arrays of output nodes to form self-

organized feature maps. Figure 4 is the structure of Kohonen SOM network with a two-dimensional 

array of output nodes used to form feature maps.  

This is a two-layer network. The output nodes are orderly arranged in a two-dimensional grid. Each 

input is connected to all output nodes through a weight. The network training process has two stages. 

The first is to generate a coarse mapping, i.e. to create some form of topological ordering on the map 

of randomly oriented nodes. There may be large changes to the orientation of the nodes on the map, so 

the gain term or adaption rate, , needs to be kept high to allow large weight modifications and settle 

into an approximate mapping quickly. Once a stable coarse map is found, the training process goes 

into the second stage. At this stage, the nodes within the localized regions of the map are fine-tuned to 

the network inputs. For this fine-tuning much smaller changes of weights must be made at each output 
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node, so the adaptation rate, , is reduced as training progresses. The weight updating in training is 

iteratively operated along with winning output node neighborhood: 

n)1,2,...,kq;1,2,...,jp;1,2,...,(i

NEij

)x-η(wΔw

*ij

kijkijk




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where p and q the first and second dimension of the feature map array, respectively, n is the number of 

network inputs, and ij* is the location of optimal output node. The optimal node is determined by: 
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Figure 4. Kohonen SOM network with two-dimensional array of output nodes used to 

form feature maps. 

 
 

 

The neighborhood function NEij is set large at very beginning of training, and slowly decreases in 

size with the progress of the training (Figure 5). The output nodes of the network are activated using a 

winner-take-all method: 



 


otherwise  0

*ijij  if  1
yij        (11) 

That is that if (i,j) is the location of the optimal output node, the output node takes the value of 1; 

otherwise it takes 0. Accordingly, the weights connected to the neighborhood of the optimal node  

are updated.  
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Figure 5. Topological neighborhoods with the progress of training as feature maps  

are formed. 

 
 

4. Advanced Development of ANNs 

 

With the progress of research and applications, ANN technology has been improved and advanced. 

Research has been done on modification of the standard BP algorithm to speed up algorithm 

convergence and avoid local minima in MLP network training. Much work has been devoted to 

preventing over-fitting in MLPs to improve the generalization ability of the networks. ANNs have 

been enhanced by fusing with other methods such as fuzzy logic and wavelet analysis. SVMs, 

emerging as a new soft computing technique, bring up a new wave of research and applications of 

ANNs.  

 

4.1. Standard BP Enhancement 

 

In standard BP training, it is critical to select a learning rate, , to let the process converge to the 

true global minimum of the mean square error of the network outputs with a rather rapid speed. A BP 

training with a too small learning rate will have a noticeable slow progress. One with a too large 

learning rate will speed up significantly. However, this may result in oscillations around relatively 

poor solutions. Evidence shows that the use of a momentum term in the BP algorithm can be helpful in 

speeding the convergence and avoiding local minima (http://www.cs.bham.ac.uk/~pxt/NC/ 

ASSIGNMENT/MICHAEL/momentum.html). The momentum term is defined as a fraction of the 

previous weight change w-, and added to equation (2) from the standard BP algorithm [7]: 
-αΔwE(w)ηΔw        (12) 

where  is taken 0   0.9. 
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In this way, in BP training, the momentum is used to stabilize the weight change using a 

combination of the gradient decreasing term with a fraction of the previous weight change. 

With the concept of momentum in BP training, the method has been further developed. Yu et al. [9] 

developed an adaptive momentum algorithm which can update the momentum coefficient 

automatically in every iteration step. The result of this adaptive process is equivalent to adding a 

momentum term to the standard BP algorithm. The momentum coefficient is updated automatically in 

every iteration. Numerical simulations show that the adaptive momentum algorithm can eliminate 

possible divergent oscillations during the initial training, and can also accelerate the learning process 

and result in a lower error when the final convergence is reached. Gerke and Hoyer [10] presented an 

analysis of fuzzy adaption of training parameters (learning rate and momentum) to accelerate BP 

learning in MFNs. 

There are other studies on BP training acceleration and local minima. Huang et al. [75] investigated 

the efficiency of the training processes of MFNs using the gradient descent method in the standard BP 

algorithm and Levenberg-Marquardt method in backpropagation. It was found that in the case of low 

epoch training (below several thousand epochs) using the gradient descent algorithm, the Levenberg-

Marquardt algorithm was less efficient, and in the case of high epoch training (above several thousand 

epochs) using the gradient descent algorithm, the Levenberg-Marquardt algorithm was more efficient. 

Jeenbekov and Sarybaeva [11] described properties of various parameters of sigmoid activation 

function mathematically with their influence on the speed of convergence of the BP training algorithm 

for MFNs. Wang et al. [12] proposed an improved BP algorithm intended to avoid the local minima 

problem caused by neuron saturation in the hidden layer. Each training pattern has its own activation 

functions of neurons in the hidden layer. When the network outputs have not received their desired 

signals, the activation functions are adapted so as to prevent neurons in the hidden layer from 

saturating. Bi et al. [13] proposed a modified error function with two terms. By adding one term to the 

conventional error function, the modified error function can harmonize the update of weights 

connected to the hidden layer and those connected to the output layer. Thus, it can avoid the local 

minima problem caused by update disharmony between weights connected to the hidden layer and the 

output layer. Simulations on some benchmark problems and a real classification task have been 

performed to test the validity of the modified error function. Otair and Salameh [14] proposed an 

algorithm used for training that depends on a multilayer neural network with a very small learning rate, 

especially when using a large training set size. It can be applied in a generic manner for any network 

size that uses a BP algorithm through an optical time (seen time).  

 

4.2. Network Generalization 

 

Although MFNs can be universal approximators with a sufficiently large number of hidden nodes, 

excessive number of nodes in the hidden layer may endanger the network to become memorized, 

which may lead to overfit the input variables [76-78]. The overfitted networks may fit training data 

points well but may not be able to well interpolate and extrapolate testing data points. The testing data 

points can be between the training points or out of the range of the training points. Overfitting is a very 

important problem in MLPs, and much work has been devoted to preventing overfitting to improve 

network generalization with techniques such as early stopping, weight decay, and pruning. Figure 6 
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shows typical error curves of MLP training and testing. With the increase of the hidden nodes, the 

training error is large at the beginning and then keeps decreasing with a gradual decline of the curve 

slope. Similarly, the testing error is also larger at the beginning and then keeps decreasing until it 

reaches a point, h*. Starting from this point, with further increase of the hidden nodes, the testing error 

increases gradually while the training error continues to decrease. During training, if the minimal point 

on the testing curve can be found, the overfitting problem may be solved. The training and testing 

curves with training steps have a similar behavior as shown in Figure 6, which can be used to 

investigate overfitting, as can happen with too many training steps.  

Based on the explanation of Figure 6, during MLP training, the training error and testing error are 

checked at every step, and the training process terminates as long as the minimal point of testing error 

is reached. This is so called early stopping method [20]. Further, a three-set approach was proposed 

[15]. This approach is to divide a data set into three nonoverlapping subsets: one for training to update 

network weights, one for testing to terminate training to prevent overfitting, and one for validation to 

evaluate the trained network. This approach gives a reasonable estimate of the network’s  

generalization ability.  

Adding a penalty term, Ep, to the mean square error of the network outputs in the standard BP 

algorithm, a new objective function is formulated for MLP training: 

Ew = E + Ep         (13) 

where is a pre-set constant for the penalty term. The training algorithm using this objective function 

causes network weights to converge to smaller absolute values than they would in the standard case. 

This method is called weight decay [16,75].The generalization ability of a network depends on the 

adjustment of the decay constant, With weight decay training, the network can avoid oscillation in 

the outputs caused by large weights. 

Figure 6. MLP error curves vs. number of hidden nodes. 
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Network pruning is another method used to prevent overfitting. This method begins with a fully 

connected network and the network is made smaller by iteratively eliminating least effective nodes in 

the hidden layer(s) or interconnections between nodes. The pruned network provides a structure that 

has a greater capacity for generalization [6,18,19]. 

 

4.3. Neuro-Fuzzy Systems 

 

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory [79] to deal with 

reasoning that is approximate, rather than precise. In contrast to yes/no or 0/1 binary logic, Fuzzy logic 

provides a set of membership values inclusively between 0 and 1 to indicate the degree of truth. Fuzzy 

logic can be combined with ANNs to form a learning machine that is able to determine the parameters 

for a fuzzy system by ANN computing. A fuzzy system comprises of linguistic rules such as IF THEN 

from prior knowledge. Input and output variables of the system are described linguistically. If the 

knowledge is incomplete, wrong, or contradictory, the fuzzy system needs to be tuned. Fuzzy system is 

incapable of learning; it is a mechanism of straight interpretation and implementation. ANNs are 

capable of learning with a sufficient amount of observed examples for a problem. These observations 

are used to train the network model. The result can provide data for parameterization of fuzzy rules.  

The fuzzy-neural systems have been studied and applied. Takagi and Hayashi [22] proposed a 

neural-fuzzy reasoning system that is capable of automatic determination of inference rules and 

adjustment according to the time-variant reasoning environment with the use of NN in fuzzy reasoning. 

Horikawa et al. [23] presented a fuzzy modeling method using fuzzy neural networks with the BP 

algorithm. The method can identify the fuzzy model of a nonlinear system automatically. Nie and 

Linkens [24] approximated reasoning through a BP Neural Network with the aid of fuzzy set theory. 

An example of multivariable fuzzy control of blood pressure was examined for the underlying 

principles. Simpson and Jahns [25] introduced the fuzzy min-max function approximation neural 

network. The function approximation network is realized by modifying the developed fuzzy min-max 

clustering network [80] to include an output layer that sums and thresholds the hidden layer 

membership functions. Jang [81] introduced the framework of ANFIS (Adaptive-Network-based 

Fuzzy Inference System). Jang and Sun [27] reviewed fundamental and advanced developments in 

neuro-fuzzy systems for modeling and control. They introduced design methods for ANFIS in 

modeling and control applications. 

A fuzzy-neural system can be represented as a MFN. The first layer is for input variables. The 

middle or hidden layer(s) are for encoding fuzzy rules and fuzzy inference. The last layer is for output 

variables. The fuzzy inferences are converted as network connection weights. Figure 7 shows the 

structure of a fuzzy-neural system based on the idea of ANFIS [81]. 
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Figure 7. Structure of a fuzzy-neural system. 

 
 

For n input variables {xi | i = 1, 2, …, n}, suppose that there are m fuzzy if-then rules: 

Rule 1: If x1 is M11, x2 is M21, …, and xn is Mn1, then f1=a11x1+a12x2+…+a1nxn+r1 
Rule 2: If x1 is M12, x2 is M22, …, and xn is Mn2, then f2=a21x1+a22x2+…+a2nxn+r2  (14) 
… … … 
Rule m: If x1 is M1m, x2 is M2m, …, and xn is Mnm, then fm=am1x1+am2x2+…+amnxn+rm 

where Mij is a linguistic label (small, medium, and large) of a membership function, Mij(x), of xi with 

the associated node j. The membership function can be in different forms with different parameter sets, 

such as the generalized bell-shaped function,  

ij
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or the Gaussian function, ])
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 . In the layer, each node labeled  multiplies the 

incoming membership values and sends the product out to the next layer as connection weights: 

(x)μ...(x)μ(x)μw
nj2j1j MMMj     (j = 1, 2, …, m)   (15) 

In the next layer labeled N, the connection weights are normalized: 
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In the next layer the outputs are: 

)rxa...xax(aw~   

fw~   y

jnjn2j21j1j

jjj




 (j = 1, 2, …, m) (17) 

In the last node, the node generates the overall output of the network by summing up from all 
incoming connections: 
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      (18) 

The parameters included in the fuzzy and neural network equations above can be updated using the 

method of gradient descent in the standard BP algorithm. Other methods were suggested also to update 

the parameters [81]. 

 

4.4. Wavelet-Based Neural Networks 

 

As discussed above, the standard BP algorithm may produce problems in training, for example, 

converge to local optima. Besides, the determination of the network structure in BP training, such as 

the number of hidden nodes, is still subjective. With the intelligent integration of wavelet transform, 

ANNs can be able to approximate data with non-linear and non-stationary properties and to conduct 

self-learning adaptive structure identification and parameter estimation in modeling process. 

Wavelets are “small’’ waves that should integrate to zero around the x-axis. They localize functions 

well and a “mother’’ wavelet can be translated and dilated into a series of wavelet basis functions. The 

basic idea of wavelets can be traced back to very early in this century. However, the development of 

the construction of compactly supported orthonormal wavelets [82] and the wavelet-based 

multiresolution analysis [83] has resulted in extensive research and applications of wavelets in recent 

years. In comparison to the more widely known Fourier transform, wavelet basis functions are local 

both in frequency and time while Fourier basis functions are local only in frequency. Wavelet analysis 

has been widely used in a variety of fields, especially in signal and image processing. 

Wavelet analysis is becoming a common tool for analyzing localized variations of power within a 

time series [84]. By decomposing a time series into time-frequency space, one is able to determine 

both the dominant modes of variability and how those modes vary in time. Wavelet-based ANNs 

(WANNs) have been developed and used for function approximation [28-30]. WANNs have been 

further developed for nonlinear time series forecasting [31]. WANNs have a strong ability of function 

approximation for optimal time series pattern recognition and their modeling algorithms are different 

from conventional BP neural network training algorithms. Therefore, WANNs have the potential to 

overcome the problems that conventional ANNs had. 
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WANN is a MFN model with wavelet analysis. It replaces the sigmoid function in the MLP with 

nonlinear wavelet basis function, )
a

bt
(
 , where a and b are the scale factor and translation factor of 

the wavelet function, respectively. In this model, nonlinear time series is expressed as a linear 

combination of selected nonlinear wavelet basis so that a finite number of wavelet series items are 

used to approximate time series function, i.e. 







h

1i
i )(wy(t)

i

i

a

bt
       (19) 

Figure 8 shows the structure of the WANN. This is a single hidden-layered feedforward network. It 

only has one input node and one output node. The objective of the modeling task is to determine the 

network parameters, wi, ai, bi and h, to achieve an optimal fitting between the desired output series d(t) 

and the calculated output series y(t): 





N

1t

2y(t)]-[d(t)
2

1
J h      (20) 

Figure 8. Structure of WANN. 

 
 

Unlike in the standard BP algorithm, in WANN training determination of h is a step-wise process. 

Preset a tolerance  for nonlinear time series fitting error. Starting h from 1 and calculate J1. If J1 <  , 

the optimal h, h* = 1; otherwise, set h = 2 and calculate J2. If J2< , h* = 2; otherwise, keep on going 

until h* is found with Jh* <  . 

Using Newton’s method it can be derived that the parameter updating equations can be as follows  

in training: 
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The forms of (t)  and (t)' depend on the selected wavelet function. For example, for Morlet 

mother wavelet, φ(t) = cos(1.75t)exp(–t2/2). Then its first derivative is φ′(t) = –1.75sin(1.75t)exp(–t2/2) 

–tcons(1.75t)exp(–t2/2). 

 

4.5. SVMs 

 

SVMs were proposed by Vapnik [85]. Based on the description of Burges [32] and Cristianini and 

Taylor [33], SVMs are a set of supervised generalized linear classifiers that have often been found to 

provide higher classification accuracies than widely used MLP classifiers. The growing interest in 

SVMs is shown by their successful application in many areas such as automobile [86], time series 

analysis [87,88], medicine [89], pattern recognition [90], geophysics [91,92], computational biology 

[93], and control engineering [94]. The interest resulted from SVMs’ intrinsic effectiveness with 

respect to traditional classifiers. This effectiveness results in high classification accuracies and very 

good generalization capabilities. In architecture design, SVMs requires limited effort to configure few 

control parameters compared with traditional classifiers such as MLPs. Also, based on the universal 

approximation capability of their standard MFN counterparts, the approximation capability of SVMs 

was investigated [51]. It was shown that an SVM with polynomial kernel of degree n-1, which is 

trained on a training set of size n can approximate the n training points up to any accuracy. 

A SVM performs classification through mapping input vectors into a higher-dimensional space and 

constructing a hyperplane that optimally separates the data in the higher-dimensional space. A SVM 

model using sigmoid kernel function is equivalent to a two-layer perceptron neural network. However, 

the operation of the SVM is different. In training, a SVM implements a simple linear mapping or linear 

classifier together with a prior fixed nonlinear mapping in order to make data separable. This 

implementation allows training to not suffer from the problem of local minima, and to focus on 

function optimization with respect to its generalization ability. These advantages often lead to better 

results for SVMs compared to MFNs. 

The goal of SVM modeling is to find the optimal hyperplane that separates clusters of vectors, a set 

of features, such that data points with one class of the variable are on one side of the plane and ones 

with the other class are on the other side of the plane. The vectors near the hyperplane are the support 

vectors. Let’s look at the 2-dimensional case as an example. Assume that for classification, the data are 

from a categorical variable with two classes, and there are two prediction variables, X and Y, with 

continuous values. The data points using the value of X on the X axis and Y on the Y axis may be 

plotted as Figure 9.  
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Figure 9. Margin between support vectors in two-dimension. 

 
 

In the plot it can be seen what classes each (X,Y) point belongs to. In this example, the data points 

with one class are in the lower left corner of the plot and the data points with the other classes are in 

the upper right corner. The SVM analysis is find a one-dimensional hyperplane, i.e. a line, to separate 

the data points based on their target classes. Obviously, there are an infinite number of possible such 

lines. Two of them are shown in the plot. The task of SVM now is to determine which line is optimal. 

For this optimization two parallel (dashed) lines are constructed, one on each side of the separating 

line. The two lines are pushed up against the two sets of data points belonged to two classes. They 

label the distance between the separating line and the closest vectors to the line. The two lines are used 

to calculate the margin, which is defined as the distance between them. The SVM analysis is to find 

the line (hyperplane in general) that makes the margin between the support vectors maximized. In 

Figure 9, the line A is superior to the line B. In this sense, SVM classifiers are also known as 

maximum margin classifiers. 

Mathematically, suppose having a training data pairs {(xi, ci) | i= 1, 2, …, N} with xi   Rn and 

ci{1, -1}, indicate what class the data point xi belongs to. In a simple case, a hyperplane can be 

defined as F(x) = wtx + w0 where w is the adaptable weight vector and w0 is the bias term, and T is the 

vector transpose operator. In training, the data points xi are projected into the higher-dimensional 

space, and the classification is conducted through sign[f(x)] where f(x) is the estimate of F(x). The 

SVM algorithm searches for a hyperplane f(x) that maximizes the margin between the two sets of data 

points in class 1 and -1. 



Algorithms 2009, 2             
 

 

992

Further, the margin maximum problem can be solved in any high-dimensional space by introducing 

a kernel function [95,96]. With a nonlinear kernel function, the low-dimensional input space is 

nonlinearly transformed into a high-dimensional feature space such that the probability that the feature 

space is linear separable becomes higher. Theoretically, the kernel function is able to implicitly map 

the input space into an arbitrary high-dimensional feature space that can be linearly separable even if 

the input space may not be linearly separable. Some commonly used kernel functions are polynomial, 

Gaussian, Sigmoid, and RBF. 

In general, SVMs’s training is to solve the following optimization problem: 
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     (22) 
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where  is a user defined positive constant, a penalty parameter of the error term, i ( 0) is the slack 

variable to measure the degree of misclassification of xi, and(x) is the function to map data points xi 

from the input space to a higher-dimensional feature space. 

With equation (22), data points xi are mapped into a higher-dimensional space by the function of 
(x). Then a linearly separable hyperplane ( 0i

T w)(xw  ) is found with the maximal margin in the 

higher-dimensional space. Further, the mapping function (x) is determined with a specified kernel 

function K(xi,xj): 

K(xi,xj) =(xi)(xj)      (23) 

If RBF is chosen as the kernel function, then K(xi, xj) = exp(-||xi - xj||
2) ( > 0). The RBF kernel is 

good at handling nonlinear classification for SVMs. 

 

5. Limitations of ANNs 

 

As described above, ANNs are powerful computing techniques, which are designed to mimic 

human learning processes by establishing linkages between process input and output data. These 

techniques have been widely applied with advanced development with their unique advantages, such 

as no underlying assumption about the distribution of data, arbitrary decision boundary capabilities, 

universal approximation capabilities, easy adaptation to different types and structures of data, ability to 

fuzzy output values to enhance classification, and good generalization capabilities. However, ANNs 

have some disadvantages in common, which need to be considered in practical application: 

 Black box 

ANNs are black box in nature. Therefore, if the problem is to find the output response to the input 

such as system identification [96], ANNs can be a good fit. However, if the problem is to 

specifically identify causal  relationship between input and output, ANNs have only limited ability 

to do it compared with conventional statistical methods. 
 Long computing time 

ANN training needs to iteratively determine network structure and update connection weights. This 

is a time-consuming process. With a typical personal computer or work station, the BP algorithm 

will take a lot of memory and may take hours, days and even longer before the network converges 
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to the optimal point with minimum mean square error. Conventional statistical regression with the 

same set of data, on the contrary, may generate results in seconds using the same computer. 
 Overfitting 

With too much training time, too many hidden nodes, or too large training data set, the network will 

overfit the data and have a poor generalization, i.e. high accuracy for training data set but poor 

interpolation of testing data. This is an important issue being investigated in ANN research and 

applications as described above.  

Also, SVMs were originally developed to solve binary classification problems. How to effectively 

extend it for multiclass classification is still an ongoing research issue. Typically, a multiple class 

classifier can be constructed by combining several binary classifiers. Further, all classes can be 

considered at once. Hsu and Lin [98] gave decomposition implementations for two such "all-together" 

methods. They compared the performance with three methods based on binary classifications: one-

against-all, one-against-one, and Directed Acyclic Graph SVM (DAGSVM). The experiments 

indicated that the one-against-one and DAG methods are more suitable for practical use than the other 

methods.  

 

6. ANN Applications in Agricultural and Biological Engineering 

 

ANNs have the largest body of applications in agricultural and biological engineering compared to 

other soft computing techniques such as fuzzy logic and genetic algorithms. In summary of related 348 

papers and reports, ANNs have been applied in solving problems in food quality and safety (35.3%), 

crop (22.7%), soil and water (14.4%), precision agriculture (6.6%), animal management (5.2%), post 

harvest (2.6%), food processing (2.3%), greenhouse control (2%), agricultural vehicle control (1.2%), 

agricultural machinery (1.2%), agricultural pollution (1.2%), agricultural biology (1.2%), ecology and 

natural resources (1.4%), agricultural robotics (0.3%), chemical application (0.3%), and others (2.3%) 

such as bioenergy and agricultural facilities (Figure 10). These ANN applications have been created 

mainly through classification (45.1%), modeling and prediction (44%), control (4%), and simulation 

(2.6%), parameter estimation (2%), detection (1.2%), data clustering (0.6%), optimization (0.3%) and 

data fusion (0.3%) as well (Figure 11). 

Early applications include modeling sensory color quality of tomato and peach [99], investigation 

of combined effects of CO2 and sucrose on the growth of alfalfa cuttings using a Kalman filter neural 

network [100], classification of apple surface features [101], corn kernel breakage classification [102], 

and machine vision inspection of potatoes [103]. 

Recently, the BP ANN method was used in regression for modeling the correlation between crop 

yield and 10 yield components of chickpea [104]. A BP ANN was employed and trained with extracted 

features from the data collected by electronic nose to identify the wheat age [105]. BP neural network 

and generalized regression neural network techniques were developed and compared to model source 

gas and PM10 concentration and emission rate (GPCER) generated and emitted from swine deep-pit 

finishing buildings as affected by time of day, season, ventilation rates, animal growth cycles, in-house 

manure storage levels, and weather conditions [106]. MLP models were developed and used to predict 

or classify water stress in samples of Sunagoke moss using the texture features extracted from color 

co-occurrence matrix (CCM) and gray-level co-occurrence matrix (GLCM) methods [107]. A BP 
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ANN was developed for predicting fungal infections using input from principal components extracted 

from sample visible and near-infrared (NIR) reflectance spectroscopy for early detection of Botrytis 

cinerea on eggplant leaves [108].  

Figure 10. Application area distribution of ANNs in agricultural and biological engineering. 
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Figure 11. Technical area distribution of ANNs in agricultural and biological engineering. 
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Similar to applications in general engineering fields, most of the work in agricultural and biological 

engineering has been accomplished by multilayer feedforward ANN trained by the famous BP 

algorithm, which was inspired by the work of Rumelhart et al. in 1986. Among the 348 collected 

papers and reports, besides 83 of them in which the ANNs’ structure and training algorithm were not 
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explicitly stated, 210 of them (60%) were based on MFNs trained by the BP algorithm. Twelve of 

them (3.5%) were based on PNN (Probabilistic Neural Network). Eleven of them (3%) were based on 

MLP using different training algorithms such as Levenberg-Marquardt optimization procedure, 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization procedure, and genetic algorithm. Seven of 

them (2%) were based on Kohonen SOM. Six of them (2%) were based upon other unsupervised 

training algorithms such as fuzzy art, ART2 and Auto- Associative network. Four of them (1%) were 

based on RBF networks. Three of them (0.8%) were based on LVQ (Learning Vector Quantization). 

Two of them (0.6%) were based on GRNN (Generalized Regression Neural Network). Ten of them 

(3%) were based on other network structures such as Counter-Propagation (CP) and Adaptive Logic 

Network (ALN). Figure 12 shows the ANN method distribution of applications in agricultural and 

biological engineering. 

Fuzzy-neural systems have been developed and used in agricultural and biological engineering. 

Table 1 listed papers and reports on fuzzy-neural methods and systems in applications in agricultural 

and biological engineering. Linko et al. [109] applied neural network modeling for fuzzy food 

extrusion control. Kim and Cho [110] used the BP algorithm in training ANN models for prediction of 

volume, browning and bread temperatures. The outputs of the ANN models were used for fuzzy 

control simulation of the oven used in the baking process. Morimoto et al. [111] proposed and then 

applied a new fuzzy control technique, which efficiently selects optimal membership functions and 

control rules by using neural networks and genetic algorithms to the control of relative humidity in a 

fruit-storage house. The response of relative humidity, as affected by ventilation, was first identified 

using neural networks, and then optimal membership functions and control rules were sought through 

simulation of the identified model using GAs. Odhiambo et al. [112] developed a strategy consisting 

of fusing the fuzzy logic and ANN on a conceptual and structural basis for an easy and efficient means 

of tuning fuzzy ET (Evapotranspiration) models. The neural component provided supervised learning 

capabilities for optimizing the membership functions and extracting fuzzy rules from a set of input–

output examples selected to cover the data hyperspace of the sites evaluated.  

Figure 12. ANN method distribution of applications in agricultural and biological engineering. 
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Table 1. Papers and reports on fusion of fuzzy logic and ANNs in agricultural and 

biological engineering. 

Year Author Fusion Type Application Area 
1992 Linko et al. [109] ANN modeling for fuzzy control Extrusion control 

1997 Kim and Cho [110] ANN modeling plus fuzzy control 

simulation 

Bread baking process control 

1997 Morimoto et al. [111] ANN modeling plus GA parameter 

optimization for fuzzy control 

Fruit storage control 

2001 Odhiambo et al. [112] Conceptual and structural fusion of 

fuzzy logic and ANN 

ET model optimization 

2003 Andriyas et al. [118] FCM clustering for RBF training Prediction of the performance of 

vegetative filter strips 

2003 Chtioui et al. [113] SOM with FCM clustering Color image segmentation of edible 

beans 

2003 Lee et al. [119] ANFIS modeling Prediction of multiple soil properties 

2003 Neto et al. [120] ANFIS classification Adaptive image segmentation for 

weed detection 

2004 Odhiambo et al. [115] Fuzzy-Neural Netwok unsupervised 

classification 

Classification of soils 

2004 Meyer et al. [114] ANFIS classification Classification of uniform plant, soil, 

and residue color images 

2004 Goel et al. [121] Fuzzy c-means clustering for RBF 

training 

Prediction of sediment and 

phosphorous movement through 

vegetative filter strips 

2006 Hancock and Zhang [115] ANFIS classification Hydraulic vane pump health 

classification 

2007 Xiang and Tian [117] ANN modeling plus ANFIS 

training of fuzzy logic controller 

Outdoor automatic camera parameter 

control 

 

Chtioui et al. [113] developed a novel segmentation approach that partitions color images into two 

uniform regions is described. This unsupervised procedure is based on a SOM neural network and 

fuzzy c–means clustering (FCM). The SOM allows the mapping of a color image related to edible 

beans into a consistent two–dimensional table through a non–linear projection. Fuzzy clustering is then 

applied to the Kohonen map to determine the two cluster centers. Meyer et al. [114] conducted a 

digital camera operation study for classifying uniform images of grass, bare soil, corn stalks residue, 

wheat straw residue, and a barium sulfate reference panel, based on color. The classifications were 

conducted with fuzzy inference systems, built with subtractive clustering, an ANFIS. Odhiambo et al. 

[115] applied a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification 

of soil profiles using ground-penetrating radar (GPR) imagery. Hancock and Zhang [116] developed 

an on-line hydraulic vane pump fault detection system. This fault detection system decomposed 

vertical pump vibration signals using wavelet packet analysis. Packets containing signal features 

distinguishing normal and failed pump operation were entered into an ANFIS for pump health 

classification. Xiang and Tian [117] developed an artificially intelligent controller based on an ANN 
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and an ANFIS for implementing controller to automatically adjust multispectral camera parameter to 

compensate for changing natural lighting conditions and to acquire white-balanced images. 

The interest of SVMs in agricultural and biological engineering is steadily growing (Figure 13). 

The figure indicates that although the number of peer reviewed publications on this topic did not 

increase steadily over the past few years, a trend exists for total number of papers and report to 

increase in the past few years and to be able to project this trend in the next few years. The successful 

implementations of SVMs in agricultural and biological engineering are listed in Table 2, which 

includes classification of intact and cracked eggs [122], classification of forest data cover types [123], 

classification of meat with small data set [124], black walnut shell and meat classification using 

hyperspectral fluorescence imaging [125], classification to differentiate individual fungal infected and 

healthy wheat kernels [126], classification for weed and nitrogen stress detection in corn [127], 

discrimination for screening of compound feeds using NIR hyperspectral data [128], identification of 

tea varieties by computer vision [129], discrimination of wheat classes with NIR spectroscopy [130], 

detection of underdeveloped hazenuts from fully developed nuts by impact acoustics [131], 

classification of electronic nose data [132], classification of modified starches [133], classification of 

milk with an electronic nose [134], and recognition of plant disease [135]. In these applications, Zhang 

et al. [126] fused SVM with kernel of RBF neural network. Pardo and Sberveglieri [132] implemented 

SVM with RBF kernel. Brudzewski et al. [134] applied SVM neural network with one hidden layer of 

non-linear neurons, one-output linear neuron and specialized learning procedure leading to the global 

minimum of the error function and excellent generalization ability of the trained network. 

Figure 13. Publications on applications of SVMs in agricultural and biological engineering. 
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Table 2. Papers and reports on applications of SVMs in agricultural and  

biological engineering. 

Year Author Application Method Application Area 
2003 Fletcher and Kong [136] SVM classification Classifying feature vectors and decide 

whether each pixel in hyperspectral 

fluorescence images of poultry carcasses 

falls in normal or skin tumor categories 
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Table 2. Cont. 

2004 Brudzewski et al. [134] SVM neural network 

classification 

Classification of milk by an electronic nose 

2004 Tian et al. [135] SVM classification Classification for recognition of plant 

disease 

2005 Pardo and Sberveglieri 

[132] 

SVM with RBF kernel of RBF Classification of electronic nose data 

2005 Pierna et al. [133] SVM classification Classification of modified starches by 

Fourier transform infrared spectroscopy 

2006 Chen et al. [129] SVM classification Identification of tea varieties by computer 

vision 

2006 Karimi et al. [127] SVM classification Classification for weed and nitrogen stress 

detection in corn 

2006 Onaran et al. [131] SVM classification Detection of underdeveloped hazenuts from 

fully developed nuts by impact acoustics 

2006 Pierna et al. [128] SVM classification Discrimination of screening of compound 

feeds using NIR hyperspectral data 

2006 Wang and Paliwal [130] Least-Squares SVM 

classification 

Discrimination of wheat classes with NIR 

spectroscopy 

2007 Jiang et al. [125] Gaussian kernel based SVM 

classification 

Black walnut shell and meat classification 

using hyperspectral fluorescence imaging 

2007 Oommen et al. [137] SVM modeling and prediction Simulation of daily, weekly, and monthly 

runoff and sediment yield fron a watershed 

2007 Zhang et al. [126] Multi-class SVM with kernel of 

RBF neural network 

Classification to differentiate individual 

fungal infected and healthy wheat kernels. 

2008 Fu et al. [138] Least-Squares SVM modeling 

and prediction 

Quantification of vitamin C content in 

kiwifruit using NIR spectroscopy 

2008 Khot et al. [124] SVM classification Classification of meat with small data set 

2008 Kovacs et al. [139] SVM modeling and prediction Prediction of different concentration classes 

of instant coffee with electronic tongue 

measurements 

2008 Peng and Wang [140] Least-Squares SVM modeling 

and prediction 

Prediction of pork meat total viable bacteria 

count with hyperspectral imaging 

2008 Sun et al. [106] SVM modeling and prediction On-line assessing internal quality of pears 

using visible/NIR transmission 

2008 Trebar and Steele [123] SVM classification Classification of forest data cover types 

2008 Yu et al. [9] Least-Squares SVM modeling 

and prediction 

Rice wine composition prediction by 

visible/NIR spectroscopy 

2009 Deng et al. [122] SVM classification classification of intact and cracked eggs 

 

7. Conclusion and Future Directions 

 

As described above, ANNs have their advantages and have been used as a powerful tool in solving 

problems in scientific research and engineering applications. ANNs have their own limitations to 

restrict them as a substitute of traditional methods such as statistical regression, pattern recognition, 

and time series analysis. In the next decade with advanced development of computer power, ANNs 
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will continue to develop new applications in various fields, including agricultural and biological 

engineering. As a powerful alternative to conventional methods, ANNs will be studied more to 

develop approaches to overcoming problems of ANNs in general or in a specific research area. For 

effective research and development, the guidelines may be generated for predetermining best ANN 

structure and training algorithms for a given problem. For process statistical modeling, additional 

research topics may be to establish generic procedures to include significant variables to and exclude 

non-significant ones from ANN models and to add confidence limits on the output predictions and 

parameter estimations. These works will let ANNs inherit advantages from conventional statistics. 

The fusion of ANNs with other advanced computing methods will continue. These methods will 

include but are not limited to fuzzy logic, genetic algorithms, decision tree, and wavelet analysis. The 

fusion will allow the system to inherit the advantages of both of the paradigms and avoid the 

drawbacks. 

SVMs are an alternative learning method for polynomial, RBF and MLP classifiers in which the 

weights of the network are found by solving a quadratic programming problem with linear constraints, 

rather than by solving a non-convex, unconstrained minimization problem as in standard neural 

network training. With the advantages of SVMs over ANNs and the growing interests of SVMs, it can 

be expected that in the next decade SVMs will be more actively used in various fields, including 

agricultural and biological engineering, although the results were not already as expected [130]. 

In food science and engineering, soil and water relationship for crop management, and decision 

support for precision agriculture, more applications of ANNs and SVMs will be expected. These 

techniques will be applied standalone or fusion with other soft and hard techniques. Areas of study can 

involve classification and prediction of food quality and safety, classification for agricultural soil 

spatial distribution, water resource optimization for irrigation planning, detection and classification of 

crop stress and pests (weeds, insects and diseases) detection, analysis of remote sensing imagery, study 

of crop and yield, and field prescriptions for variable rate chemical application. 
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