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Abstract: In geometric models with high-valence vertices, current subdivision wavelets may
not deal with the special cases well for good visual effect of multiresolution surfaces. In this
paper, we present the novel biorthogonal polar subdivision wavelets, which can efficiently
perform wavelet analysis to the control nets with polar structures. The polar subdivision can
generate more natural subdivision surfaces around the high-valence vertices and avoid the
ripples and saddle points where Catmull-Clark subdivision may produce. Based on polar
subdivision, our wavelet scheme supports special operations on the polar structures, espe-
cially suitable to models with many facets joining. For seamless fusing with Catmull-Clark
subdivision wavelet, we construct the wavelets in circular and radial layers of polar struc-
tures, so can combine the subdivision wavelets smoothly for composite models formed by
quadrilaterals and polar structures. The computations of wavelet analysis and synthesis are
highly efficient and fully in-place. The experimental results have confirmed the stability of our
proposed approach.

Keywords: polar subdivision; Catmull-Clark subdivision; bicubic B-spline; subdivision
wavelet; local lifting
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1. Introduction

In recent years, the demand of realism in computer graphics needs highly detailed geometric models.
These highly detailed models challenge not only the rendering performance, but also net transmission
bandwidth and storage capacities. Multiresolution modeling is an important approach to balance the
need of both the accuracy of models and the cost required to process them. Among the existing multires-
olution techniques, the wavelets transform is a very important tool to process the multiresolution models.
Here, based on bicubic polar subdivisions, we present the novel biorthogonal wavelets scheme by apply-
ing lifting operations. Figure 1 shows the sample surface sequences with polar structures, using com-
pound polar subdivision wavelet analysis, in different resolutions. Our wavelet scheme can offer more
resolution levels to the meshes with high valence extraordinary vertices or the combinatorial structures
of surfaces of revolution. Because we use local lifting operations to ensure the local orthogonalization
of wavelets, the computations are fully in-place and the complexity is linear time. The in-place compu-
tation eliminates the need of auxiliary memory costs of the processing. It can be seamlessly combined
with Catmull-Clark subdivision wavelets to process quadrilateral meshes with polar structures.

Figure 1. Surface sequences in different resolution: (a) original surfaces, (b) and (c) surfaces
by compound subdivision wavelet analysis once and twice; (d) meshes in lowest resolution.

1.1. muliresolution modeling

A polygonal model M can be considered as the composition of a fixed set of vertices V = (v1, v2, ..., vr)

and a fixed set of faces F = (f1, f2, ..., fn). It provides a single fixed resolution representation of a sur-
face. Suppose we have a polygonal model M and we want an approximation M ′. While M ′ will have
fewer polygons and vertices than the original one, it should be as similar as possible to M . A multi-
resolution model is a model representation that covers a sequence of approximations of a surface and
can be used to reconstruct any one of them on demand.

There are two most common methodologies in multiresolution modeling: decimation and refinement.
A decimation algorithm starts from the original surface and removes elements from the model. For
example, from the high detail model Mn, we can get a sequence of models in different levels of details
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by iteratively decimation.
Mn → Mn−1 → ... → M0

In the opposition to the decimation, the refinement algorithm begins from an initial coarse approximation
and adds supplements to the model. We can retrieve the high detail model Mn by iterative refinement.

M0 → M1 → ... → Mn

The cost of surface decimation and refinement should be low because we will often need to use many
different approximations at run time. In some applications, the low cost of computation is much more
important than the similarity of the objects in different resolutions.

1.2. subdivision wavelets

The subdivisions can iteratively refine a control mesh M0 so that the sequence of increasingly faceted
polyhedra M1,M2, ... converge to some limit surface M∞. The property of subdivision makes it pos-
sible to define a collection of refinable scaling functions. Based on nested linear spaces spanned by the
refinable scaling functions and an inner product designated, we can construct subdivision wavelets. Sub-
division wavelets not only inherit the performance advantage of wavelets in shape reservation, but also
overcome the shortcomings of classical wavelets that are hardly applied in 3D domains. They can be
applied on surfaces of arbitrary topology type. Comparing with subdivisions, the subdivision wavelets
transform can perform both decimation and refinement operations.

The theoretical basis for constructing wavelets on subdivision surfaces was established by Louns-
bery et al. [1]. They also proposed a class of subdivision based wavelets. By generalizing the uniform
subdivision in topology to a new irregular subdivision scheme, Valette and Prost [2, 3] extended the
work of Lounsbery et al. and proposed a wavelet-based multiresolution analysis that can be applied
directly to irregular meshes whose connectivity is unchanged in the wavelet analysis. Samavati et al. [4]
showed how to use least-squares data fitting to reverse subdivision rules and constructed the wavelets by
straightforward matrix observations. Samavati et al. [5] constructed multiresolution surfaces of arbitrary
topologies by locally reversing the Doo subdivision scheme. Khodakovsky et al. [6] developed the Loop
subdivision wavelets with small support for progressive geometry compression. Since the lifting scheme
proposed by Swelden [7] can generate new biorthogonal wavelets from the classic wavelets and lazy
wavelets, it is an important tool to construct subdivision wavelets. Based on lifting scheme, Schröder
and Sweldens showed how to construct lifting wavelets on the sphere with customized properties [8].
Using local lifting operations performed on polygonal meshes, Bertram et al. [9, 10] gave a new con-
struction of lifted biorthogonal wavelets on surfaces of arbitrary two manifold topology and introduced
the generalized B-spline subdivision-surface wavelets.

Using local lifting and the discrete inner production, Bertram [11] constructed a biorthogonal wavelet
on the Loop subdivision. Li et al. [12] proposed unlifted Loop subdivision wavelet by optimizing free
parameters in the extended subdivisions. Wang et al. [13] developed an effective wavelet construction
based on general Catmull-Clark subdivisions and the resulted wavelets have better fitting quality than
the previous Catmull-Clark like subdivision wavelets. Recently Wang et al. [14] constructed the new
biorthogonal wavelets based on

√
3 subdivision over triangular meshes. The polar subdivision was first
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proposed by Karčiauskas et al. [15, 16]. Myles et al [17, 18] extended the work of Karčiauskas et al and
provided the polar subdivision schemes, which can be combined with Catmull-Clark subdivision. Our
work is mainly based on the scheme of Myles et al.

The rest of paper is organized as follows: The rules of bicubic polar subdivision and its reformu-
lation are introduced in Section 2. We explain how to construct the polar subdivision based wavelets
in radial/circular layers in Section 3, and show how to combine the polar subdivision wavelets with
Catmull-Clark subdivision wavelet in Section 4. We present the experimental results for the wavelet
analysis in Section 5. Finally, we conclude the work in Section 6.

2. Polar Subdivision

Catmull-Clark subdivision is a powerful technique widely used in representing smooth quadrilat-
eral surface. But for many-sided blends and vertices of high valence, Catmull-Clark subdivision often
generates ripples where many facets join or where features are extruded [17]. To improve the subdivi-
sion quality in this case, Karčiauskas et al. developed a new scheme called polar subdivision [16] that
generalizes bicubic spline subdivision to control nets with polar structures. The polar structure is a com-
binatorial structure of surfaces of revolution, often appearing at points of high valence in meshes. Apart
from the extraordinary vertices, the polar structure is a layer of quadrilaterals adjacent to the triangles,
as shown in Figure 2. The structures naturally appears in the design of surfaces of revolution. Com-
paring with 4-3 subdivision, bicubic polar subdivision is more preferable for polar structures because it
generates some bicubic patches in the surface as bridges which connect quads to triangles smoothly. As
bicubic spline subdivision, it is natural to be combined with Catmull-Clark subdivision and can augment
the capabilities of existing Catmull-Clark subdivision.

Figure 2. Polar control net near an extraordinary point. v denotes the vertex in polar net and
e denotes the edge point. The control points have subscripts i which indicates the radial dis-
tance to the extraordinary point, subscripts j (modulo valence n) which indicates the circular
index. v1,j and e1,j is written as vj and ej for abbreviation.
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The process of polar subdivision provided by Karčiauskas et al. only includes subdivisions in ra-
dial layers. In order to apply the polar subdivision on the surface of arbitrary quadrilateral meshes,
Myles et al. [17] combined the original polar subdivision with Catmull-Clark subdivision. In order to
leverage and preserve the good results of radial subdivision and keep control net consistent, the subdi-
visions should be performed independently. It offers us a chance that the wavelet analysis in circular
layers and radial layers can be constructed independently.

2.1. Subdivision in radial layers

The subdivision in radial direction is the key procedure to map a polar structure to a refined version.
The refinement rules in radial layers for polar subdivision (see [17]) can be described as:

e′i,j =
1

2
(vi−1,j + vi,j) where i > 1, e′j = (1− β)v +

n−1∑

k=0

vkγk−j,

v′i,j =
1

8
vi−1,j +

6

8
vi,j +

1

8
vi+1,j, v′ = (1− α)v +

α

n

n−1∑

k=0

vk.

(1)

where α = β − 1
4
, β = 1

2
, γk = 1

n
(β − 1

2
+ 5

8
ck
n + (ck

n)2 + 1
2
(ck

n)3), ck
n = cos(2kπ

n
), n is the valence of

polar vertex v, the meaning of subscribe i and j are the same as they are shown in Figure 2.
We need to perform some transform operations on the refinement rules, so that we can reverse them

to construct lazy wavelets analysis. The transformed refinement rules in radial layers:

e′i,j = ei,j +
1

2
(vi−1,j + vi,j) ∀j, ∀i > 1, e′j = ej + (1− β)v +

n−1∑

k=0

vkγk−j,

v′i,j =
1

2
vi,j +

1

4
(e′i−1,j + e′i,j) ∀j, ∀i > 1, v′j =

1

8
v +

5

8
vj +

1

4
e′2,j,

v′ = [(1− α)− α

C
(1− β)]v +

α

nC

n−1∑

k=0

e′k.

(2)

where C =
n−1∑
k=0

γk = β, other symbols have the same meanings as expression (1). We can verify that

the results of expressions (2) are equal to the original rules, if ei,j and ej in expression (2) are initialized
as zero. By inverting the subdivision process in radial layers, we can get the ei,j , ej , vi,j , vj and v in
reverse order:

v =
1

U
(v′ − α

nβ

n−1∑

k=0

e′k), vj =
8

5
× (v′j −

1

8
v − 1

4
e′2,j),

vi,j = 2× (v′i,j −
1

4
(e′i−1,j + e′i,j)) ∀j, ∀i > 1, (3)

ej = e′j − (1− β)v −
n−1∑

k=0

vkγk−j, ei,j = e′i,j −
1

2
(vi−1,j + vi,j) ∀j, ∀ i > 1.

2.2. Subdivision in circular layers

To merge the refined polar structures and adjacent normal quadrilateral meshes subdivided by Catmull-
Clark subdivision smoothly, we need to subdivide the polar structures in circular layers too. The refine-
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ment rules in circular layers for polar subdivision can be described as:

v′′i,j =
1

8
v′i,j−1 +

6

8
v′i,j +

1

8
v′i,j+1, e′′i,j =

1

2
(v′i,j + v′i,j+1). (4)

The subdivision in circular layers is performed independently after or before subdivision in radial layers.
The transformed refinement rules in circular layers:

e′′i,j = e′i,j +
1

2
(v′i,j + v′i,j+1), v′′i,j =

1

4
(e′′i,j−1 + 2v′i,j + e′′i,j). (5)

We can verify that the results of Equation (5) are equal to the original rules, if e′i,j in expression (5)
are initialized as zero. Knowing e′′j , v′′i,j , which are the points of mesh in higher resolution, we can get
e′j , v′i,j in expression (5) by inverting the subdivision process in circular layers:

v′i,j =
1

2
(4v′′i,j − e′′i,j−1 − e′′i,j), e′i,j = e′′i,j −

1

2
(v′i,j + v′i,j+1). (6)

Each sub-step of Equations (5 and 6) must be performed for all points of each type over the entire mesh
before the next sub-step. The lifted polar subdivision and its inverted version have defined a lazy wavelet
synthesis and analysis framework. The basis functions corresponding to ei,j (denoted as lazy wavelet
ψ), ej (denoted as lazy wavelet ψj), v (denoted as scaling function φ) have defined by the subdivision
in radial layers. The basis functions corresponding to e′i,j (denoted as lazy wavelet ψc), v′i,j (denoted as
lazy wavelet φc) have been defined by the subdivision in circular layers.

3. Subdivision Wavelets Using Lifting

The most subdivision based wavelets [1, 19] are based on lifting [8]. By performing the additional
lifting operations, the properties of these wavelets are customized to fill needs of application. Because
these subdivision based wavelets need to solve a linear system to find the coefficients of scaling functions
and wavelets in lower resolution, these methods are expensive in computation and storage during the
wavelets analysis. By locally orthogonalizing the lazy wavelets converted from subdivision rules, we
can avoid these deficiencies, and construct the the new biorthogonal wavelets which the analysis and
synthesis algorithms are very fast, simple and practical.

3.1. Lifting wavelets

The lazy wavelets constructed by reversing subdivision scheme directly usually has a poor fitting
quality (see Figure 3). In order to reduce the correlation of wavelet coefficients, we can use lifting to
increase the orthogonality of lazy wavelets. Though global orthogonalization may lead to a better result,
it is often unaffordable in computation. For efficiency, we use additional local lifting operations [9]
prior to original lazy wavelets. Since the subdivision in radial layers and circular layers are performed
independently, we performed the lifting independently too. In radial layers, as shown in Figure 4, we
can construct new wavelets ψ′ and ψ′j by combining the lazy wavelets ψ and ψj with scaling functions
whose corresponding vertices are neighbor to e and ej . The related subdivision masks of lazy wavelets
in radial layers are shown in Figure 5. More details about lifting subdivision wavelets in radial layers can
be found in our previous work [20]. Here we mainly focus on how to construct the lifting subdivision
wavelets in circular layers.
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Figure 3. (a) original surfaces perturbed with white noise; (b) the surfaces performed lazy
wavelet analysis once and twice; (c) the surfaces performed our scheme once and twice.

Figure 4. Constructing wavelets as linear combination of lazy wavelets and scaling functions
in radial layers.

Figure 5. Discrete subdivision masks of basis functions in radial layers (lazy wavelets and
scaling functions).

As shown in Figure 6(a), we construct new wavelets ψ′′i,j by combining the lazy wavelets ψ′i,j with
scaling functions whose corresponding vertices are neighbors to e′i,j in circular layers. Since these lifted
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wavelets should be orthogonalized with the scaling functions, so we need to obtain the weights wi,
such that:

ψ′′i,j = ψ′i,j +
3∑

k=−2

wkφ
′
i,j+k and 〈ψ′′i,j, φ′i,j+k〉 = 0 (7)

Figure 6. (a) Constructing wavelets as linear combination of lazy wavelets and scaling
functions in circular layers; (b) Discrete subdivision masks of basis functions in circular
layers (lazy wavelets and scaling functions).

To solve the Equation (7), we need to calculate the inner products of basis functions. A proper inner
product could considerably improve the result quality and reduce the complexity of computation. Here
we adopt the definition of inner product introduced by Bertram [11]. He suppose the scaling functions of
finer resolution form an orthogonal basis without considering all correlation of finer-level coefficients.
The mutual inner products of wavelets and scaling functions are defined as the sum of corresponding
multiplications of their discrete subdivision masks. This kind of inner product can be calculated directly
from the discrete subdivision masks, shown in Figure 6(b), and avoid complex computation needed by
the inner product defined with continuous shape of basis functions. More details of local inner production
are referred in Bertram’s work. Therefore, without considering the boundary of control nets, we have
the inner products of lazy wavelets:

〈ψi,j, φi,j−1〉 = 〈ψi,j, φi,j+2〉 = 1/32 〈ψi,j, φi,j〉 = 〈ψi,j, φi,j+1〉 = 23/32

〈φi,j, φi,j−2〉 = 〈φi,j, φi,j+2〉 = 1/64 〈φi,j, φi,j−1〉 = 〈φi,j, φi,j+1〉 = 7/16

〈φi,j, φi,j〉 = 35/32

Insert the inner products to Equation (7). and we get equation systems:

Aw = b where amn = 〈φ′i,m, φ′i,n〉, bmn = −〈ψ′i,m, φ′i,n〉 (8)

After solving these systems, we get weights w which can be precomputed for efficiency.

3.2. Wavelet synthesis and analysis

Suppose M i is arbitrary circular layer of the surface, we have:

M i =
∑
m

v′i,mϕ′i,m +
∑

n

e′i,nψ
′
i,n. ∀m, ∀n (9)
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By inserting Equation (7) to Equation (9), we get:

M i =
∑

i

vi,mϕi,m +
∑

j

ei,nψi,n +
∑

n

ei,n(
2∑

k=−1

wkϕi,n) ∀m, ∀n. (10)

¿From Equation (10), we can construct a new wavelet synthesis from the original lazy wavelets by
additional lifting operation prior to the subdivision masks:

v′i,j+k = v′i,j+k + wke
′
i,j ∀k = −2,−1, ..., 3,∀i,

e′′i,j = e′i,j +
1

2
(v′i,j + v′i,j+1), v′′i,j =

1

4
(e′′i,j−1 + 2v′i,j + e′′i,j).

(11)

By inverting the rules of wavelet synthesis process, we can get the new rules for wavelet analysis in
circular layers:

v′i,j =
1

2
(4v′′i,j − e′′i,j−1 − e′′i,j), e′i,j = e′′i,j −

1

2
(v′i,j + v′i,j+1),

v′i,j+k = v′′i,j+k − wke
′
i,j ∀k = −2,−1, ..., 3, ∀i.

(12)

The rules of wavelet transforms in radial layer can be obtained by the similar methods. More dis-
cussion about the wavelets in radial layers is given in our previous work [20]. Here we only show the
wavelet analysis rules in radial layers:

v =
1

U
(v′ − α

nβ

n−1∑

k=0

e′k), vj =
8

5
× (v′j −

1

8
v − 1

4
e′2,j),

vi,j = 2× (v′i,j −
1

4
(e′i−1,j + e′i,j)) ∀j, ∀i > 1, (13)

ej = e′j − (1− β)v −
n−1∑

k=0

vkγk−j, ei,j = e′i,j −
1

2
(vi−1,j + vi,j) ∀j, ∀ i > 1,

vk = vk − tkej ∀j, ∀k = 0, ..., n− 1,

vk = vk − skei,j ∀j, ∀i > 1,∀k = 0, ..., 7.

where t and s is the precomputed weights in radial layers, α = β − 1
4
, β = 1

2
, γk = 1

n
(β − 1

2
+ 5

8
ck
n +

(ck
n)2 + 1

2
(ck

n)3), ck
n = cos(2kπ

n
), U = (1 − α) − α

β
(1 − β). By applying the rules of polar subdivision

wavelet transforms, we can give the algorithms of synthesis and analysis. Since the synthesis algorithm
is similar to analysis algorithm except the order of sub-steps. Here, we only show the analysis algorithm:
For a given polar structure, one step of polar subdivision wavelets analysis includes.

(i) Performing the wavelet analysis in circular layers. For each circular layer i (i > 0), we perform:

(a) lazy wavelet analysising: for each vertex vi,m in circular layer i, denote vi,m (m = 0, 2, 4, 6,...)
as the v′′i,j (j = m/2), and vi,m (m = 1, 3, 5,...) as e′′i,j (j=(m-1)/2). Calculate each v′i,j and each
e′i,j from v′′i,j and e′′i,j through Equation (6);

(b) lifting operations on v′i,m; for each e′i,j , calculate v′i,j+k around e′i,j through v′i,j+k = v′i,j+k −
wke

′
i,j ∀k = −2,−1, ..., 3,∀i.

(ii) Performing the wavelet analysis on radial layers based on the results of (i). For each radial layer j,
we perform:
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(a) lazy wavelet analysising: for each vertex v′m,j in radial layer j, denote v′m,j (m = 2, 4, 6,...) as
the v′i,j (i = m/2), and vm,j (m = 1, 3, 5,...) as e′i,j (i = (m-1)/2). Calculate polar vertex v, each
vi,j and each ei,j from v′i,j and e′i,j through Equation (3);

(b) lifting operations on v′i,m. for each e′i,j , calculate v′i,j+k around e′i,j through vk = vk −
tkej (∀j, ∀k = 0, ..., n− 1); vk = vk − skei,j (∀j, ∀i > 1,∀k = 0, ..., 7).

No matter in radial layers or circular layers, each sub-step of analysis and synthesis must be performed
for all points, over the entire mesh before the next sub-step.

4. Bicubic B-spline Subdivision Wavelets

Formally a realistic model may be composed of the polar structures and the quadrilaterals surround-
ing the polar structures, shown in Figure 1. In fact the polar structures can also be considered as the
combination of extraordinary mesh points surrounded by triangles, and quadrilaterals that have points of
valence four. The extraordinary mesh points need only be separated by one layer of points of valence
four. For the quadrilaterals, we can apply the classical subdivisions, such as Catmull-Clark subdivi-
sion. Both Catmull-Clark and polar subdivision generalize bicubic spline subdivision. They can form a
powerful combination for smooth object design: while Catmull-Clark subdivision can be applied to the
points of valence four, polar subdivision can be applied to the regions surrounding polar vertex. Myles
et al. [17] have shown how to combine the meshes of these two generalizations of bicubic B-spline sub-
division. Based on their work, we can develop a compound subdivision wavelets on the meshes with
quadrilateral faces. Catmull-Clark subdivision wavelet can be applied to the ordinary points while polar
subdivision wavelets can be applied on extraordinary points.

The Catmull-Clark subdivision wavelets have been constructed with local lifting by Bertram [9] and
Wang et al. [13]. These schemes can be applied directly to the regions of common quadrilaterals(not
include the quadrilaterals in polar structures). In Myles’s scheme, the overlap regions between common
quadrilaterals and polar structures are both subdivided by Catmull-Clark subdivision and polar subdi-
vision,and drop the boundary facets of the meshes subdivided in polar subdivision and Catmull-Clark
subdivision and join them by identifying the resulting boundary vertices. He proved that the jointed
subdivision surface is C1 continuity and has bounded curvatures. Because of the different local lifting
schemes applied to Catmull-Clark subdivision and polar subdivision, we need make an adjustment to the
local lifting schemes in order to keep the continuity of two parts.

The process of wavelet analysis in overlap region is shown in Figure 7. We consider the overlap
regions as the extend part of polar structures and adopt the way similar to the construction of polar
subdivision wavelets. The stencils for local lifting are shown in Figure 8. By applying this scheme, we
can get the decomposition rules in the overlap regions:

vi,j =
1

2
(4v′i,j − e′i,j−1 − e′i,j), ei,j = e′i,j −

1

2
(vi,j−1 + vi,j),

vi,j+k = vi,j+k − wkei,j ∀k = −1, 0, 1, 2,∀i.
(14)
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and reconstruction rules in the overlap regions:

vi,j+k = vi,j+k + wkei,j ∀k = −1, 0, 1, 2, ∀i,
e′i,j = ei,j +

1

2
(vi,j + vi,j+1), v′i,j =

1

4
(e′i,j−1 + 2vi,j + e′i,j).

(15)

When performing the wavelet analysis on the model, we should separate the polar structures and the
remaining quadrilateral meshes, and perform the wavelet analysis in the overlap region at first. After
that we can decompose the polar structures and the rest meshes separately. The wavelet synthesis are
processed in the reverse order of analysis.

Figure 7. Performing the compound wavelet analysis: (1) separating the input mesh and per-
form wavelet analysis in the overlap region; (2a) decomposing the polar structure in circular
layer; (2b) decomposing the polar structure in radial layer; (3) decomposing the remainder.
(4) Joining the resulted meshes after removal of overlapping facets.

Figure 8. (a) Constructing wavelets as linear combination of lazy wavelets and scaling
functions in radial layers of overlap regions; (b) Constructing wavelets as linear combination
of lazy wavelets and scaling functions in circular layers of overlap regions; (c) Discrete
subdivision masks of basis functions.

5. Experimental Results

Table 1 shows the precomputed weighs ti and si in radial layers when the valence of polar vertex is
8. In radial layers, since the ei,j is far away from the polar vertex when i > 2, there are no relations
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between the points in different radial directions. In this situation, s1, s3, s4 and s6 are zero. Table 2
shows the precomputed weighs wi in circular layers. It can be further improved by combining more
scaling functions φ′i,j with ψ′i,j .

Table 1. Precomputed weights in radial layers (n = 8).

ti si(v0 = v) si(v0 ∈ vj) si (v0 ∈ vi,j)

-0.212173 0.060810 0.228947 0.189068
-0.239089 0.026201 0.000000 0.000000
-0.052675 -0.560051 -0.544587 -0.525336
0.083197 0.026201 0.000000 0.000000
0.080547 -0.011349 0.000000 0.000000
0.076314 -0.506860 -0.516979 -0.525336
0.080547 -0.011349 0.000000 0.000000
0.083197 0.182173 0.186000 0.189068
-0.052675 - - -
0.098667 - - -

Table 2. Precomputed weights in circular layers.

w−2 w−1 w0 w1 w2 w3

-0.0829 0.2265 -0.5356 -0.5356 0.2265 -0.0829

When performing the multiple levels of wavelet analysis, the stability is an important issue of fitting
operations. In order to examine the stability of our polar subdivision based wavelets, we perform a noise-
filtering experiment similar to [11, 13, 14]. First, we subdivide the mesh 4 times by polar subdivision,
and perturb the subdivided mesh with white noise to all vertices of the final mesh. Then, the perturbed
surface will be analyzed step by step by using our wavelet analysis algorithm 4 times. At each reso-
lution, we subdivide the mesh to level 4 (the highest resolution) again without considering the wavelet
coefficients of any higher resolution. By this way, we get a sequence of low-pass filtered versions of
the noisy mesh, shown in Figure 9. We can compare the difference between low-pass filtered versions
of noisy mesh and the original unperturbed mesh by calculating the corresponding L2-norm errors. The
test results in Tables 3 and 4 show that the error does not significantly increase after multiple steps of
wavelet analysis operations. In contrast to the lazy wavelets, our wavelet scheme has a good performance
of stability. Figure 10 shows the results of compound wavelet analysis. After wavelet analysis, the polar
structures and the rest quadrilateral meshes are smoothly joined.
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Figure 9. Progressive wavelet analysis of surfaces (with white noises) from level 4 to
level 0.

Table 3. L2 error of hat in different levels (with and without lifting).

Level Number of vertices L2 error of our scheme (with) L2 error of lazy wavelets (without)

4 24577 0.00192136 0.00192128
3 6145 0.00096071 0.00475723
2 1537 0.00061625 0.017283
1 385 0.000485615 0.0720949
0 97 0.000562381 0.251045

Table 4. L2 error of mushroom in different levels (with and without lifting).

Level Number of vertices L2 error of our scheme (with) L2 error of lazy wavelets (without)

4 55297 0.00194545 0.00198193
3 13825 0.000941068 0.00477773
2 3457 0.000538884 0.0179629
1 865 0.000344581 0.0756179
0 217 0.000270338 0.333253

From the rules of polar subdivision wavelet transforms, we know that the computations of lifting are
executed over each vertex. And the time complexity of computation over one vertex is O(1). So the
time complexity of lifting operation only depends the number of vertices of polar structures. Since the
time complexity of polar subdivision is O(n) (n is the number of vertices of polar structure), the time
complexity of the whole wavelet transforms is O(n). Since it is not necessary to use the filter banks (they
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often mean large matrices) to perform the wavelet transforms and the computation is fully in-place, there
is no additional memory cost either. The space complexity of wavelet transforms also depends on the
number of vertices of polar structure. The well-designed data structures based on the principle of polar
structure can effectively reduce the memory cost further.

Figure 10. Mesh sequences in different resolution: (a) the original meshes; (b) the meshes
by wavelet analysis once; (c) the meshes by wavelet analysis twice; (d) the surface of polar
structures by wavelet analysis twice.

Table 5. The test results of performing polar subdivision wavelet transforms in different
orders. For simple, we name the resulted meshes by performing analysis in radial layers
first as A; the resulted meshes by performing analysis in circular layer first as B; O means
original unperturbed meshes. The table lists the L2 error between any two of them.

Mesh A and B A and O B and O

mushroom 0.00001449 0.00200506 0.00200448
hat 0.00018902 0.00577932 0.00577456

hand 0.00017053 0.00491544 0.00491222

Though the subdivisions in radial layers and circular layers are independent, more testing is necessary
to determine which should perform first. We performed the experiments on both selective orders. We
perturbed the original meshes with white noise, and performed wavelet analysis on the perturbed meshes.
Then we subdivided the new meshes to original resolution, and compared them with the original unper-
turbed ones by calculating L2 errors. From the experimental results shown in Table 5, we find that
there is only a small difference between the orders, especially if many vertices in the complex models.
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Myles et al. [18] provided the revised polar subdivision with the C2 continuity on polar vertices, which
synthesized the subdivision rules of radial and circular layers in a more tightly way. As the wavelet
framework facilitates both multiresolution analysis and synthesis efficiently, our proposed wavelet scheme
inherits the advantages of subdivision and provides the stable shape preservation for analysis, by per-
forming the local lifting operations.

6. Conclusion

In this paper, we proposed the novel compound biorthogonal wavelets for representing quadrilat-
eral meshes with polar structures in multiresolution, based on polar subdivision and Catmull-Clark
subdivision. The polar subdivision wavelets are naturally suitable to decompose and reconstruct sur-
faces of revolution. By using local lifting and orthogonalization, the wavelet analysis and synthesis are
fully in-place and can be performed in linear time. As the wavelets are constructed in radial and circular
layers, they can be directly combined with other quadrilateral subdivisions, such as Catmull-Clark sub-
division. By performing the wavelet analysis in circular layers, we reduce the valence of polar vertex,
which is useful in dealing with the meshes with high valence extraordinary vertices. To seamlessly com-
bine with the Catmull-Clark subdivision wavelets, we developed the special operations to construct the
wavelets in the circular layers of polar structures. These operations guarantee the continuity of the polar
structures and the remaining meshes in different resolutions. Because the orthogonality of wavelet basis
functions are improved by local lifting, the computation of our proposed wavelet scheme is highly effi-
cient and fully in-place. Further, we will work on constructing the uniform polar subdivision wavelets,
and there is no need to perform the steps in circular and radial layers separately.
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Appendix: Inner Products of Wavelets in Radial Layers

The inner products in the left part of Figure 5:

〈ψj, φ0〉 = (1− α)× α

nC
+ 1− β 〈ψj, φn+1〉 = 0

〈ψj, φi〉 =
α

n
× α

nC
+ γi−j ∀i ∈ {1..n}

〈φ0, φ0〉 = n(1− β)2 + (1− α)2 +
n

64

〈φ0, φi〉 = (1− α)
α

n
+

n−1∑
m=0

γm(1− β) +
3

32

∀i ∈ {1..n}
〈φ0, φn+1〉 =

1

8
× 1

8
=

1

64
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〈φi, φi〉 = (
α

n
)2 +

n−1∑
m=0

γ2
m +

53

64
∀i ∈ {1..n}

〈φn+1, φn+1〉 = (
1

8
)2 × 2 + (

1

2
)2 × 2 + (

3

4
)2 =

35

32

〈φi, φk〉 = (
α

n
)2 +

n−1∑
m=0

γmγm+n−(k−i)

∀i, k ∈ {1..n}, i 6= k

〈φn+1, φ1〉 =
7

16
〈φn+1, φi〉 = 0 ∀i ∈ {2..n}

The inner products between scaling functions and wavelets in the right part of Figure 5:

〈ψ, φ0〉 =
1

32
〈ψ, φ2〉 =

23

32
〈ψ, φ1〉 = 〈ψ, φ3〉 = 0

〈ψ, φ4〉 = 〈ψ, φ6〉 = 0 〈ψ, φ5〉 =
23

32
〈ψ, φ7〉 =

1

32

The inner products between scaling functions in the right part of Figure 5 depend on the location of point
v0 (corresponding to φ0):

(a) If v0 = v (polar vertex): center

〈φ0, φ0〉 = n(1− β)2 + (1− α)2 +
n

64

〈φ0, φi〉 = (1− α)
α

n
+

n−1∑
m=0

γm(1− β) +
3

32

∀i ∈ {1, 2, 3}
〈φ0, φi〉 =

1

64
∀i ∈ {4, 5, 6}

〈φi, φi〉 = (
α

n
)2 +

n−1∑
m=0

γ2
m+

53

64
∀i ∈ {1, 2, 3}

〈φi, φi〉 =
35

32
∀i ∈ {4, 5, 6, 7}〈φi, φk〉 = (

α

n
)2 +

n−1∑
m=0

γmγm+i−k

∀i, k ∈ {1, 2, 3} and i 6= k

〈φ1, φ6〉 = 〈φ2, φ5〉 = 〈φ3, φ4〉 = 〈φ5, φ7〉 =
7

16

〈φ2, φ7〉 =
1

64
〈φ0, φ7〉 = 0
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(b) If v0 belongs to {vj}:

〈φ0, φ0〉 = (
α

n
)2 +

n−1∑
m=0

γ2
m+

53

64

〈φi, φi〉 =
35

32
∀i ∈ {1..7}

〈φ0, φ2〉 = 〈φ1, φ6〉 = 〈φ2, φ5〉 = 〈φ3, φ4〉
= 〈φ5, φ7〉 =

7

16

〈φ0, φ5〉 = 〈φ2, φ7〉 =
1

64

(c) If v0 belongs to {vi,j} where i > 1:

〈φi, φi〉 =
35

32
∀i ∈ {0..7}

〈φ0, φ2〉 = 〈φ1, φ6〉 = 〈φ2, φ5〉 = 〈φ3, φ4〉
= 〈φ5, φ7〉 =

7

16

〈φ0, φ5〉 = 〈φ2, φ7〉 =
1

64
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