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Abstract: This brief note presents an algorithm to solve ordinary stochastic differential
equations (SDEs). The algorithm is based on the joint solution of a system of two partial
differential equations and provides strong solutions for finite-dimensional systems of SDEs
driven by standard Wiener processes and with adapted initial data. Several examples
illustrate its use.
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1. Introduction

In general, it is hard to find explicit expression for closed-form solutions for stochastic differential
equations (SDEs), see [1–5,8–12,16] to name just a few monographs. In none of the aforementioned
monographs one can find a general algorithm to find such solutions. Nowadays, sophisticated computer
packages provide powerful tools to seek for solutions, e.g., MAPLE, MATHEMATICA, MATLAB, etc.
Our aim is to provide a general algorithm to find explicit expression for the strong solution of initial
value problems related to systems of finite-dimensional ordinary SDEs

dX(t) = f(t,X(t))dt+
m∑
j=1

gj(t,X(t))dWj(t), (1)

X(0) = X0 ∈ Rd, t ≥ 0,

driven by independent Wiener processes Wj on the filtered probability space (Ω,F , (Ft)t≥0,P) which
is completed with respect to all P-null sets. The drift f : [0, T ] × Rd → Rd and diffusion coefficients
gj : [0, T ] × Rd → Rd are supposed to be Borel-measurable functions such that the strong solution of
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the IVP (1) exists (a.s.). The initial value X0 in (1) is completely independent of the increments of all
Wiener processes Wj for t ≥ 0.

The algorithm is applicable to both Itô- and Stratonovich-interpreted SDEs (1). It is mainly based on
the fundamental theorem of stochastic calculus which originates from Itô’s works [6,7]. The algorithm
can be extended to SDEs integrated in the sense of α-calculus, see [13,14]. For the readers, the readership
is supposed to be familiar with the basic concepts of stochastic calculus and real analysis (e.g., for an
excellent survey, see [15]).

The paper is organized in 3 sections as follows. After this short introduction, Section 2 presents the
algorithm. In Section 3 we discuss its application to solve numerous examples where the solution is and
is not known from the literature. An appendix states the fundamental theorem of stochastic calculus,
also known as Itô formula, and a theorem on the existence of unique strong solutions of linear SDEs.

2. The Linear PDE-Based Algorithm

Suppose the SDE with sufficiently smooth coefficients f , gj is solvable (in the strong sense). Define
the partial differential operators Lj by

L0 =
∂

∂t
+

d∑
i=1

fi(t, x)
∂

∂xi
+

1

2

m∑
j=1

d∑
i,k=1

gji (t, x)gjk(t, x)
∂2

∂xi∂xk
(2)

Lj =
d∑

k=1

gjk(t, x)
∂

∂xk
(3)

where j = 1, 2, ...,m, 0 ≤ t ≤ T and x ∈ Rd. In passing, note that L0 is called the infinitesimal
generator of SDE (1) and occurs in several fundamental theorems of stochastic analysis (cf. Itô formula
in appendix).

2.1. The algorithm for Itô SDEs

[1] Find the general solution F = F (t, x) of the PDE-problem

L0F = a0 + a1F (4)

with appropriate constants a0, a1 ∈ R.

[2] Find the general solution F = F (t, x) of the PDE-problems

LjF = bj0 + bj1F (5)

with appropriate constants bj0, b
j
1 ∈ R.

[3] Consider all common solutions F = F (t, x) of steps [1] and [2]. Check whether there
are invertible solutions F with respect to x. If there are no common, invertible solutions then
the algorithm stops and one knows that there are no invertible transformations F to linear SDEs
(6) which form common solutions of linear PDE-problems (4) and (5), otherwise one continues
with step [4].
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[4] Solve the linear SDE (or look up its solution in literature)

dU(t) = [a0 + a1U(t)]dt+
m∑
j=1

[bj0 + bj1U(t)]dWj(t) (6)

with U(0) = F (0, X0) and coefficients ai and bji from steps [1] and [2].

[5] Let F−1 be the inverse of invertible common solution with respect to x from step [3]. Define the
final solution of the algorithm by

X(t) := F−1(t, U(t)) (7)

for 0 ≤ t ≤ T .
Note that the linear system (6) has always a strong solution (as stated by Theorem 2 in Section 3.3).

The easiest choices are when all bj0 = 0 or all bj1 = 0. One is also tempted to seek for solutions with
a0 = bj0 = 0 or a1 = bj1 = 0. These are the cases of pure homogeneous or non-state-dependent equations
for U , respectively. However, there is no guarantee that one of this special choices works in a closed
form (series solutions can be observed). If the algorithm stops with no found solution then one might
also try to find common solutions to nonlinear PDE-problems — which is a much harder task to solve
(however, not impossible in certain special cases).

2.2. The algorithm for Stratonovich SDEs

The linear PDE-based algorithm for Stratonovich based SDEs (1) is very similar to that of Itô SDEs.
One only has to exchange the generator L0 by the 1st order partial differential operator

L̄0 =
∂

∂t
+

d∑
i=1

fi(t, x)
∂

∂xi
(8)

in step [1].

3. Examples

With a series of fairly simple examples, we shall demonstrate the systematic applicability of
our algorithm.

3.1. Linear equations: geometric Brownian motion

Most commonly cited example in mathematical finance is that of geometric Brownian motion
satisfying the Itô equation

dX(t) = aX(t)dt+ σX(t)dW (t) (9)

with σ 6= 0. Let us go through the steps [1]− [5] of the algorithm. The simplest choice is to transform to
the Wiener process dX(t) = dW (t) itself. For this purpose, in step [1] we solve

L0F (t, x) =

(
∂

∂t
+ ax

∂

∂x
+

1

2
σ2x2

∂2

∂x2

)
F (t, x) = 0
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One finds that its solution is given by

F (t, x) =
1

σ

(
ln[

x

F0

]− (a− σ2

2
)t

)
with real constant F0 6= 0, since

L0F (t, x) =
1

σ

(
−a+

σ2

2
+ ax

1

x
+

1

2
σ2x2(− 1

x2
)

)
= 0

In step [2], one needs to solve

L1F (t, x) = σx
∂

∂x
F (t, x) = 1

One easily checks that F (t, x) defined as above represents a common solution of steps [1] and [2].
Moreover, F (t, x) is invertible with respect to x and its inverse is

F−1(t, x) = exp

(
(a− σ2

2
)t+ σx

)
F0

where F0 is any real constant. Thus, we can successfully proceed through step [3]. Step [4] brings up the
trivial solution X(t) = W (t) of the transformed equation dX(t) = dW (t). Finally, the final answer is
provided by step [5] and is given by

X(t) = F−1(t,W (t)) = exp

(
(a− σ2

2
)t+ σW (t)

)
X(0)

with the choice F0 = X(0) to match the initial data correctly.

3.2. Bernoulli-type and logistic equations

Consider stochastic Bernoulli equations

dX(t) = rX(t)(K − [X(t)]n−1)dt+ σX(t)dW (t) (10)

which are interpreted in Itô sense. The most popular representative of these equations is the case with
n = 2, also called the logistic growth model with growth rate r > 0 and environmental capacity K >

0. These equations have numerous applications in mathematical biology (e.g., to model the growth of
populations). For simplicity, we suppose that X(0) > 0 (i.e., we seek only for physically meaningful
solutions and additionally avoid technical difficulties of mathematical stopping procedures). To carry
out the procedure of the algorithm, we begin with step [1] solving

L0F (x) =

(
rx(K − xn−1) ∂

∂x
+

1

2
σ2x2

∂2

∂x2

)
F (x) = a0 + a1F (x)

Suppose that n 6= 1. By choosing the parameters

a0 = −r(1− n), a1 = (1− n)(rK − nσ
2

2
)
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one recognizes that the (deterministically known) Leibniz transform

F (x) = x1−n

represents a solution of step [1]. Step [2] asks for the calculation of L1F = σx ∂
∂x
F . The Leibniz

transform gives
L1F (x) = σ(1− n)x1−n = σ(1− n)F (x)

hence we may choose the constants b10 = 0 and b11 = σ(1 − n). Clearly, F (x) = x1−n is a common
invertible solution of both step [1] and [2]. Thus, step [3] provides the solution F (x) = x1−n with
its inverse

F−1(x) = 1−n
√
x

Step [4] takes into consideration the linear Itô equation

dU(t) = (1− n)[−r + (rK − nσ
2

2
)U(t)]dt+ (1− n)σU(t)dW (t)

which can be solved by Theorem 2 from the appendix. Its solution is

U(t) = ϕ(t)

(
[X(0)]1−n − r(1− n)

∫ t

0

ϕ−1(s)ds

)
where

ϕ(t) = exp

(
(1− n)(rK − σ2

2
)t+ σ(1− n)W (t)

)
with t ≥ 0. Finally, step [5] leads to the solution of (10)

X(t) = F−1(U(t)) = exp

(
(rK − σ2

2
)t+ σW (t)

)(
[X(0)]1−n + r(n− 1)

∫ t

0

ϕ−1(s)ds

)1/(1−n)

3.3. A nonlinear example (pure Stratonovich diffusions)

Pure Stratonovich diffusions are governed by Stratonovich SDEs

dX(t) = σ(X(t)) ◦ dW (t) (11)

with differentiable coefficients σ(x) ≥ 0. For our analysis, we suggest to transfer this equation to its
equivalent Itô SDE (see [2])

dX(t) =
1

2
σ(X(t))σ′(X(t))dt+ σ(X(t))dW (t) (12)

Now, we apply our algorithm. For this purpose, it is interesting to observe that the transform

F (x) =

∫ x dz

σ(z)
(13)

has vanishing operator image for L0. By chain rule, we find that

L0F (x) =
1

2
σ(x)σ′(x)

dF (x)

dx
+

1

2
[σ(x)]2

d2F (x)

dx2
=

1

2
σ′(x)− 1

2
σ′(x) = 0
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Moreover, one encounters

L1F (x) = σ(x)
dF (x)

dx
= σ(x)

1

σ(x)
= 1

Therefore, steps [1], [2] and [3] with constants a0 = a1 = b11 = 0 and b10 = 1 can be successfully
conducted, and its common solution is of the form (13) with existing inverse F−1 (invertible since
σ ≥ 0). The trivial solution of step [4] is U(t) = W (t) with U(0) = F (X(0)). Eventually, step
[5] yields the solution

X(t) = F−1(U(t))

As a fairly simple sub-example, one can treat

dX(t) =
m2

4
dt+m

√
X(t)dW (t) = m

√
X(t) ◦ dW (t)

with X(0) ≥ 0, which is also known as Bessel-type diffusion with dimension parameter m > 0. Here,

F (x) =
1

m

∫ x dz√
z

=
2

m

√
x

Hence, its inverse is F−1(x) =
(

m
2
x
)2

. Therefore, the algorithm gives the positive solution

X(t) =
(m

2
W (t) +

√
X(0)

)2
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Appendix: Itô Formula, Linear Solutions of SDEs and a Remark on Nonlinear Versions

The above-mentioned algorithm is based on the fundamental theorem of stochastic calculus, also
known as Itô Lemma or Itô Formula. Its proof can be found in e.g. [2,8] and many other basic texts, and
it traces back to its original [7].

Theorem 1. Assume that F ∈ C1,2([0, T ]× Rd) and X satisfies the Itô SDE (1). Then Y = F (t,X(t))

satisfies (a.s.) the Itô SDE

dY = L0F (t,X(t))dt+
m∑
j=1

LjF (t,X(t))dWj(t) (14)

on 0 ≤ t ≤ T , where the differential operators L0 and Lj are defined as in (2) and (3), respectively.

As seen in previous sections, the presented algorithm is based on transformations to linear systems of
SDEs. The solutions of linear equations of SDEs

dX(t) = (a0 + a1X(t))dt+
m∑
j=1

(bj0 + bj1X(t))dWj(t) (15)

are well-known (see [2]).

Theorem 2. The unique strong solution X ∈ Rd satisfying the linear Itô SDE (15) with real constants
a0, a1, b

j
0 and bj1 ∈ R1 is given by

X(t) = ϕ(t)

(
X(0) + (a0 −

m∑
j=1

bj0b
j
1)

∫ t

0

ϕ−1(s)ds+
m∑
j=1

bj0

∫ t

0

ϕ−1(s)dWj(s)

)
(16)

with fundamental solution

ϕ(t) = exp

(
[a1 −

1

2

m∑
j=1

(bj1)
2]t+

m∑
j=1

bj1Wj(t)

)
, t ≥ 0
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Remark 1. An extension of the algorithm to a nonlinear-PDE-based version is conceivable and subject
to future research. For example, Equation (4) in step [1] and (5) in step [2] can be substituted by
nonlinear systems of PDEs

L0F = G0(t, x, F ), LjF = Gj(t, x, F ) (17)

with appropriate nonlinear functions G0 and Gj , respectively. However, to find explicit expressions for
common solutions F of m + 1-dimensional systems of nonlinear PDEs such as (17) (i.e. G0 or Gj

nonlinear in F , j = 1, 2, ...,m) seems to be an extremely difficult field of research.

c© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
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