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Abstract:



We consider grammar-based text compression with longest first substitution (LFS), where non-overlapping occurrences of a longest repeating factor of the input text are replaced by a new non-terminal symbol. We present the first linear-time algorithm for LFS. Our algorithm employs a new data structure called sparse lazy suffix trees. We also deal with a more sophisticated version of LFS, called LFS2, that allows better compression. The first linear-time algorithm for LFS2 is also presented.
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1. Introduction


Data compression is a task of reducing data description length. Not only does it enable us to save space for data storage, but also it reduces time for data communication. This paper focuses on text compression where the data to be compressed are texts (strings). Recent research developments show that text compression has a wide range of applications, e.g., pattern matching [1, 2, 3], string similarity computation [4, 5], detecting palindromic/repetitive structures [4, 6], inferring hierarchal structure of natural language texts [7, 8], and analyses of biological sequences [9].



Grammar-based compression [10] is a kind of text compression scheme in which a context-free grammar (CFG) that generates only an input text w is output as a compressed form of w. Since the problem of computing the smallest CFG which generates w is NP-hard [11], many attempts have been made to develop practical algorithms that compute a small CFG which generates w. Examples of grammar-based compression algorithms are LZ78 [12], LZW [13], Sequitur [7], and Bisection [14]. Approximation algorithms for optimal grammar-based compression have also been proposed [15, 16, 17]. The first compression algorithm based on a subclass of context-sensitive grammars was introduced in [18].



Grammar-based compression based on greedy substitutions has been extensively studied. Wolff [19] introduced a concept of most-frequent-first substitution (MFFS) such that a digram (a factor of length 2) which occurs most frequently in the text is recursively replaced by a new non-terminal symbol. He also presented an [image: there is no content]-time algorithm for it, where n is the input text length. A linear-time algorithm for most-frequent-first substitution, called Re-pair, was later proposed by Larsson and Moffat [20]. Apostolico and Lonardi [21] proposed a concept of largest-area-first substitution such that a factor of the largest “area” is recursively replaced by a new non-terminal symbol. Here the area of a factor refers to the product of the length of the factor by the number of its non-overlapping occurrences in the input text. It was reported in [22] that compression by largest-area-first substitution outperforms gzip (based on LZ77 [23]) and bzip2 (based on the Burrows-Wheeler Transform [24]) on DNA sequences. However, to the best of our knowledge, no linear-time algorithm for this compression scheme is known.



This paper focuses on another greedy text compression scheme called longest-first substitution (LFS), in which a longest repeating factor of an input text is recursively replaced by a new non-terminal symbol. For example, for input text [image: there is no content], the following grammar


[image: there is no content]








which generates only w is the output of LFS.



In this paper, we propose the first linear-time algorithm for text compression by LFS substitution. A key idea is the use of a new data structure called sparse lazy suffix trees. Moreover, this paper deals with a more sophisticated version of longest-first text compression (named LFS2), where we also consider repeating factors of the right-hand of the existing production rules. For the same input text [image: there is no content] as above, we obtain the following grammar:


[image: there is no content]








This method allows better compression since the total grammar size becomes smaller. In this paper, we present the first linear-time algorithm for text compression based on LFS2. Preliminary versions of our paper appeared in [25] and [26].



Related Work


It is true that several algorithms for LFS or LFS2 were already proposed, however, in fact none of them runs in linear time in the worst case. Bentley and McIlroy [27] proposed an algorithm for LFS, but Nevill-Manning and Witten [8] pointed out that the algorithm does not run in linear time. Nevill-Manning and Witten also claimed that the algorithm can be improved so as to run in linear time, but they only noted a too short sketch for how, which is unlikely to give a shape to the idea of the whole algorithm. Lanctot et al. [28] proposed an algorithm for LFS2 and stated that it runs in linear time, but a careful analysis reveals that it actually takes [image: there is no content] time in the worst case for some input string of length n. See Appendix for our detailed analysis.





2. Preliminaries


2.1. Notations


Let Σ be a finite alphabet of symbols. We assume that Σ is fixed and [image: there is no content] is constant. An element of [image: there is no content] is called a string. Strings x, y, and z are said to be a prefix, factor, and suffix of string [image: there is no content], respectively.



The length of a string w is denoted by [image: there is no content]. The empty string is denoted by [image: there is no content], that is, |[image: there is no content]|=0. Also, we assume that all strings end with a unique symbol [image: there is no content] that does not occur anywhere else in the strings. Let Σ+=[image: there is no content]\{[image: there is no content]}. The i-th symbol of a string w is denoted by [image: there is no content] for [image: there is no content], and the factor of a string w that begins at position i and ends at position j is denoted by [image: there is no content] for [image: there is no content]. For convenience, let w[i:j]=[image: there is no content] for [image: there is no content], and [image: there is no content] for [image: there is no content]. For any strings [image: there is no content], let [image: there is no content] denote the set of the beginning positions of all the occurrences of x in w. That is, [image: there is no content].



We say that strings [image: there is no content]overlap in w if there exist integers [image: there is no content] such that [image: there is no content], [image: there is no content], and [image: there is no content] or [image: there is no content].



Let [image: there is no content] denote the possible maximum number of non-overlapping occurrences of x in w. If [image: there is no content], then x is said to be repeating in w. We abbreviate a longest repeating factor of w to an LRF of w. Remark that there can exist more than one LRF for w.



Let Σ and Π be the set of terminal and non-terminal symbols, respectively, such that [image: there is no content]. A context-free grammar [image: there is no content] is a formal grammar in which every production rule is of the form [image: there is no content], where [image: there is no content] and [image: there is no content]. Let [image: there is no content] and [image: there is no content] with [image: there is no content] and [image: there is no content]. If there exists a production rule [image: there is no content] in [image: there is no content], then [image: there is no content] is said to be directly derived from [image: there is no content] by [image: there is no content], and it is denoted by u⇒[image: there is no content]v. If there exists a sequence [image: there is no content] such that [image: there is no content] and


u=[image: there is no content]⇒[image: there is no content]w1⇒[image: there is no content]⋯⇒[image: there is no content]wn=v,








then we say that v is derived from u. The length of a non-terminal symbol A, denoted [image: there is no content], is the length of the string z∈[image: there is no content] that is derived from the production rule [image: there is no content]. For convenience, we assume that any non-terminal symbol A in [image: there is no content] has [image: there is no content] positions. The size of the production rule is the number of terminal and non-terminal symbols v contains.






2.2. Data Structures


Our text compression algorithm uses a data structure based on suffix trees [29]. The suffix tree of string w, denoted by [image: there is no content], is defined as follows:

Definition 1 (Suffix Trees) 

[image: there is no content]is a tree structure such that: (1) every edge is labeled by a non-empty factor of w, (2) every internal node has at least two child nodes, (3) all out-going edge labels of every node begin with mutually distinct symbols, and (4) every suffix of w is spelled out in a path starting from the root node.







Assuming any string w terminates with the unique symbol $ not appearing elsewhere in w, there is a one-to-one correspondence between a suffix of w and a leaf node of [image: there is no content]. It is easy to see that the numbers of the nodes and edges of [image: there is no content] are linear in [image: there is no content]. Moreover, by encoding every edge label x of [image: there is no content] with an ordered pair [image: there is no content] of integers such that [image: there is no content], each edge only needs constant space. Therefore, [image: there is no content] can be implemented with total of [image: there is no content] space. Also, it is well known that [image: there is no content] can be constructed in [image: there is no content] time (e.g. see [29]).



[image: there is no content] for string [image: there is no content] is shown in Figure 1. For any node v of [image: there is no content], [image: there is no content] denotes the string obtained by concatenating the labels of the edges in the path from the root node to node v. The length of node v, denoted [image: there is no content], is defined to be [image: there is no content]. It is an easy application of the Ukkonen algorithm [29] to compute the lengths of all nodes while constructing [image: there is no content]. The leaf node [image: there is no content] such that str([image: there is no content])=w[i:] is denoted by [image: there is no content], and i is said to be the id of the leaf. Every node v of [image: there is no content] except for the root node has a suffix link, denoted by [image: there is no content], such that [image: there is no content] where [image: there is no content] is a suffix of [image: there is no content] and [image: there is no content]. Linear-time suffix tree construction algorithms (e.g., [29]) make extensive use of the suffix links.


Figure 1. [image: there is no content] with [image: there is no content]. Solid arrows represent edges, and dotted arrows are suffix links.



[image: Algorithms 02 01429 g001]






A sparse suffix tree [30] of w∈[image: there is no content] is a kind of suffix tree which represents only a subset of the suffixes of w. The sparse suffix tree of [image: there is no content] represents the subset {w[i:]∣w[i]∈Σ} of suffixes of w which begin with a terminal symbol. Let [image: there is no content] be the length of the LRFs of w. A reference node of the sparse suffix tree of [image: there is no content] is any node v such that len(v)≥[image: there is no content]+1, and there is no node u such that [image: there is no content] is a proper prefix of [image: there is no content] and len(u)≥[image: there is no content]+1.



Our algorithm uses the following data structure.



Definition 2 (Sparse Lazy Suffix Trees) 

A sparse lazy suffix tree (SLSTree) of string [image: there is no content], denoted by [image: there is no content], is a kind of sparse suffix tree such that: (1) All paths from the root node to the reference nodes coincide with those of the sparse suffix tree of w, and (2) Every reference node v stores an ordered triple  [image: there is no content]such that [image: there is no content], [image: there is no content], and [image: there is no content].





[image: there is no content] is called “lazy” since its subtrees that are located below the reference nodes may not coincide with those of the corresponding sparse suffix tree of w. Our algorithms of Section 3. run in linear time by “neglecting” updating these subtrees below the reference nodes.



Proposition 1 

For any string w∈[image: there is no content], [image: there is no content]can be obtained from [image: there is no content]in [image: there is no content]time.





Proof. 

By a standard postorder traversal on [image: there is no content], propagating the id of each leaf node. □





Since [image: there is no content] can be constructed in [image: there is no content] time [29], we can build [image: there is no content] in total of [image: there is no content] time.





3. Off-Line Compression by Longest-First Substitution


Given a text string w∈[image: there is no content], we here consider a greedy approach to construct a context-free grammar which generates only w. The key is how to select a factor of w to be replaced by a non-terminal symbol from Π. Here, we consider the longest-first-substitution approach where we recursively replace as many LRFs as possible with non-terminal symbols.



Example. 

Let [image: there is no content]. At the beginning, the grammar is of the following simple form [image: there is no content], where the right-hand of the production rule consists only of terminal symbols from Σ. Now we focus on the right-hand of S which has two LRFs [image: there is no content] and [image: there is no content]. Let us here choose [image: there is no content] to be replaced by non-terminal [image: there is no content]. We obtain the following grammar: [image: there is no content]; A→[image: there is no content]. The other LRF [image: there is no content] of length 3 is no longer present in the right-hand of S. Thus we focus on an LRF [image: there is no content] of length 2. Replacing [image: there is no content] by non-terminal [image: there is no content] results in the following grammar: [image: there is no content]; A→[image: there is no content]; B→[image: there is no content]. Since the right-hand of S has no repeating factor longer than 1, we are done.





Let [image: there is no content], and let [image: there is no content] denote the string obtained by replacing an LRF of [image: there is no content] with a non-terminal symbol [image: there is no content]. LRF([image: there is no content]) denotes the LRF of [image: there is no content] that is replaced by [image: there is no content], namely, we create a new production rule [image: there is no content]→LRF([image: there is no content]). In the above example, [image: there is no content], LRF([image: there is no content])=[image: there is no content], [image: there is no content], w1=abaaA[image: there is no content]A$, LRF(w1)=[image: there is no content], [image: there is no content], and [image: there is no content].



Due to the property of the longest first approach, we have the following observation.



Observation 1 

Let [image: there is no content],…,[image: there is no content]∈Πbe the non-terminal symbols which replace [image: there is no content][image: there is no content]LRF([image: there is no content]), respectively. For any [image: there is no content], the right-hand of the production rule of [image: there is no content] contains none of [image: there is no content].





In what follows, we will show our algorithm which outputs a context-free grammar which generates a given string. Our algorithm heavily uses the SLSTree structure.



3.1. How to Find LRF([image: there is no content]) Using SLSTree([image: there is no content])


In this section, we show how to find an LRF of [image: there is no content] from SLSTree([image: there is no content]).



The next lemmas characterize an LRF of [image: there is no content] that is not represented by a node of SLSTree([image: there is no content]).



Lemma 1 

If an LRF x of [image: there is no content]is not represented by a node of SLSTree([image: there is no content]), then maxBP[image: there is no content](x)=minBP[image: there is no content](x)+[image: there is no content].





Proof. 

Let i=minBP[image: there is no content](x) and j=maxBP[image: there is no content](x). Since x is a repeating factor of [image: there is no content], |BP[image: there is no content](x)|≥2, which means that [image: there is no content]. If [image: there is no content][i+|x|]≠[image: there is no content][j+|x|], then it contradicts the precondition that x is not represented by a node of SLSTree([image: there is no content]). Hence we have [image: there is no content][i+|x|]=[image: there is no content][j+|x|]. Moreover, since x is an LRF of [image: there is no content], we have [image: there is no content]. However, if we assume [image: there is no content], this contradicts the precondition that x is an LRF of [image: there is no content], since [image: there is no content][i+|x|]=[image: there is no content][j+|x|] and we obtain a longer LRF [image: there is no content][i:i+|x|]=[image: there is no content][j:j+|x|]. Hence we have [image: there is no content]. □





The above lemma implies that an LRF x is not represented by a node of SLSTree([image: there is no content]) only if the first and the last occurrences of x form a square [image: there is no content] in [image: there is no content]. For example, see Figure 1 that illustrates [image: there is no content] for [image: there is no content]. One can see that [image: there is no content] is an LRF of [image: there is no content] but it is not represented by a node of [image: there is no content].



However, the following lemma guarantees that it is indeed sufficient to consider the strings represented by nodes of SLSTree([image: there is no content]) as candidates for LRF([image: there is no content]).



Lemma 2 

Let x be an LRF of [image: there is no content] that is not represented by a node of SLSTree([image: there is no content]). Then, there exists another LRF y of [image: there is no content] that is represented by a node of SLSTree([image: there is no content]) such that [image: there is no content]. Moreover, x is no longer present in [image: there is no content]after a substitution for y (see also Figure 2).

Figure 2. Illustration for proof of Lemma 2. Since u is represented by a node of SLSTree([image: there is no content]), we know that [image: there is no content][i+|u|]≠[image: there is no content][j+|u|].
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Proof. 

Let i=minBP[image: there is no content](x) and j=maxBP[image: there is no content](x). It follows from Lemma 1 that [image: there is no content]. Suppose that x is represented on an edge from some node s to some node t of [image: there is no content]. Let [image: there is no content]. Then we have BP[image: there is no content](x)=BP[image: there is no content](u). Let y be the suffix of u of length [image: there is no content]. It is clear that i+|u|-|y|,j+|u|-|y|∈BP[image: there is no content](y). Since [image: there is no content], #occ[image: there is no content](y)≥2. Thus y is an LRF of [image: there is no content]. Since u is represented by node t and i=minBP[image: there is no content](u) and j=maxBP[image: there is no content](u), we know that [image: there is no content][i+|u|]≠[image: there is no content][j+|u|]. Hence y is represented by a node of SLSTree([image: there is no content]). Since x occurs only within the region [image: there is no content][i:j+|u|-1], x does not occur in [image: there is no content] after a substitution for y. □





In the running example of Figure 1, [image: there is no content] is an LRF of [image: there is no content] that is represented by a node of [image: there is no content]. After its two occurrences are replaced by a non-terminal symbol [image: there is no content], then [image: there is no content], which is an LRF of [image: there is no content] not represented by a node of [image: there is no content], is no more present in w1=a[image: there is no content][image: there is no content]$.



After constructing SLSTree([image: there is no content])=SLSTree(w), we create a bin-sorted list of the internal nodes of [image: there is no content] in the decreasing order of their lengths. This can be done in linear time by a standard


traversal on [image: there is no content]. We remark that a new internal node v may appear in SLSTree([image: there is no content]) for some [image: there is no content], which did not exist in SLSTree([image: there is no content]). However, we have that len(v)≤|LRF([image: there is no content])|. Thus, we can maintain the bin-sorted list by inserting node v in constant time.



Given a node s in the bin-sorted list, we can determine whether [image: there is no content] is repeating or not by using SLSTree([image: there is no content]), as follows.



Lemma 3 

Let s be any node of SLSTree([image: there is no content])with len(s)≤|LRF([image: there is no content])|and let s1,…,s[image: there is no content]be the children of s. Then BP[image: there is no content](str(s))is a disjoint union of BP[image: there is no content](str(s1)),[image: there is no content]BP[image: there is no content](str(s[image: there is no content])).





Proof. 

Clear from the definition of SLSTree([image: there is no content]). □





Lemma 4 

For any node s of SLSTree([image: there is no content])such that |LRF([image: there is no content])|≤len(s)≤|LRF([image: there is no content])|, it takes amortized constant time to check whether or not [image: there is no content]is an LRF of [image: there is no content].





Proof. 

Let s1,…,s[image: there is no content] be the children of s. Then, [image: there is no content] is repeating if and only if


max{maxBP[image: there is no content]([image: there is no content])∣1≤i≤[image: there is no content]}-min{minBP[image: there is no content](sj)∣1≤j≤[image: there is no content]}≥len(s).








Remark that the values of minBP[image: there is no content]([image: there is no content]) and maxBP[image: there is no content]([image: there is no content]) are stored in node [image: there is no content] and can be referred to in constant time. Since the above inequality is checked at most once for each node s, it takes amortized constant time. □





Suppose we have found an LRF of [image: there is no content] as mentioned above. In the sequel, we show our greedy strategy to select occurrences of the LRF in [image: there is no content] to be replaced with a new non-terminal symbol.



The next lemma is essentially the same as Lemma 2 of Kida et al. [1].



Lemma 5 

For any non-repeating factor x of [image: there is no content], BP[image: there is no content](x)forms a single arithmetic progression.





Therefore, for any non-repeating factor x of [image: there is no content], BP[image: there is no content](x) can be expressed by an ordered triple consisting of minimum element minBP[image: there is no content](x), maximum element maxBP[image: there is no content](x), and cardinality |BP[image: there is no content](x)|, which takes constant space.



Lemma 6 

Let s be any node of SLSTree([image: there is no content])such that [image: there is no content]is an LRF of [image: there is no content], and [image: there is no content]be any child of s. Then, BP[image: there is no content](str([image: there is no content]))contains at most two positions corresponding to non-overlapping occurrences of [image: there is no content]in [image: there is no content].





Proof. 

Assume for contrary that BP[image: there is no content](str([image: there is no content])) contains three non-overlapping occurrences of [image: there is no content], and let them be [image: there is no content] in the increasing order. Then we have


[image: there is no content]








which implies that [image: there is no content][i1:i1+len(s)] and [image: there is no content][i3:i3+len(s)] are non-overlapping. Moreover, since len([image: there is no content])>len(s), we have [image: there is no content][i1:i1+len(s)]=[image: there is no content][i3:i3+len(s)]. However, this contradicts the precondition that [image: there is no content] is an LRF of [image: there is no content]. □





From Lemma 6, each child [image: there is no content] of node s such that [image: there is no content] is an LRF, corresponds to at most two non-overlapping occurrences of [image: there is no content]. Due to Lemma 3, we can greedily select occurrences of [image: there is no content] to be replaced by a new non-terminal symbol, by checking all children s1,…,s[image: there is no content] of node s. According to Lemma 5, it takes amortized constant time to select such occurrences for each node s.



Note that we have to select occurrences of [image: there is no content] so that no occurrences of [image: there is no content] remain in the text string, and at least two occurrences of [image: there is no content] are selected. We remark that we can greedily choose at least [image: there is no content] occurrences.




3.2. How to Update [image: there is no content] to [image: there is no content]


Let L be the set of the greedily selected occurrences of LRF([image: there is no content]) in [image: there is no content]. For any [image: there is no content], let [image: there is no content] denote the string obtained after replacing the first i occurrences of LRF([image: there is no content]) with non-terminal symbol [image: there is no content]. Namely, wk0=[image: there is no content] and wk|L|=[image: there is no content].



In this section we show how to update [image: there is no content] to SLSTree([image: there is no content]). Let p be the beginning position of the i-th occurrence in L. Assume that we have [image: there is no content], and that we have replaced [image: there is no content][p:p+|LRF([image: there is no content])|-1] with non-terminal symbol [image: there is no content] such that |[image: there is no content]|=|LRF([image: there is no content])|. We now have [image: there is no content], and we have to update [image: there is no content] to SLSTree([image: there is no content]).



A naive way to obtain SLSTree([image: there is no content]) is to remove all the suffixes of [image: there is no content] from [image: there is no content] and insert all the suffixes of [image: there is no content] into it. However, since only the nodes not longer than LRF([image: there is no content]) are important for our longest-first strategy, only the suffixes [image: there is no content][p-t:] such that 1≤t≤|LRF([image: there is no content])| and [image: there is no content][r]∈Σ for any [image: there is no content] have to be removed from [image: there is no content], and only the suffixes [image: there is no content][p-t:] have to be inserted into the tree (see the light-shaded suffixes of Figure 3).


Figure 3. LRF([image: there is no content]) at position p of [image: there is no content] is replaced by non-terminal symbol [image: there is no content] in [image: there is no content]. Every [image: there is no content][p-t:] is removed from the tree and every [image: there is no content][p-t:] is inserted into the tree (the light-shaded suffixes in the right figure). In addition, every [image: there is no content][p+h:] for 1≤h≤|LRF([image: there is no content])|-1 is removed from the tree (the dark-shaded suffixes in the right figure).
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Lemma 7 

For any t, let r be the shortest node of [image: there is no content]such that [image: there is no content][p-t:p-1]is a prefix of [image: there is no content]. Assume p-t=minBP[image: there is no content](str(r)).

	
If len(r)>|LRF([image: there is no content])|+t-1, then there exists an edge in SLSTree([image: there is no content])from the root node to [image: there is no content]labeled with [image: there is no content].



	
If len(r)≤|LRF([image: there is no content])|+t-1, then there exists a node s in SLSTree([image: there is no content])such that str(s)=[image: there is no content][p-t:p-1]and s has an edge labeled with [image: there is no content][p:]=[image: there is no content][image: there is no content][p+|[image: there is no content]|:]and leading to [image: there is no content].










Proof. 

Consider Case 1 (see also Figure 4). Since [image: there is no content], len(r)>|LRF([image: there is no content])|. Hence [image: there is no content] is a non-repeating factor of [image: there is no content]. By Lemma 5, BP[image: there is no content](str(r)) forms a single arithmetic progression. Also, since len(r)>|LRF([image: there is no content])|, maxBP[image: there is no content](str(r))-minBP[image: there is no content](str(r))≤|LRF([image: there is no content])|. Therefore, if




p-t=minBP[image: there is no content](str(r)), then BP[image: there is no content]([image: there is no content][p-t:])={p-t}. Hence there exists an edge from the root node to [image: there is no content] labeled with [image: there is no content][p-t:] in SLSTree([image: there is no content]).


Figure 4. Illustration of Case 1 of Lemma 7.
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Consider Case 2 (see also Figure 5). Let u=[image: there is no content][p-t:p-1]=[image: there is no content][p-t:p-1]. Then [image: there is no content]. Since len(r)≤|LRF([image: there is no content])|+t-1, and since r is not longer than the reference node in the path spelling out uLRF([image: there is no content]) from the root node of SLSTree([image: there is no content]), there exists at least one integer m such that m∈BP[image: there is no content](str(r)) and m∉BP[image: there is no content](u[image: there is no content]). Hence there exists a node s in SLSTree([image: there is no content]) such that [image: there is no content] and has an out-going edge labeled with [image: there is no content][p:]=[image: there is no content][image: there is no content][p+|[image: there is no content]|:] and leading to [image: there is no content].□


Figure 5. Illustration of Case 2 of Lemma 7.
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It is not difficult to see that the edge in each case of Lemma 7 does not exist in [image: there is no content]. Hence we create the edge when we update [image: there is no content] to SLSTree([image: there is no content]).



The next lemma states how to locate node s of Case 2 of Lemma 7.



Lemma 8 

For each t, we can locate node s such that str(s)=[image: there is no content][p-t:p-1]in amortized constant time.





Proof. 

Let [image: there is no content] be the longest node in the tree such that str([image: there is no content]) is a prefix of [image: there is no content].







Consider the largest possible t and denote it by [image: there is no content]. Since [image: there is no content]≤|LRF([image: there is no content])|, the node xp-[image: there is no content] can be found in O(|LRF([image: there is no content])|) time by going down the path that spells out [image: there is no content][p-[image: there is no content]:p-1] from the root node (recall that Σ is fixed). Let z∈[image: there is no content] be the string such that str(xp-[image: there is no content])z=[image: there is no content][p-[image: there is no content]:p-1]. If z≠[image: there is no content], then we create a new child node sp-[image: there is no content] of xp-[image: there is no content] such that str(sp-[image: there is no content])=[image: there is no content][p-[image: there is no content]:p-1]. Otherwise, we set sp-[image: there is no content]=xp-[image: there is no content].



Now assume that we have located nodes [image: there is no content] and [image: there is no content]. We can then locate [image: there is no content] as follows. Consider node [image: there is no content]. Remark that str(suf([image: there is no content])) is a prefix of str([image: there is no content]), and thus we can detect [image: there is no content] in O(|str([image: there is no content])|-|str(suf([image: there is no content]))|) time by using the suffix link. After finding [image: there is no content], we can locate or create [image: there is no content] in constant time.



The total time cost for detecting [image: there is no content] for all 1≤t≤[image: there is no content] is linear in


∑t=2[image: there is no content](|str([image: there is no content])|-|str(suf([image: there is no content]))|)=|str(xp-1)|-|str(suf(xp-2))|+|str(xp-2)|-|str(suf(xp-3))|⋯⋯+|str(xp-[image: there is no content]+1)|-|str(suf(xp-[image: there is no content]))|=|str(xp-1)|-|str(suf(xp-[image: there is no content]))|+[image: there is no content]-2=|str(xp-1)|-|str(xp-[image: there is no content])|+[image: there is no content]-1≤[image: there is no content]≤|LRF([image: there is no content])|.








Hence we can locate each [image: there is no content] in amortized constant time. □



Let v be the reference node in the path from the root to some [image: there is no content]. Assume that [image: there is no content] is removed from the subtree of v, and redirected to node s in the same path, such that str(s)=[image: there is no content][p-t:p-1]. In order to update [image: there is no content] to SLSTree([image: there is no content]), we have to maintain triple [image: there is no content] for node v. One may be concerned that if [image: there is no content] is neither [image: there is no content] or [image: there is no content] and [image: there is no content] in


[image: there is no content], the occurrences of [image: there is no content] in SLSTree([image: there is no content]) do not form a single arithmetic progression any more. However, we have the following lemma. For any factor y of [image: there is no content], let Dead[image: there is no content](y)=BP[image: there is no content](y)\BP[image: there is no content](y), namely, Dead[image: there is no content](y) denotes the occurrences of y in [image: there is no content] that overlap with the i-th greedily selected occurrence of LRF([image: there is no content]) in [image: there is no content].



Lemma 9 

Let v be any reference node of [image: there is no content]such that #occ[image: there is no content](str(v))=1. For any integer [image: there is no content], if m,n∈BP[image: there is no content](str(v)), then there is no integer r such that [image: there is no content]and r∈Dead[image: there is no content](str(v)). (See Figure 6).

Figure 6. Illustration of proof for Lemma 9.
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Proof. 

Assume for contrary that there exists integer r such that r∈Dead[image: there is no content](str(v)) and [image: there is no content]. Since r∈Dead[image: there is no content](str(v)), there exist integers [image: there is no content] such that [image: there is no content], and b-a+1=2|LRF([image: there is no content])|. For any integer j such that [image: there is no content] and j∈BP[image: there is no content](str(v)), we have j∈Dead[image: there is no content](str(v)). Since m,n∉Dead[image: there is no content](str(v)), [image: there is no content]. As [image: there is no content] is non-repeating, [image: there is no content]. Since [image: there is no content], [image: there is no content] is a factor of [image: there is no content]. Therefore, there exist two integers [image: there is no content] such that [image: there is no content]. Since [image: there is no content], [image: there is no content] is repeating and |w[a:b]|=b-a+1=2|LRF([image: there is no content])|>|LRF([image: there is no content])|. It contradicts that LRF([image: there is no content]) is an LRF of [image: there is no content]. □





Recall that p is the beginning position of the i-th largest greedily selected occurrence of LRF([image: there is no content]) in [image: there is no content]. Also, for any 1≤t≤|LRF([image: there is no content])| such that [image: there is no content][r]∈Σ for every [image: there is no content], we have removed [image: there is no content] from the subtree rooted at the reference node v and have reconnected it to node s such that str(s)=[image: there is no content][p-t:p-1]. According to the above lemma, if [image: there is no content], [image: there is no content] for every [image: there is no content] is removed from the subtree of v. After processing [image: there is no content], then [image: there is no content] is updated to [image: there is no content] where [image: there is no content] is the step of the progression, and [image: there is no content] is updated to [image: there is no content].



Notice that [image: there is no content] for every 0≤h≤|LRF([image: there is no content])|-1 has to be removed from the tree, since [image: there is no content][p+h]∉Σ and therefore this leaf node should not exist in SLSTree([image: there is no content]) (see the dark-shaded suffixes of Figure 3). Removing each leaf can be done in constant time. Maintaining the information about the triple for the arithmetic progression of the reference nodes can be done in the same way as mentioned above.



The following lemma states how to locate each reference node.



Lemma 10 

Let p be the i-th greedily selected occurrence of LRF([image: there is no content])in [image: there is no content]. For any integer [image: there is no content]such that [image: there is no content][[image: there is no content]]∈Σ, let v([image: there is no content])denote the reference node of [image: there is no content]in the path from the root spelling out suffix [image: there is no content][[image: there is no content]:]. For each j such that p-|LRF([image: there is no content])|≤j≤p+|LRF([image: there is no content])|-1, we can locate the reference node [image: there is no content]in amortized constant time.







Proof. 

Let [image: there is no content]=|LRF([image: there is no content])|. We find v(p-[image: there is no content]) by spelling out [image: there is no content][p-[image: there is no content]:] from the root in O([image: there is no content]) time, since there can be at most [image: there is no content]+1 nodes in the path from the root to v(p-[image: there is no content]).





Suppose we have found [image: there is no content]. We find [image: there is no content] as follows. Let [image: there is no content] be the parent node of [image: there is no content]. We have len(u(j-1))≤[image: there is no content] and len(v(j-1))≤[image: there is no content]+1. We go to [image: there is no content]. Since [image: there is no content], we have len(suf(u(j-1)))≤[image: there is no content]+1. Thus, we can find [image: there is no content] by going down the path starting from [image: there is no content] and spelling out [image: there is no content][j-1+len(u(j-1)):j-1+len(v(j-1))]=[image: there is no content][j+len(suf(u(j-1))):j-1+len(v(j-1))]. (See also the left illustration of Figure 7).


Figure 7. The left figure illustrates how to find [image: there is no content] from [image: there is no content]. The right one illustrates a special case where v(j)=[image: there is no content]. Once v(j)=[image: there is no content], it stands that [image: there is no content] for any [image: there is no content].
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A special case happens when there exists a node s in the path from the root to [image: there is no content], such that len(s)=[image: there is no content] and the edge from s in the path starts with some non-terminal symbol [image: there is no content] with [image: there is no content]. Namely, [image: there is no content][j+[image: there is no content]]=[image: there is no content]. Due to the property of the longest first approach, we have |[image: there is no content]|≥[image: there is no content]. Thus vj=[image: there is no content]. Moreover, for any [image: there is no content], [image: there is no content]. (See also the right illustration of Figure 7). It is thus clear that each [image: there is no content] can be found in constant time. Since |[image: there is no content]|≥[image: there is no content]=LRF([image: there is no content]), the leaves corresponding to [image: there is no content][p+x-1:] with 1≤x≤[image: there is no content] do not exist in [image: there is no content]. □



From the above discussions, we conclude that:



Theorem 1 

For any string w∈[image: there is no content], the proposed algorithm for text compression by longest first substitution runs in [image: there is no content]time using [image: there is no content]space.





Pseudo-codes of our algorithms are shown in Algorithms 1, 2, and 3.




3.3. Reducing Grammar Size


In the above sections we considered text compression by longest first substitution, where we construct a context free grammar [image: there is no content] that generates only a given string w. By Observation 1, for any production rule [image: there is no content]→[image: there is no content] of [image: there is no content], [image: there is no content] contains only terminal symbols from Σ. In this section, we take the factors of [image: there is no content] into consideration for candidates of LRFs, and also replace LRFs appearing in [image: there is no content]. This way we can reduce



	Algorithms 1: Recursively find longest repeating factors.
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	Algorithm 2: updateSLSTree
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	Algorithm 3: getGreedilySelectedOccurrences
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the total size of the grammar. In so doing, we consider an LRF of string [image: there is no content]=[image: there is no content]$0x1$1⋯[image: there is no content]$k, where z0=[image: there is no content]=w and each [image: there is no content] appears nowhere else in [image: there is no content].



Example. 

Let w=[image: there is no content]=z0=abaaabbababb$0. We replace an LRF [image: there is no content] with A, and obtain the following grammar: S→abaaA[image: there is no content]A$0; A→[image: there is no content]. Then, w1=abaaA[image: there is no content]A$0 and LRF(z0)=[image: there is no content]. Now, [image: there is no content]=abaaA[image: there is no content]A$0[image: there is no content]$1. We replace an LRF [image: there is no content] of [image: there is no content] with a non-terminal B, getting [image: there is no content]; [image: there is no content]; B→[image: there is no content]. Then, [image: there is no content] and LRF([image: there is no content])=[image: there is no content]. Now, [image: there is no content]=BaaABA$0Bb$1[image: there is no content]$2. Since there is no LRF of length more than 1 in [image: there is no content], we are done.





We call this method of text compression LFS2.



Theorem 2 

Given a string w, the LFS2 strategy compresses w in linear time and space.





Proof. 

We modify the algorithm proposed in the previous sections. If we have a generalized SLSTree for set {[image: there is no content], x1$1,…,[image: there is no content]$k} of strings, we can find an LRF of [image: there is no content]=[image: there is no content]x1$1⋯[image: there is no content]$k. It follows from the property of the longest first substitution strategy that [image: there is no content] for any [image: there is no content]. Therefore, any new node inserted into the generalized SLSTree for {[image: there is no content], [image: there is no content] is shorter than the reference nodes of the tree. Thus, using the Ukkonen on-line algorithm [29], we can obtain the generalized SLSTree of {[image: there is no content], x1$1,…,[image: there is no content]$k}, by inserting the suffixes of each [image: there is no content]$k into the generalized SLSTree of {[image: there is no content], [image: there is no content] in O(|[image: there is no content]$k|) time. It is easy to see that the total length of x1$1,…,[image: there is no content]$k,… is [image: there is no content]. □






4. Conclusions and Future Work


This paper introduced a linear-time algorithm to compress a given text by longest-first substitution (LFS). We employed a new data structure called sparse lazy suffix trees in the core of the algorithm.



We also gave a linear-time algorithm for LFS2 that achieves better compression than LFS.



A related open problem is the following: Does there exist a linear time algorithm for text compression by largest-area-first substitution (LAFS)? The algorithm presented in [21] uses minimal augmented suffix trees (MASTrees) [31] which enable us to efficiently find a factor of the largest area. The size of MASTrees is known to be linear in the input size [32], but the state-of-the-art algorithm of [32] to construct MASTrees takes [image: there is no content] time, where n is the input text length. Also, the algorithm of [21] for LAFS reconstructs the MASTree from scratch, every time a factor of the largest area is replaced by a new non-terminal symbol. Would it be possible to update a MASTree or its relaxed version for following substitutions?
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Appendix


In this appendix we show that the algorithm of Lanctot et al. [28] for LFS2 takes [image: there is no content] time, where n is the length of the input string.



Consider string


w=[image: there is no content]=z0=aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.








The Lanctot algorithm constructs a suffix tree of w, constructs a bin-sorted list of internal nodes of the tree, and updates the tree in a similar way to our algorithm in Section 3.3. However, a critical difference is that any node v of their tree structure does not store an ordered triple [image: there is no content] such that [image: there is no content], [image: there is no content], and [image: there is no content].



See Figure 8 which illustrates the suffix tree of w.


Figure 8. [image: there is no content] with [image: there is no content].
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A bin-sorted list of internal nodes of [image: there is no content] in decreasing order of their length is as follows:


[image: there is no content]











In [28], Lanctot et al. do not mention how they find occurrences of each node in the sorted list. Since they do not have an ordered triple [image: there is no content] for each node v, the best possible way is to traverse the subtree of v checking the leaves in the subtree. Now, for the first LRF-candidate [image: there is no content], we get positions 4 and 13 and find out that LRF(w)=LRF(z0)=[image: there is no content]. Then we obtain


[image: there is no content]








where A is a new non-terminal symbol that replaces LRF(z0)=[image: there is no content].





Now see Figure 9 which illustrates a generalized sparse suffix tree for


[image: there is no content]=aaaAAcaaaaaaaa$[image: there is no content]#.








To find LRF([image: there is no content]), we check the nodes in the list as follows.


Figure 9. Generalized sparse suffix tree of [image: there is no content]=aaaAAcaaaaaaaa$[image: there is no content]#.
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Length 8. The generalized suffix tree has no node representing [image: there is no content], and hence it is not an LRF.



	
Length 7. Since node [image: there is no content] exists in the generalized suffix tree, we traverse its subtree and find 2 occurrences 23 and 24 in [image: there is no content]. However, it is not an LRF of [image: there is no content]. The other candidate [image: there is no content] does not have a corresponding node in the tree, so it is not an LRF, either.



	
Length 6. Node [image: there is no content] exists in the generalized suffix tree and we find 3 occurrences 23, 24 and 25 in [image: there is no content] by traversing the tree, but it is not an LRF. The tree has no node corresponding to [image: there is no content], hence it is not an LRF.



	
Length 5. Node [image: there is no content] exists in the generalized suffix tree and we find 4 occurrences 23, 24, 25 and 26 in [image: there is no content] by traversing the tree, but it is not an LRF. There is no node in the tree corresponding to [image: there is no content].








	
Length 4. Node [image: there is no content] exists in the generalized suffix tree and we find 5 occurrences 23, 24, 25, 26 and 27. Now 23 and 27 are non-overlapping occurrences of [image: there is no content], and hence it is an LRF of [image: there is no content].






Focus on the above operations where we examined factors of lengths from 7 to 5. The total time cost to find the occurrences for the LRF-candidates of these lengths is proportional to 2 + 3 + 4, but none of them is an LRF of [image: there is no content] in the end.



In general, for any input string of the form


[image: there is no content]








the time cost of the Lanctot algorithm for finding LRF([image: there is no content]) is proportional to


[image: there is no content]








Since [image: there is no content], the Lanctot algorithm takes [image: there is no content] time.



In his PhD thesis [33], Lanctot modified the algorithm so that all the occurrences of each candidate factor in w are stored in each element of the bin-sorted list (Section 3.1.3, page 55, line 1). However, this clearly requires [image: there is no content] space. Note that using a suffix array cannot immediately solve this, since the lexicographical ordering of the suffixes can change due to substitution of LRFs, and no efficient methods to edit suffix arrays for such a case are known.



On the contrary, as shown in Section 3, each node v of our data structure stores an ordered triple [image: there is no content], and our algorithm properly maintains this information when the tree is updated. Using this triple, we can check in amortized constant time whether or not each node in the bin-sorted list is an LRF. Hence the total time cost remains [image: there is no content].





© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







media/file4.png
PHILRF(wr)|-1
) |






media/file18.png





media/file13.png
ILRF(wy)|

LREGw) [leafpr = v(p-1) |

leafi-1 Teat,

feaf = ()






media/file9.png
wilp-tp-1] /

’
’
I

@
/‘/ Awi[p+|A4:]





media/file10.png
str(v)

wla:b]

s

m|str(v)|-1
str(;

v)\‘i

wla" b']

8 —

[ |
.

ntstr(v)|-1





media/file5.png
i-1
Wi

P

p+|LRF(wi)|-1

LRE(w

)|

P

p+|LRF(wi)|-1

Ak






media/file15.png
= ocepos  pos:

ol ablosnibrmrie
. e s o) 0108 s T oy
o || irpos > occpos thenw: manDead(pos).

o < roTrm o Desconcosh

W return






media/file19.png





media/file14.png
Input: String W ending with 4 unique symbol

facions

whie rue do
‘while (n - bins geiNextOfLengin(en) - nulldo
irien < 2 then retur s,
foreach x ¢ bins(en) do updte xmin, xmax, xcard from chidren:
len-
update i, max, ncard from chidrn
itnmax - mmin > npattien /+ n %o repeating
nonTerm = new non-erminal sybol;
w || rles = rles . (nonorm — npath J:
o | | sz gwdssmcucommysans
|| updateSLSTroe(w. npathien nonTerm. gso, SLSTree bine):

. factor </ then





media/file6.png
e /T
wlp-rp-1]
( J

|LRF(wi)|+2-1

willp-t]





nav.xhtml


  algorithms-02-01429


  
    		
      algorithms-02-01429
    


  




  





media/file11.png
str(v)

T

|
m+|str(v)|-1
L str(v) T
| wla" b'] ,
n a'

b' n+|str(v)|-1





media/file1.png





media/file16.png
Input: LRFnode
Output:Set ofgrcdilysletedoscurenes of LRFnodpath
g0

| Wowsascrin ven

| o it ncrne o LRFodaath i - ndofDeadva e
. 054 s s satin1) e
Rt

1| oot LRerodasann 160

o | ||| mankendomeadareatpos. cc + LRFnodepaten1):

|| oeei- oco+ LREnodepathien:

w || ifnotDeadiose) s notoea

oce LRFrode patien 1) then gso -~ gs0. (occ:





media/file2.png
Wk






media/file20.png





media/file7.png





media/file12.png





media/file3.png
Wk






media/file0.png





media/file17.png





media/file8.png
Awip+|Ai:]





