
Algorithms 2009, 2, 973-1007; doi:10.3390/algor2030973

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Review

Advances in Artificial Neural Networks – Methodological
Development and Application

Yanbo Huang

United States Department of Agriculture, Agricultural Research Service, Application and Production

Technology Research Unit, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA;

E-Mail: yanbo.huang@ars.usda.gov; Tel. +1 (662) 686-5354; Fax: +1 (662) 686-5372

Received: 1 July 2009; in revised form: 24 July 2009 / Accepted: 28 July 2009 /

Published: 3 August 2009

Abstract: Artificial neural networks as a major soft-computing technology have been

extensively studied and applied during the last three decades. Research on backpropagation

training algorithms for multilayer perceptron networks has spurred development of other

neural network training algorithms for other networks such as radial basis function,

recurrent network, feedback network, and unsupervised Kohonen self-organizing network.

These networks, especially the multilayer perceptron network with a backpropagation

training algorithm, have gained recognition in research and applications in various

scientific and engineering areas. In order to accelerate the training process and overcome

data over-fitting, research has been conducted to improve the backpropagation algorithm.

Further, artificial neural networks have been integrated with other advanced methods such

as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and

modeling and to avoid subjectivity in the operation of the training algorithm. In recent

years, support vector machines have emerged as a set of high-performance supervised

generalized linear classifiers in parallel with artificial neural networks. A review on

development history of artificial neural networks is presented and the standard

architectures and algorithms of artificial neural networks are described. Furthermore,

advanced artificial neural networks will be introduced with support vector machines, and

limitations of ANNs will be identified. The future of artificial neural network development

in tandem with support vector machines will be discussed in conjunction with further

applications to food science and engineering, soil and water relationship for crop

management, and decision support for precision agriculture. Along with the network

structures and training algorithms, the applications of artificial neural networks will be

reviewed as well, especially in the fields of agricultural and biological engineering.

OPEN ACCESS

Algorithms 2009, 2

974

Keywords: artificial neural networks; backpropagation; training algorithm; neuro-fuzzy;

wavelet; support vector machines

1. Introduction

Soft computing is a partnership of computing techniques. The partnership includes fuzzy logic,

Artificial Neural Networks (ANNs), and genetic algorithms. Conventionally, a huge set of techniques

are referred to as hard computing, such as stochastic and statistical methods bound by the concept

called NP (verifiable in Nondeterministic Polynomial time)-complete. Unlike hard computing, soft

computing techniques offer “inexact” solutions of very complex problems through modeling and

analysis with a tolerance of imprecision, uncertainty, partial truth, and approximation. In fact, soft

computing is an integration of biological structures and computing techniques. In the partnership,

ANNs provides configurations made up of interconnecting artificial neurons that mimic the properties

of biological neurons.

There are a variety of ANN architectures, such as Multilayer Feedforward Network (MFN), Radial

Basis Function (RBF) network, recurrent network, feedback network, and Kohonen Self-Organizing

Map (SOM) network. Each of these networks has a training algorithm to memorize what it “sees” and

project what it does not “see” in the same population. Typical training algorithms include Back-

Propagation (BP) for Multi-Layer Perceptron (MLP, which is a MFN model), data clustering and

linear weight solution for RBF networks, and unsupervised SOM for Kohonen SOM networks. In

1986, Rumelhart et al. [1] reported the BP training algorithm by implementing the Delta rule, a

gradient descent learning rule for updating the weights of the artificial neurons in the perceptron-type

ANNs, for MFNs in the monograph of the Parallel Distributed Processing (PDP) research group [2].

This work introduced and enhanced recognition of the BP algorithm, gave a strong impulse to the

study of the mechanisms and structure of the brain, and provided the catalyst for much of the

subsequent research and application of ANNs.

There are many issues and problems in applying ANNs which have inspired studies and research

for improving the standard methods to solve problems. Determination of network structure is an issue

in identification of ANN models, such as before implementing a MFN, the optimal numbers of hidden

layers and nodes need to be decided on [3-5], and network pruning for redundancy connection

reduction to improve network generalization capacities [6]. The slow convergence speed and local

minima sticking with suboptimal solutions of BP training for MLPs have been studied [7-14].

Research has been conducted to improve the standard BP algorithm to overcome data over-fitting [15-

21].

With the development of research and applications, ANNs have been integrated or fused with other

methods of soft computing and signal processing such as fuzzy logic [22-27] and wavelet analysis

[28-31]. The fusion is to combine or cascade different computing methods with ANNs to improve

system performance over an individual technique. In many cases, the problems can be solved more

effectively by combining one or two other techniques rather than implementing ANNs exclusively. In

Algorithms 2009, 2

975

this way, the fused methods complement each other to enhance the ability of data interpretation and

modeling and to avoid subjectivity in the operation of the training algorithm with ANNs individually.

Support Vector Machines (SVMs) emerged as a method in parallel with artificial neural networks

as a set of supervised generalized linear classifiers and often provide higher classification accuracies

than MLP neural networks [32,33]. SVMs have a number of advantages over ANNs and have been

attracting more and more interest in recent years.

In agricultural and biological engineering, although some early research and applications exist

[34-36], the interest of ANNs has been growing greatly in the last fifteen years in studies of soil and

water regimes related to crop growth, analysis of the operation of food processing, and support of

decision-making in precision farming. In summary of papers and reports collected from various

sources, particularly through searching in the technical library of ASABE (American Society of

Agricultural and Biological Engineers; http://asae.frymulti.com/) and the National Agricultural Library

of USDA (United States Department of Agriculture; http://www.nal.usda.gov/), it was found out that,

from early 1990s to the present, there have been 348 related reports and papers (193 peer reviewed) on

ANNs. It is interesting that of the 20 reports and papers (13 peer reviewed) on SVMs from 2003 to the

present, seven (two peer reviewed) came out in 2008. This may signify more interest of SVMs in the

next decade in agricultural and biological engineering.

The purpose of this paper is to overview ANN methodology, to determine the state of the art, to

identify the limitations, and to project the future. Specifically, this paper will review the history of the

development of ANNs. Then, the standard architectures and algorithms of ANNs will be described.

Furthermore, a number of advanced ANN models will be introduced with SVMs, and the limitations of

ANNs are identified. The future of research and applications of ANNs will be discussed with the

development of SVMs. With the concepts, network structures, and training algorithms, the applications

of ANNs will be reviewed with a focus on agricultural and biological engineering as well.

2. History of ANN Development

ANNs provide a method to characterize synthetic neurons to solve complex problems in the same

manner as the human brain. For many years, especially since the middle of the last century, an interest

in studying the brain’s mechanism and structure has been increasing. This growing research interest

has led to the development of new computational models, connectionist systems or ANNs, based on

the biological background, for solving complex problems like pattern recognition, and fast information

processing and adaptation.

In the early 1940s, McCulloch and Pitts [37] studied the potential and capabilities of the

interconnection of several basic components, based on the model of a neuron. Later on, others, like

Hebb [38], were concerned with the adaptation laws involved in neural systems. In 1958, Rosenblatt

[39] coined the name Perceptron and devised an architecture which has subsequently received much

attention. In 1960, Widrow and his student, Hoff, [40] presented an important generalization of the

perceptron training algorithm as the Least Mean Square (LMS) learning procedure, also known as the

Delta rule. The learning rule was applied as the adaptive linear element in the ADALINE (ADAptive

LInear Neuron) networks. Then, Minsky and Papert [41] introduced a rigorous analysis of the

Perceptron, of which they proved many properties and pointed out limitations of several related

Algorithms 2009, 2

976

models. In the 1970s, the work of Grossberg [42] came to prominence. His work, based on biological

and psychological evidence, proposed several novel architectures of nonlinear dynamic systems. In

1982, Hopfield [43] applied a particular nonlinear dynamic structure to solve problems in

optimization. All of them conducted pioneer studies on the theoretical aspect of ANNs, particularly

starting in the 1950s and 1960s.

In 1986, the PDP research group published a series of algorithms and results [2]. This publication

contains an article entitled “Learning Internal Representations by Error Propagation” [1]. This article

made the recognition of the BP training algorithm although it was already described in 1974 [44]. The

BP algorithm implemented with the general Delta rule [1,7], as the representative of supervised

training algorithms, gave a strong impulse to the subsequent research and has resulted in the largest

body of research and applications in ANNs although a number of other ANN architectures and training

algorithms have been developed and applied at the same time. In 1982, Finnish Professor Teuvo

Kohonen [45] first described a different ANN architecture which is trained using an unsupervised

SOM learning procedure. This Kohonen SOM algorithm has been populated in many research and

practical applications later on. In 1988, RBF neural networks were first used [46], although RBFs were

introduced earlier in 1977 [47]. RBF networks have also been widely used with the strong capability of

function approximation and, along with MLP perceptron, had the impact on the emergence of SVMs

[32,33,48]. In the late 1980s, the standard MFNs were proven as universal approximators on a compact

subset of Rn [49,50]. The MFNs have a single hidden layer containing finite number of hidden

neurons. The neurons use arbitrary activation function The theory assures that MFNs, including MLP

networks, RBF networks and even SVMs under certain conditions [51] can handle problems which are

highly complex and nonlinear.

So far, ANNs have been used in many industrial and commercial applications such as process

modeling and control [52], character recognition [53], image recognition [54], credit evaluation [55],

fraud detection [56,57], insurance [58], and stock forecasting [59]. In a later section, applications of

ANNs in agricultural and biological engineering will be reviewed.

3. ANN Architectures and Training Algorithms

3.1. MLP and BP

Because the original perceptrons, single layer feedfoward networks, which were introduced by

Rosenblatt [39], are limited to learning linearly separately patterns, nonlinear layers between the input

and output are added to separate the data with enough training to model any well-defined function to

arbitrary precision. This MFN model is known as a multilayer perceptron. The neural networks formed

using the model are universal approximators [49,50]. Figure 1 shows the diagram of a one-hidden-

layered MLP network structure. The MLP networks are typically trained with the BP algorithm. The

BP algorithm is supervised, which is to map the process inputs to the desired outputs by minimizing

the errors between the desired outputs and the calculated outputs driven from the inputs and

network learning.

Algorithms 2009, 2

977

Figure 1. MLP network structure.

The standard BP algorithm [1] is a gradient descent algorithm to minimize the mean square error

between the calculated outputs and the desired outputs of the MLP network. Assuming that there are n

process inputs, x, and m desired outputs, d, with the network with a sample size of N: {xit, djt | i = 1, 2,

… n; j = 1, 2, …, m; t = 1, 2, …, N}, then the mean square error of the network outputs is:


 


N

1t

m

1j

2
jtjt)y(d

2

1
E (1)

where yjt is the calculated output.

Based on the gradient descent method, each of the network connection weights is updated as

follows:


  











l

1t

m

1j

jt
jtjt w

y
)y(d

w

E
η

E(w)ηΔw

 (2)

where  is a small constant such as 0.1 as the learning rate in the training process of the algorithm. For

the MLP in Figure 1, all the weights are the sets of {wik | i = 1, 2, …, n; k = 1, 2, …, h} and {wkj | k= 1,

2, …, h; j = 1, 2, …, m} where h is the number hidden nodes. Each of the output is as follows:

 
 


h

1k

n

1i
itikkjjt))xws(ws(y (3)

where s(z) is the activation function of each hidden node and output node. It typically is a sigmoid

function as s(z) = 1/(1 + e-z). Therefore,

Algorithms 2009, 2

978

  
  




 h

1k

n

1i
itik

h

1k

n

1i
itikkj

kj

jt)]xws([))xws(w(s'
w

y
 (4)

    
    




 h

1k

n

1i

h

1k

n

1i
ititikkjitik

h

1k

n

1i
itikkj

ik

jt])xxw(s'w)xws([))xws(w(s'
w

y
 (5)

and s’(z) = s(z)(1 - s(z)) is the first derivative of s(z).

Earlier than Rumelhart et al. [1], Werbos [44] gave a different derivation of the BP algorithm. This

derivation is more general and mathematically rigorous than the one given by Rumelhart et al. In

Werbos’ derivation, the chain rule is expressed in a convenient form by ordered derivatives. Even so,

most research and applications of the BP algorithm still referred to the results of Rumelhart et al. due

to their milestone publication in 1986 with the PDP research group.

3.2. Radial Basis Function Network

Due to adding hidden nodes and layer(s) and the nonlinearity of the sigmoid activation function of

each hidden nodes and/or output nodes in MLPs, the BP algorithm has the possibility to produce

complex error surfaces which contain many minima. Since some minima are deeper than others, it is

possible that the algorithm will not find a global minima. Instead, the network may fall into local

minima, which represent suboptimal solutions. The RBF networks [46] were introduced with the

centers of data clustering means, and then the linear solution for the connection weights to the network

output directly to a unique local minimum, the global minimum, which shortens network training

process greatly.

Figure 2 is a diagram of a one-hidden-layered RBF network structure. The RBF networks also are

MFNs. With sufficient larger number of hidden nodes, they are universal approximators as well. The

RBF network training also is supervised, involving determination of data clustering centers, ck (k = 1,

2, …, hc), where hc also is the number of the centers to be determined, and network connection weights

from the hidden layer to the network outputs, wkj (k = 1, 2, …, hc; j = 1, 2, …, m). Similar to BP

training, the RBF training is to establish the map between process inputs and desired outputs by

minimizing the errors between the desired outputs and the calculated outputs driven from the inputs

and network learning. The objective function of error minimization is defined as:


 


N

1t

m

1j

2
jtjt)y(dE (6)

and:

 
 


ch

1k
k

n

1i
itkjjt)cxR(wy (7)

where R() is a RBF function.

A RBF function is any function R that satisfies R(x) = R(||x||). It is a real-valued function that

depends on the distance from the origin as R(x) = R(||x||) or from other point or center, c, as

R(x - c) = R(||x - c||). The norm ||.|| is usually Euclidean distance.

Algorithms 2009, 2

979

The linear solution of output layer weights in equation (7) guarantees the objective function (6) to

get the global minima and greatly speed up the training process.

RBF networks integrate nonlinear RBF activation functions in hidden layer and linear combination

of weights in output layer. In input data clustering, different techniques can be used, such as k-means

clustering [60] and fuzzy c-means [61]. There are choices of RBF functions, such as Gaussian RBF,

multiquadric RBF, polyharmonic spline, and thin plate spline. Some of the RBFs will bring more

parameters to determine in training process, such as Gaussian RBF, R(x - c) = exp(-||x - c||2), which

brings one more parameter, , to determine.

Figure 2. RBF network structure.

3.3. Recurrent and Feedback Networks

A recurrent neural network is a type of ANN where network nodes may have a directed connection.

A typical example of this is that either the network’s hidden node activation values or network output

values are fed back into the network input nodes. These types of networks are good at characterizing

process temporal dynamics. Examples of simple recurrent networks are Elman and Jordan

networks [62,63].

MLP networks are good for mapping the static relationship of process input and output: x  y.

They have been used for identification of dynamic systems [64,65]. However, they require a large

number of input nodes which may result in long computing time and being affected by external noise

[66]. Recurrent neural networks have been attracted in the field of dynamic system identification since

they can avoid the problems MLP networks have [67-69].

Algorithms 2009, 2

980

In time series analysis, ANNs can establish AR (AutoRegressive) function map between process

input and output: {y(t-i) | i = 1, 2, …, p}  y(t). In process modeling and control, ANNs can help

establish ARX (AutoRegressive with eXogenous input) function map of process input and output:

{y(t - i), x(t - j) | i = 1, 2, …, p; j = 1, 2, …, q}  y(t) where p and q are the orders of time lags of y

and x, respectively. Figure 3 shows a network structure to map the dynamic process input/output

relationship with the ARX function map. Internally, this network is identical to a MLP. Externally, it

feeds back the network output back to the network input with a lagged time shift. This network is

named External Recurrent Neural Network (ERNN) [70]. Obviously, training of this network should

be different from standard BP. Around the network, y(t - i) is a time-delayed output from the network

itself. This network model is determined as a specific form of time-lag recurrent networks [4]. For the

time-lag recurrent networks with only one recurrent connection, i.e. i = 1, a number of training

algorithms have been proposed [71-73]. Among the proposed algorithms, the BP Through Time

(BPTT) is able to be modified for multiple recurrent connections, i.e. i > 1 using ordered derivatives

from Werbos’s derivation of the BP algorithm [44]. When the external feedback signal y(t) replaces

the input of the network, the change of weights will affect y(t + 1) and thus y(t + 1) all the way to y(N)

where T is the length of the data. Thus, the gradient computation has to account for this chaining from

t = 0 to t = N. The input layer at time t+1 can be considered as a part of the 3rd layer of the network at

time t. When calculating the error of the output layer at time t, it is necessary to calculate the error for

the input nodes at time t + 1 up to t + p, all of which are connected to the corresponding output node at

time t. In the regular BP algorithm, the error term for the network nodes propagates the required

information all the way from t = N back to the current time instant. This is what the BPTT signifies.

Based on Werbos’s work [44], a modified BPTT algorithm was derived for the ERNN [74] as

described above.

This modified algorithm was used for training over the whole trajectory of the training data. The

maximum number of prediction steps is equal to the total number of observations. In controller design,

the prediction steps would be much smaller. In order to solve this problem, the network can be trained

to do shorter prediction with the modified training algorithm [74]. The modified training algorithm is

still BPTT, but at each time instant the error term is propagated from the specified prediction step t + L

(L << N) back to the current time instant t. This work resulted in an ERNN-based multiple-step-ahead

prediction for process controller design [70]:

L1,2,...,

otherwise) d(t

0 when) y(t
t)|y(t

W)q),-x(t1),...,-x(tt),|p-y(tt),...,|1-f(y(tt)|y(t













l

l

ll
l

lllll

 (8)

where t)|y(t l is the l-step-ahead predictor of y(t) at the time instant t, f() is the approximation of

the function map, and W is the set of weights and bias terms in the network.

Algorithms 2009, 2

981

Figure 3. ERNN network structure.

3.4. Kohonen SOM Network and Unsupervised Training

Unlike the trainings of MLP, RBF and ERNN networks, Kohonen SOM networks are trained using

an unsupervised algorithm, by which the input data are self-organized into clusters or classes, i.e.

similar input data will activate the same network output node. The networks construct one-

dimensional, two-dimensional, and even three-dimensional arrays of output nodes to form self-

organized feature maps. Figure 4 is the structure of Kohonen SOM network with a two-dimensional

array of output nodes used to form feature maps.

This is a two-layer network. The output nodes are orderly arranged in a two-dimensional grid. Each

input is connected to all output nodes through a weight. The network training process has two stages.

The first is to generate a coarse mapping, i.e. to create some form of topological ordering on the map

of randomly oriented nodes. There may be large changes to the orientation of the nodes on the map, so

the gain term or adaption rate, , needs to be kept high to allow large weight modifications and settle

into an approximate mapping quickly. Once a stable coarse map is found, the training process goes

into the second stage. At this stage, the nodes within the localized regions of the map are fine-tuned to

the network inputs. For this fine-tuning much smaller changes of weights must be made at each output

Algorithms 2009, 2

982

node, so the adaptation rate, , is reduced as training progresses. The weight updating in training is

iteratively operated along with winning output node neighborhood:

n)1,2,...,kq;1,2,...,jp;1,2,...,(i

NEij

)x-η(wΔw

*ij

kijkijk







 (9)

where p and q the first and second dimension of the feature map array, respectively, n is the number of

network inputs, and ij* is the location of optimal output node. The optimal node is determined by:





n

1k

2
ijkkij

ij
ij

)w(xD

)(DMIN
*

 (10)

Figure 4. Kohonen SOM network with two-dimensional array of output nodes used to

form feature maps.

The neighborhood function NEij is set large at very beginning of training, and slowly decreases in

size with the progress of the training (Figure 5). The output nodes of the network are activated using a

winner-take-all method:



 


otherwise 0

*ijij if 1
yij (11)

That is that if (i,j) is the location of the optimal output node, the output node takes the value of 1;

otherwise it takes 0. Accordingly, the weights connected to the neighborhood of the optimal node

are updated.

Algorithms 2009, 2

983

Figure 5. Topological neighborhoods with the progress of training as feature maps

are formed.

4. Advanced Development of ANNs

With the progress of research and applications, ANN technology has been improved and advanced.

Research has been done on modification of the standard BP algorithm to speed up algorithm

convergence and avoid local minima in MLP network training. Much work has been devoted to

preventing over-fitting in MLPs to improve the generalization ability of the networks. ANNs have

been enhanced by fusing with other methods such as fuzzy logic and wavelet analysis. SVMs,

emerging as a new soft computing technique, bring up a new wave of research and applications of

ANNs.

4.1. Standard BP Enhancement

In standard BP training, it is critical to select a learning rate, , to let the process converge to the

true global minimum of the mean square error of the network outputs with a rather rapid speed. A BP

training with a too small learning rate will have a noticeable slow progress. One with a too large

learning rate will speed up significantly. However, this may result in oscillations around relatively

poor solutions. Evidence shows that the use of a momentum term in the BP algorithm can be helpful in

speeding the convergence and avoiding local minima (http://www.cs.bham.ac.uk/~pxt/NC/

ASSIGNMENT/MICHAEL/momentum.html). The momentum term is defined as a fraction of the

previous weight change w-, and added to equation (2) from the standard BP algorithm [7]:
-αΔwE(w)ηΔw  (12)

where  is taken 0   0.9.

Algorithms 2009, 2

984

In this way, in BP training, the momentum is used to stabilize the weight change using a

combination of the gradient decreasing term with a fraction of the previous weight change.

With the concept of momentum in BP training, the method has been further developed. Yu et al. [9]

developed an adaptive momentum algorithm which can update the momentum coefficient

automatically in every iteration step. The result of this adaptive process is equivalent to adding a

momentum term to the standard BP algorithm. The momentum coefficient is updated automatically in

every iteration. Numerical simulations show that the adaptive momentum algorithm can eliminate

possible divergent oscillations during the initial training, and can also accelerate the learning process

and result in a lower error when the final convergence is reached. Gerke and Hoyer [10] presented an

analysis of fuzzy adaption of training parameters (learning rate and momentum) to accelerate BP

learning in MFNs.

There are other studies on BP training acceleration and local minima. Huang et al. [75] investigated

the efficiency of the training processes of MFNs using the gradient descent method in the standard BP

algorithm and Levenberg-Marquardt method in backpropagation. It was found that in the case of low

epoch training (below several thousand epochs) using the gradient descent algorithm, the Levenberg-

Marquardt algorithm was less efficient, and in the case of high epoch training (above several thousand

epochs) using the gradient descent algorithm, the Levenberg-Marquardt algorithm was more efficient.

Jeenbekov and Sarybaeva [11] described properties of various parameters of sigmoid activation

function mathematically with their influence on the speed of convergence of the BP training algorithm

for MFNs. Wang et al. [12] proposed an improved BP algorithm intended to avoid the local minima

problem caused by neuron saturation in the hidden layer. Each training pattern has its own activation

functions of neurons in the hidden layer. When the network outputs have not received their desired

signals, the activation functions are adapted so as to prevent neurons in the hidden layer from

saturating. Bi et al. [13] proposed a modified error function with two terms. By adding one term to the

conventional error function, the modified error function can harmonize the update of weights

connected to the hidden layer and those connected to the output layer. Thus, it can avoid the local

minima problem caused by update disharmony between weights connected to the hidden layer and the

output layer. Simulations on some benchmark problems and a real classification task have been

performed to test the validity of the modified error function. Otair and Salameh [14] proposed an

algorithm used for training that depends on a multilayer neural network with a very small learning rate,

especially when using a large training set size. It can be applied in a generic manner for any network

size that uses a BP algorithm through an optical time (seen time).

4.2. Network Generalization

Although MFNs can be universal approximators with a sufficiently large number of hidden nodes,

excessive number of nodes in the hidden layer may endanger the network to become memorized,

which may lead to overfit the input variables [76-78]. The overfitted networks may fit training data

points well but may not be able to well interpolate and extrapolate testing data points. The testing data

points can be between the training points or out of the range of the training points. Overfitting is a very

important problem in MLPs, and much work has been devoted to preventing overfitting to improve

network generalization with techniques such as early stopping, weight decay, and pruning. Figure 6

Algorithms 2009, 2

985

shows typical error curves of MLP training and testing. With the increase of the hidden nodes, the

training error is large at the beginning and then keeps decreasing with a gradual decline of the curve

slope. Similarly, the testing error is also larger at the beginning and then keeps decreasing until it

reaches a point, h*. Starting from this point, with further increase of the hidden nodes, the testing error

increases gradually while the training error continues to decrease. During training, if the minimal point

on the testing curve can be found, the overfitting problem may be solved. The training and testing

curves with training steps have a similar behavior as shown in Figure 6, which can be used to

investigate overfitting, as can happen with too many training steps.

Based on the explanation of Figure 6, during MLP training, the training error and testing error are

checked at every step, and the training process terminates as long as the minimal point of testing error

is reached. This is so called early stopping method [20]. Further, a three-set approach was proposed

[15]. This approach is to divide a data set into three nonoverlapping subsets: one for training to update

network weights, one for testing to terminate training to prevent overfitting, and one for validation to

evaluate the trained network. This approach gives a reasonable estimate of the network’s

generalization ability.

Adding a penalty term, Ep, to the mean square error of the network outputs in the standard BP

algorithm, a new objective function is formulated for MLP training:

Ew = E + Ep (13)

where is a pre-set constant for the penalty term. The training algorithm using this objective function

causes network weights to converge to smaller absolute values than they would in the standard case.

This method is called weight decay [16,75].The generalization ability of a network depends on the

adjustment of the decay constant, With weight decay training, the network can avoid oscillation in

the outputs caused by large weights.

Figure 6. MLP error curves vs. number of hidden nodes.

Algorithms 2009, 2

986

Network pruning is another method used to prevent overfitting. This method begins with a fully

connected network and the network is made smaller by iteratively eliminating least effective nodes in

the hidden layer(s) or interconnections between nodes. The pruned network provides a structure that

has a greater capacity for generalization [6,18,19].

4.3. Neuro-Fuzzy Systems

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory [79] to deal with

reasoning that is approximate, rather than precise. In contrast to yes/no or 0/1 binary logic, Fuzzy logic

provides a set of membership values inclusively between 0 and 1 to indicate the degree of truth. Fuzzy

logic can be combined with ANNs to form a learning machine that is able to determine the parameters

for a fuzzy system by ANN computing. A fuzzy system comprises of linguistic rules such as IF THEN

from prior knowledge. Input and output variables of the system are described linguistically. If the

knowledge is incomplete, wrong, or contradictory, the fuzzy system needs to be tuned. Fuzzy system is

incapable of learning; it is a mechanism of straight interpretation and implementation. ANNs are

capable of learning with a sufficient amount of observed examples for a problem. These observations

are used to train the network model. The result can provide data for parameterization of fuzzy rules.

The fuzzy-neural systems have been studied and applied. Takagi and Hayashi [22] proposed a

neural-fuzzy reasoning system that is capable of automatic determination of inference rules and

adjustment according to the time-variant reasoning environment with the use of NN in fuzzy reasoning.

Horikawa et al. [23] presented a fuzzy modeling method using fuzzy neural networks with the BP

algorithm. The method can identify the fuzzy model of a nonlinear system automatically. Nie and

Linkens [24] approximated reasoning through a BP Neural Network with the aid of fuzzy set theory.

An example of multivariable fuzzy control of blood pressure was examined for the underlying

principles. Simpson and Jahns [25] introduced the fuzzy min-max function approximation neural

network. The function approximation network is realized by modifying the developed fuzzy min-max

clustering network [80] to include an output layer that sums and thresholds the hidden layer

membership functions. Jang [81] introduced the framework of ANFIS (Adaptive-Network-based

Fuzzy Inference System). Jang and Sun [27] reviewed fundamental and advanced developments in

neuro-fuzzy systems for modeling and control. They introduced design methods for ANFIS in

modeling and control applications.

A fuzzy-neural system can be represented as a MFN. The first layer is for input variables. The

middle or hidden layer(s) are for encoding fuzzy rules and fuzzy inference. The last layer is for output

variables. The fuzzy inferences are converted as network connection weights. Figure 7 shows the

structure of a fuzzy-neural system based on the idea of ANFIS [81].

Algorithms 2009, 2

987

Figure 7. Structure of a fuzzy-neural system.

For n input variables {xi | i = 1, 2, …, n}, suppose that there are m fuzzy if-then rules:

Rule 1: If x1 is M11, x2 is M21, …, and xn is Mn1, then f1=a11x1+a12x2+…+a1nxn+r1
Rule 2: If x1 is M12, x2 is M22, …, and xn is Mn2, then f2=a21x1+a22x2+…+a2nxn+r2 (14)
… … …
Rule m: If x1 is M1m, x2 is M2m, …, and xn is Mnm, then fm=am1x1+am2x2+…+amnxn+rm

where Mij is a linguistic label (small, medium, and large) of a membership function, Mij(x), of xi with

the associated node j. The membership function can be in different forms with different parameter sets,

such as the generalized bell-shaped function,

ij

ij
b2

ij

ij
M

])
a

cx
[(1

1
(x)μ






or the Gaussian function,])
a

bx
(exp[(x)μ 2

ij

ij
Mij


 . In the layer, each node labeled  multiplies the

incoming membership values and sends the product out to the next layer as connection weights:

(x)μ...(x)μ(x)μw
nj2j1j MMMj  (j = 1, 2, …, m) (15)

In the next layer labeled N, the connection weights are normalized:





m

1i
i

j
j

w

w
w~ (j = 1, 2, …, m) (16)

Algorithms 2009, 2

988

In the next layer the outputs are:

)rxa...xax(aw~

fw~ y

jnjn2j21j1j

jjj




 (j = 1, 2, …, m) (17)

In the last node, the node generates the overall output of the network by summing up from all
incoming connections:























m

1i
i

m

1i
ii

m

1i
ii

m

1i
i

w

fw

fw~

yY

 (18)

The parameters included in the fuzzy and neural network equations above can be updated using the

method of gradient descent in the standard BP algorithm. Other methods were suggested also to update

the parameters [81].

4.4. Wavelet-Based Neural Networks

As discussed above, the standard BP algorithm may produce problems in training, for example,

converge to local optima. Besides, the determination of the network structure in BP training, such as

the number of hidden nodes, is still subjective. With the intelligent integration of wavelet transform,

ANNs can be able to approximate data with non-linear and non-stationary properties and to conduct

self-learning adaptive structure identification and parameter estimation in modeling process.

Wavelets are “small’’ waves that should integrate to zero around the x-axis. They localize functions

well and a “mother’’ wavelet can be translated and dilated into a series of wavelet basis functions. The

basic idea of wavelets can be traced back to very early in this century. However, the development of

the construction of compactly supported orthonormal wavelets [82] and the wavelet-based

multiresolution analysis [83] has resulted in extensive research and applications of wavelets in recent

years. In comparison to the more widely known Fourier transform, wavelet basis functions are local

both in frequency and time while Fourier basis functions are local only in frequency. Wavelet analysis

has been widely used in a variety of fields, especially in signal and image processing.

Wavelet analysis is becoming a common tool for analyzing localized variations of power within a

time series [84]. By decomposing a time series into time-frequency space, one is able to determine

both the dominant modes of variability and how those modes vary in time. Wavelet-based ANNs

(WANNs) have been developed and used for function approximation [28-30]. WANNs have been

further developed for nonlinear time series forecasting [31]. WANNs have a strong ability of function

approximation for optimal time series pattern recognition and their modeling algorithms are different

from conventional BP neural network training algorithms. Therefore, WANNs have the potential to

overcome the problems that conventional ANNs had.

Algorithms 2009, 2

989

WANN is a MFN model with wavelet analysis. It replaces the sigmoid function in the MLP with

nonlinear wavelet basis function,)
a

bt
(
 , where a and b are the scale factor and translation factor of

the wavelet function, respectively. In this model, nonlinear time series is expressed as a linear

combination of selected nonlinear wavelet basis so that a finite number of wavelet series items are

used to approximate time series function, i.e.







h

1i
i)(wy(t)

i

i

a

bt
 (19)

Figure 8 shows the structure of the WANN. This is a single hidden-layered feedforward network. It

only has one input node and one output node. The objective of the modeling task is to determine the

network parameters, wi, ai, bi and h, to achieve an optimal fitting between the desired output series d(t)

and the calculated output series y(t):





N

1t

2y(t)]-[d(t)
2

1
J h (20)

Figure 8. Structure of WANN.

Unlike in the standard BP algorithm, in WANN training determination of h is a step-wise process.

Preset a tolerance for nonlinear time series fitting error. Starting h from 1 and calculate J1. If J1 <  ,

the optimal h, h* = 1; otherwise, set h = 2 and calculate J2. If J2< , h* = 2; otherwise, keep on going

until h* is found with Jh* <  .

Using Newton’s method it can be derived that the parameter updating equations can be as follows

in training:





N

1t i

i
i)

a

b-t
(y(t)]-[d(t)w 

Algorithms 2009, 2

990





N

1t i

i
2
i

i
i)

a

b-t
(')(

a

w
y(t)]-[d(t)a ibt (21)





N

1t i

i

i

i
i)

a

b-t
('

a

w
y(t)]-[d(t)b 

The forms of (t) and (t)' depend on the selected wavelet function. For example, for Morlet

mother wavelet, φ(t) = cos(1.75t)exp(–t2/2). Then its first derivative is φ′(t) = –1.75sin(1.75t)exp(–t2/2)

–tcons(1.75t)exp(–t2/2).

4.5. SVMs

SVMs were proposed by Vapnik [85]. Based on the description of Burges [32] and Cristianini and

Taylor [33], SVMs are a set of supervised generalized linear classifiers that have often been found to

provide higher classification accuracies than widely used MLP classifiers. The growing interest in

SVMs is shown by their successful application in many areas such as automobile [86], time series

analysis [87,88], medicine [89], pattern recognition [90], geophysics [91,92], computational biology

[93], and control engineering [94]. The interest resulted from SVMs’ intrinsic effectiveness with

respect to traditional classifiers. This effectiveness results in high classification accuracies and very

good generalization capabilities. In architecture design, SVMs requires limited effort to configure few

control parameters compared with traditional classifiers such as MLPs. Also, based on the universal

approximation capability of their standard MFN counterparts, the approximation capability of SVMs

was investigated [51]. It was shown that an SVM with polynomial kernel of degree n-1, which is

trained on a training set of size n can approximate the n training points up to any accuracy.

A SVM performs classification through mapping input vectors into a higher-dimensional space and

constructing a hyperplane that optimally separates the data in the higher-dimensional space. A SVM

model using sigmoid kernel function is equivalent to a two-layer perceptron neural network. However,

the operation of the SVM is different. In training, a SVM implements a simple linear mapping or linear

classifier together with a prior fixed nonlinear mapping in order to make data separable. This

implementation allows training to not suffer from the problem of local minima, and to focus on

function optimization with respect to its generalization ability. These advantages often lead to better

results for SVMs compared to MFNs.

The goal of SVM modeling is to find the optimal hyperplane that separates clusters of vectors, a set

of features, such that data points with one class of the variable are on one side of the plane and ones

with the other class are on the other side of the plane. The vectors near the hyperplane are the support

vectors. Let’s look at the 2-dimensional case as an example. Assume that for classification, the data are

from a categorical variable with two classes, and there are two prediction variables, X and Y, with

continuous values. The data points using the value of X on the X axis and Y on the Y axis may be

plotted as Figure 9.

Algorithms 2009, 2

991

Figure 9. Margin between support vectors in two-dimension.

In the plot it can be seen what classes each (X,Y) point belongs to. In this example, the data points

with one class are in the lower left corner of the plot and the data points with the other classes are in

the upper right corner. The SVM analysis is find a one-dimensional hyperplane, i.e. a line, to separate

the data points based on their target classes. Obviously, there are an infinite number of possible such

lines. Two of them are shown in the plot. The task of SVM now is to determine which line is optimal.

For this optimization two parallel (dashed) lines are constructed, one on each side of the separating

line. The two lines are pushed up against the two sets of data points belonged to two classes. They

label the distance between the separating line and the closest vectors to the line. The two lines are used

to calculate the margin, which is defined as the distance between them. The SVM analysis is to find

the line (hyperplane in general) that makes the margin between the support vectors maximized. In

Figure 9, the line A is superior to the line B. In this sense, SVM classifiers are also known as

maximum margin classifiers.

Mathematically, suppose having a training data pairs {(xi, ci) | i= 1, 2, …, N} with xi  Rn and

ci{1, -1}, indicate what class the data point xi belongs to. In a simple case, a hyperplane can be

defined as F(x) = wtx + w0 where w is the adaptable weight vector and w0 is the bias term, and T is the

vector transpose operator. In training, the data points xi are projected into the higher-dimensional

space, and the classification is conducted through sign[f(x)] where f(x) is the estimate of F(x). The

SVM algorithm searches for a hyperplane f(x) that maximizes the margin between the two sets of data

points in class 1 and -1.

Algorithms 2009, 2

992

Further, the margin maximum problem can be solved in any high-dimensional space by introducing

a kernel function [95,96]. With a nonlinear kernel function, the low-dimensional input space is

nonlinearly transformed into a high-dimensional feature space such that the probability that the feature

space is linear separable becomes higher. Theoretically, the kernel function is able to implicitly map

the input space into an arbitrary high-dimensional feature space that can be linearly separable even if

the input space may not be linearly separable. Some commonly used kernel functions are polynomial,

Gaussian, Sigmoid, and RBF.

In general, SVMs’s training is to solve the following optimization problem:





N

1i
i

T

ξ, ww,
)ξλww

2

1
(MIN

0

 (22)

s.t. i0i
T

i ξ1]w)(x[wc 

where  is a user defined positive constant, a penalty parameter of the error term, i ( 0) is the slack

variable to measure the degree of misclassification of xi, and(x) is the function to map data points xi

from the input space to a higher-dimensional feature space.

With equation (22), data points xi are mapped into a higher-dimensional space by the function of
(x). Then a linearly separable hyperplane (0i

T w)(xw ) is found with the maximal margin in the

higher-dimensional space. Further, the mapping function (x) is determined with a specified kernel

function K(xi,xj):

K(xi,xj) =(xi)(xj) (23)

If RBF is chosen as the kernel function, then K(xi, xj) = exp(-||xi - xj||
2) ( > 0). The RBF kernel is

good at handling nonlinear classification for SVMs.

5. Limitations of ANNs

As described above, ANNs are powerful computing techniques, which are designed to mimic

human learning processes by establishing linkages between process input and output data. These

techniques have been widely applied with advanced development with their unique advantages, such

as no underlying assumption about the distribution of data, arbitrary decision boundary capabilities,

universal approximation capabilities, easy adaptation to different types and structures of data, ability to

fuzzy output values to enhance classification, and good generalization capabilities. However, ANNs

have some disadvantages in common, which need to be considered in practical application:

 Black box

ANNs are black box in nature. Therefore, if the problem is to find the output response to the input

such as system identification [96], ANNs can be a good fit. However, if the problem is to

specifically identify causal relationship between input and output, ANNs have only limited ability

to do it compared with conventional statistical methods.
 Long computing time

ANN training needs to iteratively determine network structure and update connection weights. This

is a time-consuming process. With a typical personal computer or work station, the BP algorithm

will take a lot of memory and may take hours, days and even longer before the network converges

Algorithms 2009, 2

993

to the optimal point with minimum mean square error. Conventional statistical regression with the

same set of data, on the contrary, may generate results in seconds using the same computer.
 Overfitting

With too much training time, too many hidden nodes, or too large training data set, the network will

overfit the data and have a poor generalization, i.e. high accuracy for training data set but poor

interpolation of testing data. This is an important issue being investigated in ANN research and

applications as described above.

Also, SVMs were originally developed to solve binary classification problems. How to effectively

extend it for multiclass classification is still an ongoing research issue. Typically, a multiple class

classifier can be constructed by combining several binary classifiers. Further, all classes can be

considered at once. Hsu and Lin [98] gave decomposition implementations for two such "all-together"

methods. They compared the performance with three methods based on binary classifications: one-

against-all, one-against-one, and Directed Acyclic Graph SVM (DAGSVM). The experiments

indicated that the one-against-one and DAG methods are more suitable for practical use than the other

methods.

6. ANN Applications in Agricultural and Biological Engineering

ANNs have the largest body of applications in agricultural and biological engineering compared to

other soft computing techniques such as fuzzy logic and genetic algorithms. In summary of related 348

papers and reports, ANNs have been applied in solving problems in food quality and safety (35.3%),

crop (22.7%), soil and water (14.4%), precision agriculture (6.6%), animal management (5.2%), post

harvest (2.6%), food processing (2.3%), greenhouse control (2%), agricultural vehicle control (1.2%),

agricultural machinery (1.2%), agricultural pollution (1.2%), agricultural biology (1.2%), ecology and

natural resources (1.4%), agricultural robotics (0.3%), chemical application (0.3%), and others (2.3%)

such as bioenergy and agricultural facilities (Figure 10). These ANN applications have been created

mainly through classification (45.1%), modeling and prediction (44%), control (4%), and simulation

(2.6%), parameter estimation (2%), detection (1.2%), data clustering (0.6%), optimization (0.3%) and

data fusion (0.3%) as well (Figure 11).

Early applications include modeling sensory color quality of tomato and peach [99], investigation

of combined effects of CO2 and sucrose on the growth of alfalfa cuttings using a Kalman filter neural

network [100], classification of apple surface features [101], corn kernel breakage classification [102],

and machine vision inspection of potatoes [103].

Recently, the BP ANN method was used in regression for modeling the correlation between crop

yield and 10 yield components of chickpea [104]. A BP ANN was employed and trained with extracted

features from the data collected by electronic nose to identify the wheat age [105]. BP neural network

and generalized regression neural network techniques were developed and compared to model source

gas and PM10 concentration and emission rate (GPCER) generated and emitted from swine deep-pit

finishing buildings as affected by time of day, season, ventilation rates, animal growth cycles, in-house

manure storage levels, and weather conditions [106]. MLP models were developed and used to predict

or classify water stress in samples of Sunagoke moss using the texture features extracted from color

co-occurrence matrix (CCM) and gray-level co-occurrence matrix (GLCM) methods [107]. A BP

Algorithms 2009, 2

994

ANN was developed for predicting fungal infections using input from principal components extracted

from sample visible and near-infrared (NIR) reflectance spectroscopy for early detection of Botrytis

cinerea on eggplant leaves [108].

Figure 10. Application area distribution of ANNs in agricultural and biological engineering.

35.3%

22.7%

14.4%

6.6%
5.2%

2.6%2.3%2.0%1.1%1.1%1.1%1.1%1.4%0.3%0.3%
2.3%

Foo
d

Qul
ait

y a
nd

 S
af

et
y
Cro

p

Soil
 a

nd
 W

at
er

Pre
cis

io
n

Agr
icu

ltu
re

Anim
al

 M
an

ag
em

en
t

Pos
t H

ar
ve

st

Foo
d

Pro
ce

ss
ing

Gre
en

ho
us

e
Con

tro
l

Agr
icu

ltu
ra

l V
eh

icl
e

Agr
icu

ltu
ra

l M
ac

hin
er

y

Agr
icu

ltu
ra

l P
ol

lut
io

n

Agr
icu

ltu
ra

l B
io

log
y

Eco
log

y a
nd

 N
at

ur
al

 R
es

ou
rc

es

Agr
icu

ltu
ra

l A
pp

lic
at

io
n

Agr
icu

ltu
ra

l
Rob

ot
ics

Oth
er

s

P
e

rc
e

n
t

A
p

p
lic

a
ti

o
n

 A
re

a

Figure 11. Technical area distribution of ANNs in agricultural and biological engineering.

45.1% 44.0%

4.0% 2.6% 2.0% 1.1% 0.6% 0.3% 0.3%

Cla
ss

ific
atio

n

M
od

elin
g a

nd
 P

re
dic

tio
n

Cont
ro

l

Sim
ulat

io
n

Esti
m

ati
on

Dete
cti

on

Clu
ste

rin
g

Opt
im

iza
tio

n

Data
 F

us
ion

P
er

ce
n

t
T

ec
h

n
ic

al
 A

re
a

Similar to applications in general engineering fields, most of the work in agricultural and biological

engineering has been accomplished by multilayer feedforward ANN trained by the famous BP

algorithm, which was inspired by the work of Rumelhart et al. in 1986. Among the 348 collected

papers and reports, besides 83 of them in which the ANNs’ structure and training algorithm were not

Algorithms 2009, 2

995

explicitly stated, 210 of them (60%) were based on MFNs trained by the BP algorithm. Twelve of

them (3.5%) were based on PNN (Probabilistic Neural Network). Eleven of them (3%) were based on

MLP using different training algorithms such as Levenberg-Marquardt optimization procedure,

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization procedure, and genetic algorithm. Seven of

them (2%) were based on Kohonen SOM. Six of them (2%) were based upon other unsupervised

training algorithms such as fuzzy art, ART2 and Auto- Associative network. Four of them (1%) were

based on RBF networks. Three of them (0.8%) were based on LVQ (Learning Vector Quantization).

Two of them (0.6%) were based on GRNN (Generalized Regression Neural Network). Ten of them

(3%) were based on other network structures such as Counter-Propagation (CP) and Adaptive Logic

Network (ALN). Figure 12 shows the ANN method distribution of applications in agricultural and

biological engineering.

Fuzzy-neural systems have been developed and used in agricultural and biological engineering.

Table 1 listed papers and reports on fuzzy-neural methods and systems in applications in agricultural

and biological engineering. Linko et al. [109] applied neural network modeling for fuzzy food

extrusion control. Kim and Cho [110] used the BP algorithm in training ANN models for prediction of

volume, browning and bread temperatures. The outputs of the ANN models were used for fuzzy

control simulation of the oven used in the baking process. Morimoto et al. [111] proposed and then

applied a new fuzzy control technique, which efficiently selects optimal membership functions and

control rules by using neural networks and genetic algorithms to the control of relative humidity in a

fruit-storage house. The response of relative humidity, as affected by ventilation, was first identified

using neural networks, and then optimal membership functions and control rules were sought through

simulation of the identified model using GAs. Odhiambo et al. [112] developed a strategy consisting

of fusing the fuzzy logic and ANN on a conceptual and structural basis for an easy and efficient means

of tuning fuzzy ET (Evapotranspiration) models. The neural component provided supervised learning

capabilities for optimizing the membership functions and extracting fuzzy rules from a set of input–

output examples selected to cover the data hyperspace of the sites evaluated.

Figure 12. ANN method distribution of applications in agricultural and biological engineering.

60.3%

3.4% 3.2% 2.0% 1.7% 1.1% 0.9% 0.6% 2.9%

23.9%

0

50

100

150

200

250

BP
PNN

M
LP

SOM

Oth
er

 U
ns

up
er

vis
ed RBF

LQ
V

GRNN

O
th

er
s

Unk
no

wn

N
u

m
b

e
r

o
f

P
u

b
li

c
a

ti
o

n

Algorithms 2009, 2

996

Table 1. Papers and reports on fusion of fuzzy logic and ANNs in agricultural and

biological engineering.

Year Author Fusion Type Application Area
1992 Linko et al. [109] ANN modeling for fuzzy control Extrusion control

1997 Kim and Cho [110] ANN modeling plus fuzzy control

simulation

Bread baking process control

1997 Morimoto et al. [111] ANN modeling plus GA parameter

optimization for fuzzy control

Fruit storage control

2001 Odhiambo et al. [112] Conceptual and structural fusion of

fuzzy logic and ANN

ET model optimization

2003 Andriyas et al. [118] FCM clustering for RBF training Prediction of the performance of

vegetative filter strips

2003 Chtioui et al. [113] SOM with FCM clustering Color image segmentation of edible

beans

2003 Lee et al. [119] ANFIS modeling Prediction of multiple soil properties

2003 Neto et al. [120] ANFIS classification Adaptive image segmentation for

weed detection

2004 Odhiambo et al. [115] Fuzzy-Neural Netwok unsupervised

classification

Classification of soils

2004 Meyer et al. [114] ANFIS classification Classification of uniform plant, soil,

and residue color images

2004 Goel et al. [121] Fuzzy c-means clustering for RBF

training

Prediction of sediment and

phosphorous movement through

vegetative filter strips

2006 Hancock and Zhang [115] ANFIS classification Hydraulic vane pump health

classification

2007 Xiang and Tian [117] ANN modeling plus ANFIS

training of fuzzy logic controller

Outdoor automatic camera parameter

control

Chtioui et al. [113] developed a novel segmentation approach that partitions color images into two

uniform regions is described. This unsupervised procedure is based on a SOM neural network and

fuzzy c–means clustering (FCM). The SOM allows the mapping of a color image related to edible

beans into a consistent two–dimensional table through a non–linear projection. Fuzzy clustering is then

applied to the Kohonen map to determine the two cluster centers. Meyer et al. [114] conducted a

digital camera operation study for classifying uniform images of grass, bare soil, corn stalks residue,

wheat straw residue, and a barium sulfate reference panel, based on color. The classifications were

conducted with fuzzy inference systems, built with subtractive clustering, an ANFIS. Odhiambo et al.

[115] applied a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification

of soil profiles using ground-penetrating radar (GPR) imagery. Hancock and Zhang [116] developed

an on-line hydraulic vane pump fault detection system. This fault detection system decomposed

vertical pump vibration signals using wavelet packet analysis. Packets containing signal features

distinguishing normal and failed pump operation were entered into an ANFIS for pump health

classification. Xiang and Tian [117] developed an artificially intelligent controller based on an ANN

Algorithms 2009, 2

997

and an ANFIS for implementing controller to automatically adjust multispectral camera parameter to

compensate for changing natural lighting conditions and to acquire white-balanced images.

The interest of SVMs in agricultural and biological engineering is steadily growing (Figure 13).

The figure indicates that although the number of peer reviewed publications on this topic did not

increase steadily over the past few years, a trend exists for total number of papers and report to

increase in the past few years and to be able to project this trend in the next few years. The successful

implementations of SVMs in agricultural and biological engineering are listed in Table 2, which

includes classification of intact and cracked eggs [122], classification of forest data cover types [123],

classification of meat with small data set [124], black walnut shell and meat classification using

hyperspectral fluorescence imaging [125], classification to differentiate individual fungal infected and

healthy wheat kernels [126], classification for weed and nitrogen stress detection in corn [127],

discrimination for screening of compound feeds using NIR hyperspectral data [128], identification of

tea varieties by computer vision [129], discrimination of wheat classes with NIR spectroscopy [130],

detection of underdeveloped hazenuts from fully developed nuts by impact acoustics [131],

classification of electronic nose data [132], classification of modified starches [133], classification of

milk with an electronic nose [134], and recognition of plant disease [135]. In these applications, Zhang

et al. [126] fused SVM with kernel of RBF neural network. Pardo and Sberveglieri [132] implemented

SVM with RBF kernel. Brudzewski et al. [134] applied SVM neural network with one hidden layer of

non-linear neurons, one-output linear neuron and specialized learning procedure leading to the global

minimum of the error function and excellent generalization ability of the trained network.

Figure 13. Publications on applications of SVMs in agricultural and biological engineering.

0

2

4

6

8

10

12

2003 2004 2005 2006 2007 2008

Year

N
u

m
b

er
 o

f
P

u
b

li
ca

ti
o

n
s

Peer Reviewed

Total

Table 2. Papers and reports on applications of SVMs in agricultural and

biological engineering.

Year Author Application Method Application Area
2003 Fletcher and Kong [136] SVM classification Classifying feature vectors and decide

whether each pixel in hyperspectral

fluorescence images of poultry carcasses

falls in normal or skin tumor categories

Algorithms 2009, 2

998

Table 2. Cont.

2004 Brudzewski et al. [134] SVM neural network

classification

Classification of milk by an electronic nose

2004 Tian et al. [135] SVM classification Classification for recognition of plant

disease

2005 Pardo and Sberveglieri

[132]

SVM with RBF kernel of RBF Classification of electronic nose data

2005 Pierna et al. [133] SVM classification Classification of modified starches by

Fourier transform infrared spectroscopy

2006 Chen et al. [129] SVM classification Identification of tea varieties by computer

vision

2006 Karimi et al. [127] SVM classification Classification for weed and nitrogen stress

detection in corn

2006 Onaran et al. [131] SVM classification Detection of underdeveloped hazenuts from

fully developed nuts by impact acoustics

2006 Pierna et al. [128] SVM classification Discrimination of screening of compound

feeds using NIR hyperspectral data

2006 Wang and Paliwal [130] Least-Squares SVM

classification

Discrimination of wheat classes with NIR

spectroscopy

2007 Jiang et al. [125] Gaussian kernel based SVM

classification

Black walnut shell and meat classification

using hyperspectral fluorescence imaging

2007 Oommen et al. [137] SVM modeling and prediction Simulation of daily, weekly, and monthly

runoff and sediment yield fron a watershed

2007 Zhang et al. [126] Multi-class SVM with kernel of

RBF neural network

Classification to differentiate individual

fungal infected and healthy wheat kernels.

2008 Fu et al. [138] Least-Squares SVM modeling

and prediction

Quantification of vitamin C content in

kiwifruit using NIR spectroscopy

2008 Khot et al. [124] SVM classification Classification of meat with small data set

2008 Kovacs et al. [139] SVM modeling and prediction Prediction of different concentration classes

of instant coffee with electronic tongue

measurements

2008 Peng and Wang [140] Least-Squares SVM modeling

and prediction

Prediction of pork meat total viable bacteria

count with hyperspectral imaging

2008 Sun et al. [106] SVM modeling and prediction On-line assessing internal quality of pears

using visible/NIR transmission

2008 Trebar and Steele [123] SVM classification Classification of forest data cover types

2008 Yu et al. [9] Least-Squares SVM modeling

and prediction

Rice wine composition prediction by

visible/NIR spectroscopy

2009 Deng et al. [122] SVM classification classification of intact and cracked eggs

7. Conclusion and Future Directions

As described above, ANNs have their advantages and have been used as a powerful tool in solving

problems in scientific research and engineering applications. ANNs have their own limitations to

restrict them as a substitute of traditional methods such as statistical regression, pattern recognition,

and time series analysis. In the next decade with advanced development of computer power, ANNs

Algorithms 2009, 2

999

will continue to develop new applications in various fields, including agricultural and biological

engineering. As a powerful alternative to conventional methods, ANNs will be studied more to

develop approaches to overcoming problems of ANNs in general or in a specific research area. For

effective research and development, the guidelines may be generated for predetermining best ANN

structure and training algorithms for a given problem. For process statistical modeling, additional

research topics may be to establish generic procedures to include significant variables to and exclude

non-significant ones from ANN models and to add confidence limits on the output predictions and

parameter estimations. These works will let ANNs inherit advantages from conventional statistics.

The fusion of ANNs with other advanced computing methods will continue. These methods will

include but are not limited to fuzzy logic, genetic algorithms, decision tree, and wavelet analysis. The

fusion will allow the system to inherit the advantages of both of the paradigms and avoid the

drawbacks.

SVMs are an alternative learning method for polynomial, RBF and MLP classifiers in which the

weights of the network are found by solving a quadratic programming problem with linear constraints,

rather than by solving a non-convex, unconstrained minimization problem as in standard neural

network training. With the advantages of SVMs over ANNs and the growing interests of SVMs, it can

be expected that in the next decade SVMs will be more actively used in various fields, including

agricultural and biological engineering, although the results were not already as expected [130].

In food science and engineering, soil and water relationship for crop management, and decision

support for precision agriculture, more applications of ANNs and SVMs will be expected. These

techniques will be applied standalone or fusion with other soft and hard techniques. Areas of study can

involve classification and prediction of food quality and safety, classification for agricultural soil

spatial distribution, water resource optimization for irrigation planning, detection and classification of

crop stress and pests (weeds, insects and diseases) detection, analysis of remote sensing imagery, study

of crop and yield, and field prescriptions for variable rate chemical application.

Acknowledgements

Special thanks to Steven J. Thomson, Lead Scientist of Application and Production Technology

Research Unit in United States Department of Agriculture, Agricultural Research Service, for his

careful review and support.

References

1. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error

propagation. In Parallel Distributed Processing: Explorations in the Microstructures of

Cognition; Rumelhart, D.E., McClelland, J.L., Eds.; MIT Press: Cambridge, MA, USA, 1986;

Vol. I, pp. 318-362.

2. Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing: Explorations in the

Microstructures of Cognition; MIT Press: Cambridge, MA, USA, 1986.

Algorithms 2009, 2

1000

3. Kavuri, S.N.; Venkatasubramanian, V. Solving the hidden node problem in networks with

ellipsoidal unitsand related issues. In Proceedings of International Joint Conference on Neural

Networks, Baltimore, MA, USA, June 7-11, 1992; Vol. I, pp. 775-780.

4. Su, H.; McAvoy, T.J.; Werbos, P.J. Long-term predictions of chemical processes using recurrent

neural networks: a parallel training approach. Ind. Eng. Chem. Res.1992, 31, 1338-1352.

5. Jou, I.C.; You, S.S.; Chang, L.W. Analysis of hidden nodes for multi-layer perceptron neural

networks. Patt. Recog. 1994, 27, 859-864.

6. Sietsma, J.; Dow, R.J.F. Neural net pruning: why and how. In Proceedings of IEEE Int. Conf.

Neural Networks, San Diego, CA, USA, July 24-27, 1988; Vol. I, pp. 325-333.

7. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating

errors. Nature 1986, 323, 533-536.

8. McClelland, J.L.; Rumelhart, D.E. Explorations in parallel distributed processing: A handbook

of models, programs, and exercises; MIT Press: Cambridge, MA, USA, 1988.

9. Yu, X.; Loh, N.K.; Miller, W.C. A new acceleration technique for the backpropagation

algorithm. In Proceedings of IEEE International Conference on Neural Networks, San Diego,

CA, USA, March 28 – April 1, 1993; Vol. III, pp. 1157-1161.

10. Gerke, M.; Hoyer, H. 1997. Fuzzy backpropagation training of neural networks. In

Computational Intelligence Theory and Applications; Reusch, B., Ed.; Springer: Berlin,

Germany, 1997; pp. 416-427.

11. Jeenbekov, A.A.; Sarybaeva, A.A. Conditions of convergence of back-propagation learning

algorithm. In Proceedings of SPIE on Optoelectronic and Hybrid Optical/Digital Systems for

Image and Signal Processing, Bellingham, WA, USA, 2000; Vol. 4148, pp. 12-18.

12. Wang, X.G.; Tang, Z.; Tamura, H.; Ishii, M.; Sun, W.D. An improved backpropagation

algorithm to avoid the local minima problem. Neurocomputing 2004, 56, 455-460.

13. Bi, W.; Wang, X.; Tang, Z.; Tamura, H. Avoiding the local minima problem in backpropagation

algorithm with modified error function. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.

2005, E88-A, 3645-3653.

14. Otair, M.A.; Salameh, W.A. Speeding up back-propagation neural networks. In Proceedings of

the 2005 Informing Science and IT Education Joint Conference, Flagstaff, AZ, USA, June 16-19,

2005; pp. 167-173.

15. Burke, L. Assessing a neural net. PC AI. 1993, 7, 20-24.

16. Finnoff, W.; Hergert, F.; Zimmermann, H.G. Improving model selection by nonconvergent

methods. Neural Netw. 1993, 6, 771-783.

17. Wang, J.H.; Jiang, J.H.; Yu, R.Q. Robust back propagation algorithm as a chemometric tool to

prevent the overfitting to outliers. Chemom. Intell. Lab. Syst. 1996, 34, 109-115.

18. Kavzoglu, T.; Mather, P.M. Assessing artificial neural network pruning algorithms. In

Proceedings of the 24th Annual Conference and Exhibition of the Remote Sensing Society,

Cardiff, South Glamorgan, UK, September 9-11, 1998; pp. 603-609.

19. Kavzoglu, T.; Vieira, C.A.O. An analysis of artificial neural network pruning algorithms in

relation to land cover classification accuracy. In Proceedings of the Remote Sensing Society

Student Conference, Oxford, UK, April 23, 1998; pp. 53-58.

Algorithms 2009, 2

1001

20. Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural networks: backpropagation,

conjugate gradient, and early stopping. In Proceedings of Neural Information Processing

Systems Conference, Denver, CO, USA, November 28-30, 2000; pp. 402-408.

21. Lawrence S.; Giles, C.L. Overfitting and neural networks: conjugate gradient and

backpropagation. In Proceedings of International Joint Conference on Neural Networks, Como,

Italy, July 24-27, 2000; pp. 114-119.

22. Takagi, T.; Hayashi, I. NN–driven fuzzy reasoning. IJAR 1991, 5, 191-212.

23. Horikawa, S.; Furuhashi, T.; Uchikawa, Y. On fuzzy modelling using fuzzy neural networks with

back propagation algorithm. IEEE Trans. Neural Netw. 1992, 3, 801-806.

24. Nie, J.; Linkens, D. Neural network–based approximate reasoning: Principles and

implementation. Int. J. Contr. 1992, 56, 399-413.

25. Simpson, P.K.; Jahns, G. Fuzzy min–max neural networks for function approximation. In

Proceedings of IEEE International Conference on Neural Networks, San Francisco, CA, USA,

March 28 – April 21, 1993; Vol. 3, pp. 1967-1972.

26. Mitra, S.; Pal, S.K. Logical operation based fuzzy MLP for classification and rule generation.

Neural Netw. 1994, 7, 353-373.

27. Jang, R.J.S.; Sun, C.T. Neuro–fuzzy modelling and control. Proc. IEEE 1995, 83, 378-406.

28. Cristea, P.; Tuduce, R.; Cristea, A. Time series prediction with wavelet neural networks. In

Proceedings of IEEE Neural Network Applications in Electrical Engineering, Belgrade,

Yugoslavia, September 25-27, 2000; pp. 5-10.

29. Shashidhara, H.L.; Lohani, S.; Gadre, V.M. Function learning wavelet neural networks. In

Proceedings of IEEE International Conference on Industrial Technology, Goa, India, January

19-22, 2000; Vol. II, pp. 335-340.

30. Ho, D.W.C.; Zhang, P.A.; Xu, J. Fuzzy wavelet networks for function learning. IEEE Trans. on

Fuzzy Syst. 2001, 9, 200-211.

31. Zhou, B.; Shi, A.; Cai, F.; Zhang, Y. Wavelet neural networks for nonlinear time series analysis.

Lecture Notes Comput. Sci. 2004, 3174, 430-435.

32. Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl.

Disc. 1998, 2, 121-167.

33. Cristianini, N.; Taylor, J.S. An Introduction to Support Vector Machines and Other Kernel-Based

Learning Methods; Cambridge University Press: New York, NY, USA, 2000.

34. Whittaker, A. D.; Park , B.P.; McCauley, J.D.; Huang, Y. Ultrasonic signal classification for beef

quality grading through neural networks. In Proceedings of Automated Agriculture for the 21st

Century, Chicago, IL, USA, December 10-14, 1991; pp. 116-125.

35. Zhang, Q.; Litchfield, J.B. Advanced process controls: Applications of adaptive, fuzzy and

neural control to the food industry. In Food Processing Automation; ASAE: St. Joseph, MI,

USA, 1992; Vol. II, pp. 169-176.

36. Eerikäinen, T.; Linko, P.; Linko, S.; Siimes, T.; Zhu, Y.H. Fuzzy logic and neural networks

applications in food science and technology. Trends Food Sci. Technol. 1993, 4, 237-242.

37. McCulloch, W.S.; Pitts, W.H. A logical calculus of the ideas immanent in nervous activity.

Bull. Math. Biophys. 1943, 5, 115-133.

38. Hebb, D.O. The organization of behavior; Wiley: New York, NY, USA, 1949.

Algorithms 2009, 2

1002

39. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in

the brain. Psycho. Rev. 1958, 65, 386-408.

40. Widrow, B.; Hoff, M.E. Adaptive switching circuits. In WESCON Convention Record; Institute

of Radio Engineers: New York, NY, USA, 1960; Vol. VI, pp. 96-104.

41. Minsky, M.; Papert, S.A. Perceptrons: An Introduction to Computational Geometry; MIT Press:

Cambridge, MA, USA, 1969.

42. Grossberg, S. Adaptive pattern classification and universal recoding, 1: Parallel development and

coding of neural feature detectors. Biol. Cybernetics 1976, 23, 187-202.

43. Hopfield, J.J. Neural networks and physical systems with emergent collective computational

abilities. In Proceedings of the National Academy of Sciences of the USA; National Academy of

Sciences: Washington, DC, USA, 1982; Vol. 79, 8, pp. 2554-2558.

44. Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Doctoral Dissertation. Applied Mathematics, Harvard University: Boston, MA, USA,

1974.

45. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybernetics

1982, 43, 59-69.

46. Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Comp.

Syst. 1988, 2, 321-355.

47. Powell, M.J.D. Restart procedures for the conjugate gradient method. Math. Program. 1977, 12,

241-254.

48. Dong, C.X.; Yang, S.Q.; Rao, X.; Tang, J.L. An algorithm of estimating the generalization

performance of RBF-SVM. In Proceedings of 5th International Conference on Computational

Intelligence and Multimedia Applications, Xian, Shanxi, China, September 27-30, 2003;

pp. 61-66.

49. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal

approximators. Neural Netw. 1989, 2, 359-366.

50. Cybenko, G.V. Approximation by superpositions of a sigmoidal function, Math. Contr. Signal.

Syst. 1989, 2, 303-314.

51. Hammer, H.; Gersmann, K. A note on the universal approximation capability of support vector

machines. Neural Process. Lett. 2003, 17, 43-53.

52. Lennox, B.; Montague, G.A.; Frith, A.M.; Gent, C.; Bevan, V. Industrial application of neural

networks – an investigation. J. Process Contr. 2001, 11, 497-507.

53. Hussain, B.; Kabuka, M.R. A novel feature recognition neural network and its application to

character recognition. IEEE Trans. Patt. Anal. Mach. Intell. 1998, 6, 98-106.

54. Ma, L.; Khorasani, K. Facial expression recognition using constructive feedforward neural

networks. IEEE Trans. Syst. Man Cybernetics B 2004, 34,1588-95.

55. Piramuthu, S. Financial credit-risk evaluation with neural and neurofuzzy systems. Eur. J.

Operat. Res. 1999, 112, 310-321.

56. Barson, P.; Field, S.; Davey, N.; McAskie, G.; Frank, G. The detection of fraud in mobile phone

networks. Neural Netw.World 1996, 6, 477-484.

Algorithms 2009, 2

1003

57. Ghosh, S.; Reilly, D.L. Credit card fraud detection with a neural-network. In Proceedings of the

27th Annual Hawaii International Conference on System Science, Maui, HI, USA, January 4-7,

1994; Vol. III, pp. 621-630.

58. Braun, H.; Lai, L.L. A neural network linking process for insurance claims. In Proceedings of

2005 International Conference on Machine Learning and Cybernetics, Guangzhou, Guangdong,

China, August 18-21, 2005; Vol. I, pp. 399-404.

59. Fu, T.C.; Cheung, T.L.; Chung, F.L.; Ng, C.M. An innovative use of historical data for neural

network based stock prediction. In Proceedings of Joint Conference on Information Sciences,

Kaohsiung, Taiwan, October 8-11, 2006.

60. Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. Appl. Statistics 1979, 28, 100-108.

61. Zhu, Y.; He, Y. Short-term load forecasting model using fuzzy c means based radial basis

function network. In Proceedings of 6th International Conference on Intelligence Systems Design

and Applications, Jinan, China, October 16-18, 2006; Vol. I, pp. 579-582.

62. Jordan, M.I. Attractor dynamics and parallelism in a connectionist sequential machine. In

Proceedings of 8th Annual Conference of Cognitive Science Society, Amherst, MA, USA, August

15-17, 1986; pp. 531-546

63. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179-211.

64. Pham, D.T.; Liu, X. Neural Networks for Identification, Prediction and Control; Springer-

Verlag: London, UK, 1995.

65. Yun, L.; Haubler, A. Artificial evolution of neural networks and its application to feedback

control. Artif. Intell. Eng. 1996, 10, 143-152.

66. Pham, D.T.; Karaboga, D. Training Elman and Jordan networks for system identification using

genetic algorithms. Artif. Intell. Eng. 1999, 13, 107-117.

67. Pham, D.T.; Liu, X. Dynamic system identification using partially recurrent neural networks. J.

Syst. Eng. 1992, 2, 90-97.

68. Pham, D.T.; Liu, X. Training of Elman networks and dynamic system modeling. Int. J. Syst. Sci.

1996, 27, 221-226.

69. Ku, C.C.; Lee, K.Y. Diagonal recurrent neural networks for dynamic systems control. IEEE

Trans. Neural Netw. 1995, 6, 144 -156.

70. Huang, Y.; Whittaker, A.D.; Lacey, R.E. Neural network prediction modeling for a continuous

snack food frying process. Trans. ASAE 1998, 41, 1511-1517.

71. Pineda, F.J. Recurrent backpropagation and the dynamical approach to adaptive neural

computation. Neural Comput. 1989, 1, 167-172.

72. William, R.J.; Zipser, D.A. A learning algorithm for continually running fully recurrent neural

networks. Neural Comput. 1989, 1, 270-280.

73. Pearlmutter, A.B. Dynamic recurrent neural networks; Technical Report CMU-CS-90-196;

Carnegie Mellon University: Pittsburgh, PA, USA, 1990.

74. Huang, Y. Sanck food frying process input-output modeling and control through artificial neural

networks. Ph.D. Dissertation. Texas A&M University: College Station, TX, USA, 1995.

75. Huang, Y.; Lacey, R.E.; Whittaker, A.D. Neural network prediction modeling based on

ultrasonic elastograms for meat quality evaluation. Trans. ASAE 1998, 41, 1173-1179.

Algorithms 2009, 2

1004

76. Haykin, S. Neural Networks A Comprehensive Foundation, 2nd Edition; Prentice Hall Inc.: Upper

Saddle River, NJ, USA, 1999.

77. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK,

1995.

78. Bishop, C.M. Pattern Recognition and Machine Learning; Springer-Verlag New York, Inc.:

Secaucus, NJ, USA, 2006.

79. Zadeh, L.A. Fuzzy sets. Inf. Contr. 1965, 8, 338-353.

80. Simpson, P.K. Fuzzy min-max neural networks – part 2: clustering. IEEE Trans. Fuzzy Syst.

1992, 1, 32-45.

81. Jang, J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man

Cybernetics 1993, 23, 665-685.

82. Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.

1988, 41, 909-996.

83. Mallat, S. A theory of multiresolution signal decomposition: The wavelet representation. IEEE

Trans. Patt. Anal. Mach. Intell. 1989, 11, 674-693.

84. Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University

Press: Cambridge, UK, 2000.

85. Vapnik, V. The Nature of Statistical Learning Theory; Springer-Verlag: London, UK, 1995.

86. Rychetsky, M.; Ortmann, S.; Glesner, M. Support vector approaches for engine knock detection.

In Proceedings of International Joint Conference on Neural Networks (IJCNN 99), Washington,

DC, USA, July 10-16, 1999; Vol. II, pp 969-974.

87. Müller, K.R.; Smola, A.; Rätsch, G.; Schölkopf, B.; Kohlmorgen, J.; Vapnik, V. Using support

vector machines for time series prediction. In Advances in Kernel Methods; Schölkopf, B.,

Burges, C.J.C., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 242-253.

88. Iplikci, S. Dynamic reconstruction of chaotic systems from inter-spike intervals using least

squares support vector machines. Phys. D. 2006, 216, 282-293.

89. Lee, Y.J.; Mangasarian, O.L.; Wolberg, W.H. Breast cancer survival and chemotherapy: a

support vector machine analysis. In DIMACS Series in Discrete Mathematics and Theoretical

Computer Science; American Mathematical Society: Providence, RI, USA, 2000; Vol. 55, pp. 1-

10.

90. Kim, K.I.; Jung, K; Park, S.H.; Kim, H.J. Support vector machines for texture classification.

IEEE Trans. Patt. Anal. Mach. Intell. 2002, 24, 1542-1550.

91. Hidalgo, H.; Sosa, S.; Gómez-Treviño, E. Application of the kernel method to the inverse

geosounding problem. Neural Netw. 2003, 16, 349-353.

92. Pal, M. Support vector machines-based modelling of seismic liquefaction potential. Int. J. Num.

Anal. Meth. Geomech. 2006, 30, 983-996.

93. Schölkopf, B.; Smola, A.J. Learning with Kernels; MIT Press: Cambridge, MA, USA, 2002.

94. Rangwala H.; Karypis, G. Profile-based direct kernels for remote homology detection and fold

recognition. Bioinformatics 2005, 21, 4239-4247.

95. Iplikci, S. Support vector machines-based generalized predictive control. Int. J. Rob. Nonl. Contr.

2006, 16, 843-862.

96. Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273-297.

Algorithms 2009, 2

1005

97. Ljung, L. Perspectives on system identification; Division of Automatic Control, Linköpings

Universitet: Linköping, Sweden, 2008.

98. Hsu, C.W.; Lin, C.J. A comparison of methods for multi-class support vector machines. IEEE

Trans. Neural Netw. 2002, 13, 415-425.

99. Thai, C.N.; Shewfelt, R.L. Modeling sensory color quality of tomato and peach: neural networks

and statistical regression. Trans. ASAE 1991, 34, 950-955.

100. Tani, A.; Murase, H.; Kiyota, M.; Honami, N. Growth simulation of alfalfa cuttings in vitro by

Kalman filter neural network. Acta Horticul. 1992, 319, 671-676.

101. Yang, Q. Classification of apple surface features using machine vision and neural networks.

Comput. Electron. Agric. 1993, 9, 1-12.

102. Liao, K.; Paulsen, M.R.; Reid, J.F. Corn kernel breakage classification by machine vision using a

neural network classifier. Trans. ASAE 1993, 36, 1949-1953.

103. Deck, S.H.; Morrow, C.T.; Heinemann, P.H.; Sommer III, H.J. Comparison of a neural network

and traditional classifier for machine vision inspection of potatoes. Appl. Eng. Agric. 1995, 11,

319-326.

104. Khazaei, J.; Naghavi, M.R.; Jahansouz, M.R.; Salimi-Khorshidi, G. Yield estimation and

clustering of chickpea genotypes using soft computing techniques. Agron. J. 2008, 100, 1077-

1087.

105. Zhang, H.; Wang, J. Identification of stored-grain age using electronic nose by ANN. Appl. Eng.

Agric. 2008, 24, 227-231.

106. Sun, G.; Hoff, S.J.; Zelle, B.C.; Nelson, M.A. Development and comparison of backpropagation

and generalized regression neural network models to predict diurnal and seasonal gas and PM10

concentrations and emissions from swine buildings. Trans. ASABE 2008, 51, 685-694.

107. Ondimu, S.N.; Murase, H. Comparison of plant water stress detection ability of color and gray-

level texture in sunagoke moss. Trans. ASABE 2008, 51, 1111-1120.

108. Wu, D.; Feng, L.; Zhang, C.; He, Y. Early detection of botrytis cinerea on eggplant leaves based

on visible and near-infrared spectroscopy. Trans. ASABE 2008, 51, 1133-1139.

109. Linko, P.; Zhu, Y.H.; Linko, S. Application of neural network modeling in fuzzy extrusion

control. Food Bioprod. process. 1992, 70, 131-137.

110. Kim, S.; Cho, I. Neural network modeling and fuzzy control simulation for bread-baking process.

Trans. ASAE 1997, 40, 671-676.

111. Morimoto, T.; Suzuki, J.; Hashimoto, Y. Optimization of a fuzzy controller for fruit storage

using neural networks and genetic algorithms. Eng. Appl. Artif. Intell. 1997, 10, 453-461.

112. Odhiambo, L.O.; Yoder, R.E.; Yoder, D.C.; Hines, J.W. Optimization of fuzzy

evapotranspiration model through neural training with input-output examples. Trans. ASAE 2001,

44, 1625-1633.

113. Chtioui, Y.; Panigrahi, S.; Backer, L.F. Self-organizing map combined with a fuzzy clustering

for color image segmentation of edible beans. Trans. ASAE 2003, 46, 831-838.

114. Meyer, G.E.; Hindman, T.W.; Jones, D.D.; Mortensen, D.A. Digital camera operation and fuzzy

logic classification of uniform plant, soil, and residue color images. Appl. Eng. Agric. 2004, 20,

519-529.

Algorithms 2009, 2

1006

115. Odhiambo, L.O.; Freeland, R.S.; Yoder, R.E.; Hines, J.W. Investigation of a fuzzy-neural

network application in classification of soils using ground-penetrating radar imagery. Appl. Eng.

Agric. 2004, 20, 109-117.

116. Hancock, K.M.; Zhang, Q. A hybrid approach to hydraulic vane pump condition monitoring and

fault detection. Trans. ASABE 2006, 49, 1203-1211.

117. Xiang, H.; Tian, L.F. Artificial intelligence controller for automatic multispectral camera

parameter adjustment. Trans. ASABE 2007, 50, 1873-1881.

118. Andriyas, S.; Negi, S.C.; Rudra, R.P.; Yang, S.X. Modelling total suspended solids in vegetative

filter strips using artificial neural networks; ASAE: St. Joseph, MI., USA, 2003; ASAE number:

032079.

119. Lee, K.H; Zhang, N.; Das, S. Comparing adaptive neuro-fuzzy inference system (ANFIS) to

partial least-squares (PLS) method for simultaneous prediction of multiple soil properties;

ASAE: St. Joseph, MI., USA, 2003; ASAE paper number: 033144.

120. Neto, J.C.; Meyer, G.E.; Jones, D.D.; Surkan, A.J. Adaptive image segmentation using a fuzzy

neural network and genetic algorithm for weed detection; ASAE: St. Joseph, MI., USA, 2003;

ASAE paper number: 033088.

121. Goel, P.K.; Andriyas, S.; Rudra, R.P.; Negi, S.C. Modeling sediment and phosphorous movement

through vegetative filter strips using artificial neural networks and GRAPH; ASAE: St. Joseph,

MI., USA, 2004; ASAE paper number: 042263.

122. Deng, X.; Wang, Q.; Wu, L.; Gao, H.; Wen, Y.; Wang, S. Eggshell crack detection by acoustic

impulse response and support vector machine. African J. Agric. Res. 2009, 4, 40-48.

123. Trebar, M.; Steele, N. Application of distributed SVM architectures in classifying forest data

cover types. Comput. Electron. Agric. 2008, 63, 119-130.

124. Khot, L.R.; Panigrahi, S.; Woznica, S. Neural-network-based classification of meat: evaluation

of techniques to overcome small dataset problems. Biol. Eng. 2008, 1, 127-143.

125. Jiang, L.; Zhu, B.; Rao, X.; Berney, G.; Tao, Y. Discrimination of black walnut shell and pulp in

hyperspectral fluorescence Imagery using Gaussian kernel function approach. J. Food Eng. 2007,

81, 108-117.

126. Zhang, H.; Paliwal, J.; Jayas, D.S.; White, N.D.G. Classification of fungal infected wheat kernels

using near-infrared reflectance hyperspectral imaging and support vector machine. Trans. ASABE

2007, 50, 1779-1785.

127. Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of support vector machine

technology for weed and nitrogen stress detection in corn. Comput. Electron. Agric. 2006, 51,

99-109.

128. Pierna, J.A.F.; Baeten, V.; Dardenne, P. Screening of compound feeds using NIR hyperspectral

data. Chemom. Intell. Lab. Syst. 2006, 84, 114-118.

129. Chen, Q.; Zhao, J.; Cai, J.; Wang, X. Study on identification of tea using computer vision based

on support vector machine. Chinese J. Sci. Instrum. 2006, 27, 1704-1706.

130. Wang, W.; Paliwal, J. Spectral data compression and analyses techniques to discriminate wheat

classes. Trans. ASABE 2006, 49, 1607-1612.

131. Onaran, I.; Pearson, T.C.; Yardimci, Y.; Cetin, A.E. Detection of underdeveloped hazelnuts from

fully developed nuts by impact acoustics. Trans. ASABE 2006, 49, 1971-1976.

Algorithms 2009, 2

1007

132. Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines.

Sens. Actuat. B 2005, 107, 730-737.

133. Pierna, J.A.F.; Volery, P.; Besson, R.; Baeten, V.; Dardenne, P. Classification of modified

starches by Fourier transform infrared spectroscopy using support vector machines. J. Agric.

Food Chem. 2005, 53, 6581-6585.

134. Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic

nose and SVM neural network. Sens. Actuat. B 2004, 98, 291-298.

135. Tian, Y.; Zhang, C.; Li, C. Study on plant disease recognition using support vector machine and

chromaticity moments. Trans. Chinese Soc. Agric. Mach. 2004, 35, 95-98.

136. Fletcher, J.T.; Kong, S.G. Principal component analysis for poultry tumor inspection using

hyperspectral fluorescence imaging. In Proceedings of the International Joint Conference on

Neural Networks, Portland, Oregon, USA, July 20-24, 2003; Vol. I, pp.149-153.

137. Oommen, T.; Misra, D.; Agarwal, A.; Mishra, S.K. Analysis and application of support vector

machine based simulation for runoff and sediment yield; ASABE: St. Joseph, MI., USA, 2007;

ASABE paper number: 073019.

138. Fu, X.; Ying, Y.; Xu, H.; Yu, H. Support vector machines and near infrared spectroscopy for

quantification of vitamin C content in kiwifruit; ASABE: St. Joseph, MI., USA, 2008; ASABE

number: 085204.

139. Kovacs, Z.; Kantor, D.B.; Fekete, A. Comparison of quantitative determination techniques with

electronic tongue measurements; ASABE: St. Joseph, MI., USA, 2008; ASABE paper number:

084879.

140. Peng, Y.; Wang, W. Prediction of pork meat total viable bacteria count using hyperspectral

imaging system and support vector machines. In Proceedings of the Food Processing Automation

Conference, Providence, RI, USA, June 28-29, 2008; CD-ROM.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

This article is an open-access article distributed under the terms and conditions of the Creative

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

