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Abstract:



The algorithm of Lenstra, Lenstra, and Lovász (LLL) transforms a given integer lattice basis into a reduced basis. Storjohann improved the worst case complexity of LLL algorithms by a factor of [image: there is no content] using modular arithmetic. Koy and Schnorr developed a segment-LLL basis reduction algorithm that generates lattice basis satisfying a weaker condition than the LLL reduced basis with [image: there is no content] improvement than the LLL algorithm. In this paper we combine Storjohann’s modular arithmetic approach with the segment-LLL approach to further improve the worst case complexity of the segment-LLL algorithms by a factor of [image: there is no content].
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1. Introduction


Given row vectors [image: there is no content] an integer lattice L (for short lattice) is defined as


[image: there is no content]








Several important theoretical and practical problems benefit from studying lattices. These include problems in geometry [1], cryptography [2], and integer programming [3]. An important problem, whose study dates back to 18th century, is the problem of finding i-th successive minimum of a lattice, [image: there is no content]. This problem involves finding the smallest number [image: there is no content] (and possibly an associated lattice element) such that there are i linearly independent elements in L of length at most [image: there is no content] [1, Chapter 8]. The shortest lattice vector problem is a special case of finding the shortest lattice vector only. This is a difficult problem to solve. For example, it is shown by Ajtai [4] that the problem of finding the shortest non-zero lattice vector under [image: there is no content] norm is NP-hard under randomized reduction [4]. Micciancio [5] showed that an α-approximate version of this problem (under randomized reduction) remains NP-hard for any [image: there is no content]. The problem of finding the shortest lattice vector under [image: there is no content] norm is shown in the class NP-complete by van Emde Boas [6].



Knowing that finding the exact shortest lattice basis is difficult in the worst case, the problem of finding approximate successive minima is addressed by many researchers. In this context various notions of reduced bases have been proposed. In particular, notions of LLL-reduced, semi-reduced, Korkine-Zolotarev reduced, Block 2k reduced, semi block 2k reduced, and segment reduced bases are used by Lenstra, Lenstra, and Lovász [7], Schönhage [8], Kannan [9], Schnorr [10], and Koy and Schnorr [11], respectively. We define these and additional concepts below.



1.1. Definitions of Reduced Lattice Bases


Without loss of generality we assume that [image: there is no content] are linearly independent. Superscript t is used to denote the transpose of a vector or a matrix. The [image: there is no content] norm is given by [image: there is no content]. [image: there is no content] denotes the nearest integer to a real number x (if non-unique then choose the candidate with smallest magnitude), [image: there is no content] denotes the smallest integer greater than or equal to x, and [image: there is no content] denotes the largest integer less than or equal to x. [image: there is no content] is the entry at the i-th row and j-th column of a matrix T. We use I to represent an identity matrix, and [image: there is no content] to represent its i-th column.



Let [image: there is no content] be such that the i-th row of B is given by [image: there is no content] for [image: there is no content]. For a given lattice basis [image: there is no content] the Gram-Schmidt algorithm determines the associated orthogonal vectors [image: there is no content] together with coefficients [image: there is no content] defined inductively by


[image: there is no content]=[image: there is no content]−∑j=1i−1[image: there is no content]bj*,where[image: there is no content]=bj*bit/∥bj*∥2



(1.1)







This can be rewritten as [image: there is no content], where [image: there is no content] denotes the matrix whose i-th row is [image: there is no content], and Γ is a upper triangular matrix with [image: there is no content] and [image: there is no content] ([image: there is no content]) is given in (1.1). Let Di,…,j:=∥[image: there is no content]∥2⋯∥bj*∥2. We denote [image: there is no content] by [image: there is no content]. Note that [image: there is no content] is the Gramian determinant of B. When we are considering k segments of B and [image: there is no content], [image: there is no content] is the segment Gramian determinant, and for simplicity we denote it by [image: there is no content], where k is fixed.

	D1. 

	
A basis is called size-reduced if |[image: there is no content]|≤1/2for1≤j<i≤n. The notion of a size reduced basis goes back to Hermite [12].




	D2. 

	
A basis is called (δ,η)-reduced if (δ−Γi,i+12)∥[image: there is no content]∥2≤∥bi+1*∥2 for [image: there is no content], [image: there is no content], |[image: there is no content]|≤η, [image: there is no content]. For [image: there is no content] and |[image: there is no content]|≤1/2 it is called 2-reduced because the above inequality becomes ∥[image: there is no content]∥2≤2∥bi+1*∥2. A basis is called δ-LLL reduced if it is size-reduced and δ-reduced. It is simply called LLL reduced if it is size-reduced and 2-reduced. The LLL reduced basis was introduced by Lenstra, Lenstra, and Lovász [7].




	D3. 

	
A basis is called semi-reduced if it is size-reduced and satisfies weaker conditions ∥[image: there is no content]∥2≤2n∥bi+1*∥2 for [image: there is no content].




	D4. 

	
A basis is called Korkine-Zolotarev basis if it is size-reduced and if ∥[image: there is no content]∥=λ1([image: there is no content]) for [image: there is no content] where [image: there is no content] is the orthogonal projection of L on the orthogonal complement of [image: there is no content].









The concepts of block reduced and segment reduced basis are defined by dividing a basis into k blocks or segments, i.e., [image: there is no content], and then specifying appropriate conditions on basis vectors within each block and among blocks.

	D5. 

	
A basis [image: there is no content] is called Block KZ reduced basis if it is size-reduced and if the projections of all [image: there is no content]-blocks [image: there is no content] on the orthogonal complement of [image: there is no content] for [image: there is no content] are Korkine-Zolotarev reduced.




	D6. 

	
A basis [image: there is no content] is called k-segment LLL reduced if the following conditions hold.

	C1.

	
It is size-reduced.




	C2.

	
(δ−Γi,i+12)∥[image: there is no content]∥2≤∥bi+1*∥2 for [image: there is no content], [image: there is no content], i.e., vectors within each segment of the basis are δ-reduced, and




	C3.

	
Letting [image: there is no content], two successive segments of the basis are connected by the following two conditions.

	C3.1.

	
[image: there is no content]for[image: there is no content].




	C3.2.

	
[image: there is no content]for[image: there is no content].





















The case where [image: there is no content] is of special interest.




1.2. Discussion on Various Reduced Bases


The ratios ∥[image: there is no content]∥2λi2,i=1,…,n are used to measure the quality of various reduced bases defined above. We call these approximation ratios. Known bounds on approximation ratios for various reduced bases, known algorithms for generating them, the worst case running time of these algorithms, and the bit-precision used in performing the computations (addition, subtraction, multiplication and division) in these algorithms are summarized in Table 1. The bounds in this table assume [image: there is no content], and [image: there is no content]. Following [7,8] we use Msc:=max{2n,M0,d1,…,[image: there is no content]}, where M0:=max[image: there is no content]∥[image: there is no content]∥2 to measure the complexity of these algorithms. Note that [image: there is no content] when ∥[image: there is no content]∥=2[image: there is no content].



Table 1. Summary of various LLL-related Algorithms.







	
Algorithm

	
Lower Bounds on ∥[image: there is no content]∥2λi2

	
Upper Bounds on ∥[image: there is no content]∥2λi2

	
Arithmetic Steps

	
Precision






	
LLL reduced [7]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
LLL reduced [13]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Modular LLL [14]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Semi-reduced [8]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Kannan [9]

	
[image: there is no content]

	
[image: there is no content]

	
n[image: there is no content]lnM0

	
[image: there is no content]




	
Block KZ [10,15] 1

	
[image: there is no content]γ[image: there is no content]−2i−12k−1

	
γ[image: there is no content]2n−i2k−1[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Segment LLL [11]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Mod-Seg LLL

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Mod-Seg LLL FMM

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Nguyen and Stehle [16] [image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content] fl




	
Schnorr [17] SLL

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content] fl








1[image: there is no content] is the Hermite constant which is defined as [image: there is no content].








The work of Lenstra, Lenstra, and Lovász [7] is seminal on finding a reduced lattice basis, and its implication on the problem of finding successive minima. Their algorithm for finding an LLL reduced basis is polynomial time. In particular, for [image: there is no content] in the worst case it requires [image: there is no content] arithmetic operations using [image: there is no content] bit numbers. Since the development of the LLL algorithm significant effort has been directed towards developing methods for finding an improved quality basis in polynomial time, and finding a worse quality basis with a better worst case computational complexity. Research has also progressed towards generalizing the LLL algorithm to arbitrary norms [18,19].





The algorithm by Schönhage [8] finds a semi-reduced basis. It requires [image: there is no content] less time over the LLL algorithm. However, the bounds on the approximation ratios for a semi-reduced basis are of a significantly lower quality. A better complexity for finding a semi-reduced basis is also proved by Storjohann [14].



Kannan [9] proposes an algorithm for finding Korkine-Zolotarev (KZ) basis that runs in O(n[image: there is no content]lnM0) arithmetic operations on [image: there is no content] bit integers. Kannan’s algorithm uses the LLL algorithm as a black box. This bound for finding a KZ basis is improved by Schnorr [10] to [image: there is no content] arithmetic operations using [image: there is no content] bit integers. The bound for Schnorr’s algorithm in Table 1 is given for performing a KZ reduction of a block of size [image: there is no content]. Schnorr [10] further introduces the notion of a semi block 2k reduced basis, and uses this concept to show that a [image: there is no content]-approximate shortest vector is found in [image: there is no content] arithmetic operation using [image: there is no content] bit integers. This leads to a hierarchy of algorithms for finding the shortest lattice vector, and a semi block 2k reduced basis. The complexity in Table 1 is a special case where [image: there is no content].



Koy and Schnorr [20] propose the concept of a segment reduced basis, and give an algorithm for finding such a basis. Similar to the semi-reduction algorithm of Schönhage [8] the segment reduction algorithm works with a subset of vectors in the lattice basis at a time. However, it worsens the approximation ratios only slightly, and in a controllable fashion. Moreover, it also achieves an [image: there is no content] reduction in the worst case complexity over the LLL algorithm. Since the writing of the original draft of this paper improvements in computational complexity of the LLL and segment LLL algorithms have also been achieved by showing that the methods can be modified to perform computations using [image: there is no content] bit floating point numbers. In particular, Nguyen and Stehle [16] rearranged computations in the Cholesky factorization algorithm and used Babai’s nearest point algorithm to update the Cholesky factor coefficients to show that the LLL-algorithm can be correctly implemented with [image: there is no content] bit floating point precision computations. By making use of results from numerical analysis on Householder transformation using floating point arithmetic and rearrangement of computations in Gram-Schmidt algorithm Schnorr [17] has given an improved segment reduction algorithm that performs [image: there is no content] bit operations for input bases of length 2[image: there is no content].




1.3. Paper Contribution and Organization


In this paper we show that the modular arithmetic computation approach of [14] can be combined with the segment concept in [20] to develop a modular segment reduction algorithm. The novelty of Storjohann’s is in rearranging the computations in LLL and delaying certain updates, which result in a computational savings by a factor of [image: there is no content]. The savings of [image: there is no content] in [20] result from localizing the updates. We show that by combining the strength of the modular arithmetic approach with the Segment LLL algorithm an O([image: there is no content]) further saving is possible in the worst case when initial integer basis vectors have 2[image: there is no content] magnitude and [image: there is no content]. We also show that it is possible to further improve this complexity by using fast matrix multiplication.



This paper is organized as follows. In the next section we review the LLL basis reduction algorithm of Lenstra, Lenstra, and Lovász [7]. In addition we explain the basic computational observations of Storjohann in this section. In Section 3 we give Storjohann’s modular LLL reduction algorithm and give the essential results from [14]. Additional notation and concepts needed to describe the modular approach are also given in this section. In Section 4 we give the segment basis reduction algorithm. In Section 5 we describe the modular segment reduction algorithm proposed in this paper, and give its worst case complexity result.





2. Methods for LLL-Reduced Lattice Bases


2.1. The LLL Basis Reduction Algorithm


The LLL algorithm performs two essential computational steps. These are: (i) Size reduction of B by ensuring that |[image: there is no content]|≤1/2, [image: there is no content]; (ii) swap of two adjacent rows of B, and subsequent restoration of Γ. We now explain these two steps.



Size Reduction of B


Let [[image: there is no content]]=[[image: there is no content] ([image: there is no content]) be a basis obtained from [image: there is no content]. It can be rewritten as [image: there is no content], where [image: there is no content] is an elementary unimodular matrix. It is easy to see that [image: there is no content]=[image: there is no content]t[image: there is no content], where [image: there is no content]. Note that [image: there is no content] is unchanged as a result of this operation. The operation results in [image: there is no content]. This computation is called the size reduction of [image: there is no content] against [image: there is no content], [image: there is no content]. Note that [image: there is no content] is obtained from Γ (i.e., Γ is updated) in [image: there is no content] arithmetic operations. After initial Γ is computed, we can size reduce the entire basis by recursively applying this step in the order [image: there is no content]. This is summarized in the methods SizeReduceVector and SizeReduceBasis. The method SizeReduceBasis is presented in a more general setting to allow for size reduction of limited number of vectors in B. Also, note that B need not be updated since all the information required to reduce B is contained in Γ. The update of B can be stored in a sequence of elementary unimodular matrices or their product. We represent this matrix by U.





[image: Algorithms 03 00224 g001 1024]





Figure 1. Size Reduction of a Basis Vector. 






Figure 1. Size Reduction of a Basis Vector.



[image: Algorithms 03 00224 g001]







[image: Algorithms 03 00224 g002 1024]





Figure 2. Size Reduction of a Basis. 






Figure 2. Size Reduction of a Basis.



[image: Algorithms 03 00224 g002]






Swap of Two Adjacent Rows of B


Let [[image: there is no content]] = [b1,…,[image: there is no content],b[image: there is no content],…,bn] be a basis obtained from [image: there is no content]. It can be rewritten as [image: there is no content], where [image: there is no content] is a permutation matrix that permutes the [image: there is no content]-th row with the k-th row of B. This operation requires updating [image: there is no content] and [image: there is no content] of [image: there is no content] and the coefficients of column/row [image: there is no content] and k of Γ. This can be done by the following recurrence using [image: there is no content], ν:=∥bk*∥2+μ2∥b[image: there is no content]*∥2:


Γk−1,k=μ∥b[image: there is no content]*∥2/ν,∥bk*∥2=∥b[image: there is no content]*∥2∥bk*∥2/ν,∥b[image: there is no content]*∥2=ν,



(2.2)






Γj,k−1Γj,k=Γj,kΓj,k−1for j=1,…,k−2,



(2.3)






Γk−1,jΓk,j=1Γk−1,k01011−μΓk−1,jΓk,j,for j=k+1,…,n.



(2.4)







We refer to the procedure implementing above recurrence by Swap (B (or U),[image: there is no content].



The absolute value of the coefficients in the [image: there is no content]-th and k-th rows of Γ obtained after the swap can become larger than [image: there is no content], a further size reduction step is performed to ensure that these coefficients are less than [image: there is no content]. Note that while the restoration of Γ resulting from swap requires [image: there is no content] arithmetic operations, the size reduction step requires [image: there is no content] operations. Hence, the worst case effort resulting from a swap of two adjacent rows is [image: there is no content].



The Lenstra, Lenstra, and Lovász [7] algorithm for finding an LLL-reduced basis is summarized in Figure 3. The number of swaps and the effort needed to restore the size reduced property of B determines the worst case complexity of the LLL algorithm.


Figure 3. The LLL Basis Reduction Algorithm.



[image: Algorithms 03 00224 g003]






Lenstra, Lenstra, and Lovász [7] maintain size reduced property of B for two reasons. The first reason is in checking the condition in the IF statement of the LLL algorithm. This allows us to produce an LLL-reduced basis upon the termination of their algorithm. Second, the size reduced property of B is used to bound the size of intermidate numbers generated in the algorithm, which is necessary to establish polynomial time complexity of the algorithm.





Figure 4 rearranges the computations in the LLL algorithm of Figure 3 without changing the algorithm. For the moment we are not concerned with the issue of the size of intermediate numbers. In particular, the algorithm in Figure 4 will produce the same basis as the algorithm in Figure 3. In fact, if the computations are performed in infinite precision, then the step indicated in ♠ is not even necessary. If this step is deleted, then the cost of the restoration of Γ after each swap reduces from [image: there is no content] to [image: there is no content] arithmetic operations. Storjohann [14] achieves this while maintaining finite precision with computation on integers of appropriate length by using modular arithmetic.


Figure 4. The LLL Basis Reduction Algorithm with Rearranged Computations.



[image: Algorithms 03 00224 g004]











3. Storjohann’s Improvements


We now describe Storjohann’s [14] modifications. The LLL algorithm is first described as a fraction free algorithm to allow all computations on integer (not rational) numbers. The modular arithmetic modification that allows one to maintain finite precision is given subsequently.



3.1. The LLL-Reduction with Fraction Free Computations


For the matrix [image: there is no content] we have an integral lower triangular matrix F and an integral upper triangular matrix T such that [image: there is no content] (See Geddes, Czapor, and Labahn [21]). F and T are called the fraction free factors of [image: there is no content]. Fraction free factors of a matrix are computed in [image: there is no content] arithmetic operations using standard matrix multiplication. It is known that


T=F(BBt)=d1………⋱[image: there is no content]⋮⋱⋮[image: there is no content]



(3.5)




where [image: there is no content]=djΓi,j. Recall that [image: there is no content] is positive definite since the row vectors of B are linearly independent. Hence T and F are unique. Also, [image: there is no content], T=diag{d1,…,[image: there is no content]}Γ, ∥[image: there is no content]∥2=[image: there is no content]/di−1 while taking [image: there is no content], and d1,…,[image: there is no content] are integers because [image: there is no content] are in [image: there is no content]. Note also that T[image: there is no content]=diag{d1,d1d2,d2d3,…,dn−1[image: there is no content]}.



Storjohann [14] gave a fast matrix multiplication algorithm for computing F and T. It requires [image: there is no content] bit operations on integers of bit length [image: there is no content], where [image: there is no content] and ϵ is a positive constant when the fast matrix multiplication algorithm of Coppersmith and Winograd [22] is used. [image: there is no content] and [image: there is no content] when the standard matrix multiplication is used.



In Figure 5 we give Storjohann’s rearrangement of the computations of Figure 4 using fraction free computation. The ModifiedLLL algorithm performs two types of unimodular operations. (i) FFReduce: subtracting a multiple of a row of B from another row of B, and (ii) FFSwap: swapping a row of B with an adjacent row of B. The ModifiedLLL algorithm works by recording the unimodular row operations on B in a unimodular matrix U initially set to be an identity matrix, and updating the entries of T. There is no need to update B or [image: there is no content] in the algorithm, except in a post processing step. It is sufficient to update matrices U and T during the algorithm’s iterations. The fraction free updates of U and T corresponding to these unimodular operations are given in Figure 6 and Figure 7, respectively. Note that one execution of FFReduce or FFSwap is performed in [image: there is no content] arithmetic operations.


Figure 5. Modified LLL Basis Reduction Algorithm.



[image: Algorithms 03 00224 g005]





Figure 6. Fraction Free Subtract Subroutine.



[image: Algorithms 03 00224 g006]





Figure 7. Fraction Free Swap Subroutine.



[image: Algorithms 03 00224 g007]












The LLL and ModifiedLLL algorithms use [image: there is no content] to measure progress. The FFSwap step of the algorithm reduces Δ by a factor δ [7]. This is because when [image: there is no content] and b[image: there is no content] are swapped, ∥b[image: there is no content]*∥2∥bk*∥2 remains constant, and the new value of [image: there is no content] is reduced at least by a factor δ. As a consequence d[image: there is no content] is reduced by a factor δ, while all other [image: there is no content] do not change. The value of Δ is unchanged in the FFReduce step of the algorithm because [image: there is no content] does not change after this step. Since [image: there is no content], Case 1 in the ModifiedLLL algorithm occurs only [image: there is no content] times. Hence this part of the algorithm is executed in [image: there is no content] arithmetic operations. Case 2 of the algorithm can also occur at most [image: there is no content] times, each requiring [image: there is no content] arithmetic operations. Hence, this part of the algorithm is executed in [image: there is no content] arithmetic operations. Finally a δ-LLL reduced basis is generated by [image: there is no content], which is performed in [image: there is no content] operations under standard matrix multiplication, and in [image: there is no content] using the algorithm of Coppersmith and Winograd [14,22]. Lenstra, Lenstra, and Lovász [7] showed that the bit length of the numbers on which the arithmetic operations are performed is bounded by [image: there is no content]. This gives the complexity result in Table 1, where [image: there is no content] for simplicity.



The following lemma gives bounds on the size of intermediate lattice bases generated during the LLL and ModifiedLLL algorithms. This property is used when using computations with modular arithmetic.



Lemma 1 

[7]. Let B be an input basis to the LLL and ModifiedLLL algorithms. The quantities maxi{∥[image: there is no content]∥} and maxi{[image: there is no content]} are non-increasing in the LLL and ModifiedLLL algorithms. Furthermore, upon termination


∥[image: there is no content]∥2≤nM0,for1≤i≤n













Proof: 

Recall that size reduction/subtract does not change [image: there is no content], consequently for all i, ∥[image: there is no content]∥ is unchanged in this step. Swapping [image: there is no content] and [image: there is no content] decreases [image: there is no content] by a factor of δ and the updated ∥[image: there is no content]∥ is bounded by old [image: there is no content]. Hence, the non-increasing property is established. We have ∥[image: there is no content]∥2=∥[image: there is no content]∥2+∑j=1i−1Γj,i2∥bj*∥2≤nM0, since ∥[image: there is no content]∥≤∥[image: there is no content]∥≤M0 in the beginning, and throughout the LLL and ModifiedLLL algorithms. The bounds obviously hold at termination. ☐






3.2. The Modified LLL Algorithm with Modular Arithmetic


Storjohann [14] uses modular arithmetic to keep the intermediate numbers bounded during the algorithm’s iterations. Given an integer a, and an integer [image: there is no content], we write a(modM) to mean the unique integer r congruent to a modulo M in the symmetric range, that is, with [image: there is no content]. Similarly, U(modM) stands for the same operation for all entries of matrix U.



The modular basis reduction algorithm of Storjohann [14] is given in Figure 8 and Figure 9. Its worst case computational complexity is given in Table 1. The notable difference of this algorithm from the ModifiedLLL algorithm is in the modular arithmetic operation that is performed in the methods ModReduce and ModSwap.


Figure 8. The Modular LLL Basis Reduction Algorithm.



[image: Algorithms 03 00224 g008]





Figure 9. ModSubtract and ModSwap subroutines.



[image: Algorithms 03 00224 g009]






Let M=2⌈(nM0)[image: there is no content]⌉+1 so that by Lemma 1 the entries in the reduced basis matrix upon the termination of the ModifiedLLL algorithm are bounded in magnitude by [image: there is no content]. The modular approach hinges on the observation that [image: there is no content], where U¯=U(modM). Note that in the “infinite" precision version of the [image: there is no content] algorithm, where the ♠ step is not performed, one allows U to grow. However, in the modular arithmetic version the elements of U and T remain bounded.







We have shown above how to bound the entries of U by [image: there is no content] during the course of the algorithm. Lemma 1 has already bounded the diagonal entries [image: there is no content] of T throughout the algorithm. The following lemma gives a way to keep the off diagonal entries of T bounded.



Lemma 2 

[14]. Let T be the matrix of (3.5), M a positive integer, and i and j indices with [image: there is no content]. There exists a unit upper triangular integral matrix V such that [image: there is no content] is identical to T except in the (i,j)-th entry which is reduced modulo [image: there is no content]di−1M. Furthermore, V can be chosen so that V¯=V(modM) is the identity matrix.





Storjohann [14] constructed the matrix V in Lemma 2 as follows. Let [image: there is no content] be the [image: there is no content] strictly upper triangular matrix with column j equal to column i of [image: there is no content] and all other entries zero, let q=[[image: there is no content]/([image: there is no content]di−1M)], and take V=I−qM[image: there is no content]. Note that [image: there is no content] is also a basis for L. Since the matrix [image: there is no content] is not calculated; the corresponding operation should be recorded in U. However, U remains unchanged, because [image: there is no content] and [image: there is no content]. The entries of matrix T corresponding to this row transformation on B are updated by multiplying T with V, which has the desired effect of reducing [image: there is no content] modulo [image: there is no content]di−1M. This modular reduction is performed in the ModReduce and ModSwap calculation. We remark that because of the above operation the intermediate lattice bases B that correspond to the matrix T may no longer be polynomially bounded in the size of the starting B, however, it is no longer important because an intermediate B is never recorded.





4. The Segment LLL Reduction of Lattice Bases


Recently Koy and Schnorr [20] introduced the concept of a segment LLL reduced basis (See Definition D7), and gave an algorithm for finding such a basis. The segment LLL reduced basis satisfies a slightly weaker condition, however, it is computed by Koy and Schnorr [20] in [image: there is no content] fewer arithmetic operations. The algorithm of Koy and Schnorr works on two segments of B, i.e., [image: there is no content] at a time. This algorithm is outlined in Figure 10. The work in the SegmentLLL algorithm comes from the calls to a subroutine Loc-LLL(l) given in Figure 11. Subroutine Loc-LLL(l) performs a local LLL basis reduction on the segment [[image: there is no content] and records the operations in a unimodular matrix [image: there is no content], as explained below.


Figure 10. The Segment LLL Basis Reduction Algorithm.



[image: Algorithms 03 00224 g010]





Figure 11. The Local LLL Iterations.
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The Local-LLL reduction (Subroutine Loc-LLL(l)) works on [image: there is no content] and Γ. The matrix Γ in (4.6) is partitioned into segments with each segment has [image: there is no content] basis vectors.


Γ=1…Γ1,k(l−1)⋱⋮1Γ1,k(l−1)+1…Γ1,k(l+1)⋮⋮Γk(l−1),k(l−1)+1…Γk(l−1),k(l+1)Γ1,k(l+1)+1…Γ1,n⋮⋮Γk(l−1),k(l+1)+1…Γk(l−1),n1…Γk(l−1)+1,k(l+1)⋱⋮1Γk(l−1)+1,k(l+1)+1…Γk(l−1)+1,n⋮⋮Γk(l+1),k(l+1)+1…Γk(l+1),n1…Γk(l+1)+1,n⋱⋮1










≡[image: there is no content][image: there is no content][image: there is no content]



(4.6)









When working in Loc-LLL(l) all LLL swaps and size reductions are restricted to the input [image: there is no content] segment. Only the matrix [image: there is no content] is updated while performing the segment LLL swaps and size reductions. The unimodular operations updating [image: there is no content], and the operations required to update [image: there is no content] are stored in the matrix [image: there is no content]. The updates for [image: there is no content] and [image: there is no content] are performed only after it is no longer possible to perform an LLL-swap based on the information in [image: there is no content]. [image: there is no content] and [image: there is no content] are updated as follows:


[image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]=([image: there is no content])endUl−1([image: there is no content])beg−1[image: there is no content]











Here ([image: there is no content])beg and ([image: there is no content])end are [image: there is no content] matrices recorded at the beginning and end of the Local LLL-reduction step in Loc-LLL(l). Since only matrix [image: there is no content] is updated during the LLL unimodular operations in this segment the corresponding updates of [image: there is no content] and [image: there is no content] are performed using [image: there is no content] arithmetic operations. The total number of swaps in all calls to Loc-LLL(l) is bounded by [image: there is no content], hence the total work in the Local LLL-reduction step is bounded by [image: there is no content] arithmetic operations. The cost of updating [image: there is no content] and [image: there is no content], and performing the Segment Size Reduction step in each execution of Loc-LLL(l) is [image: there is no content] arithmetic operations.



Let [image: there is no content] denote the number of times that the condition


(D(l−1)>(α/δ)k2D(l)orδk2∥bk(l−1)*∥2>α∥bk(l−1)+1*∥2)








holds and l is decreased. The number of times Loc-LLL(l) is called is [image: there is no content]. Koy and Schnorr [20] showed that [image: there is no content]. Hence the total work in the Segment Size Reduction step of Loc-LLL(l) is [image: there is no content] arithmetic operations when [image: there is no content]. This leads to the computational complexity result in Table 1 when [image: there is no content] and [image: there is no content]. We have omitted details on the bounds on the length of the elements in [image: there is no content] and Γ (see Koy and Schnorr [20] for details).




5. The Modular Segment LLL Reduction with Modular Arithmetic


5.1. Algorithm and Its Complexity


We are now in a position to give our segment LLL reduction algorithm with modular arithmetic. It finds a segment LLL reduced basis with an O([image: there is no content]) improvement in the computational complexity when [image: there is no content]. This algorithm is given in Figure 12. The major difference in the ModSegmentLLL and SegmentLLL algorithms is in performing the ModLocSegmentLLL step presented in Figure 13. In this subroutine we perform updates using modular arithmetic while working with [image: there is no content]. The subroutines ModReduce and ModSwap require [image: there is no content] operations in comparison to the [image: there is no content] worst case operations in the algorithm of Koy and Schnorr described in the previous section.


Figure 12. The Modular Segment LLL Basis Reduction.
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Figure 13. The Modular Local Segment LLL Basis Reduction.
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Figure 14. Size Reduction of a Segment Using Modular Arithmetic. 






Figure 14. Size Reduction of a Segment Using Modular Arithmetic.
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We now explain the steps in ModLocSegmentLLL. While working with the matrix [image: there is no content], let us partition


T=ACE








similar to the partitioning of Γ in (4.6). We perform two types of unimodular operations on [image: there is no content] in the ModLocSegmentLLL algorithm. The Preprocess C and Postprocess C steps are performed to ensure that the lattice basis vectors corresponding to C are size reduced before and after performing the Local δ-Reduction step. This allows us to bound the size of matrix Q needed to update E after completing the Local δ-Reduction step.



The calls to ModReduce and ModSwap are as in the case of the ModularLLL algorithm with the important difference that they are now performed on a segment. ModReduce subtracts a multiple of a row (column) from another row (column). This unimodular operation is recorded by updating [image: there is no content] modulo β. The constant β used in the ModSegmentLLL algorithm is taken to be a multiple of M. A choice of β is specified below in Lemma 4. This inferior value is used in the intermediate computations because during the algorithm we don’t have a bound on the elements of [image: there is no content]. However, the fact that the initial and terminating [image: there is no content] are size reduced ensures that a proper bound on β is still possible. The subroutine ModSwap performs all necessary computations to update C and [image: there is no content] when two rows of [image: there is no content] are swapped. The elements of C are recorded modulo [image: there is no content]di−1β. As in the case of Storjohann’s modification of the LLL algorithm, there is no need to record the modulo operations in [image: there is no content].



The matrix [image: there is no content] is further updated in the Postprocess C step by incorporating all the unimodular transformations recorded in W while working on the size reduction of the basis vectors corresponding to C. Here the elements of [image: there is no content] are recorded modulo β. Note that while [image: there is no content] is recorded modulo β, U is recorded modulo M. Updating A and U is straightforward. In Section 5.2 we show that the computations involving [image: there is no content] and A can be performed with integers of [image: there is no content] bit length. To this end we use the results from Storjohann [14] for his analysis of the semi-reduction algorithm.



The total computational effort in Steps 1, 3, 4, and 5 of the ModLocSegmentLLL algorithm is [image: there is no content] arithmetic operations. Following [20] and [14, Theorem 18], there are at most [image: there is no content] swaps in all the executions of the ModLocSegmentLLL algorithm, each swap requiring [image: there is no content] arithmetic operations. Hence, we improve the total computational efforts in Step 2 [Modular Segment Iterations] of the ModSegmentLLL algorithm to [image: there is no content] arithmetic operations. Since there are a total of [image: there is no content] calls to the ModLocSegmentLLL algorithm we are led to the following theorem.



Theorem 1 

Using standard matrix multiplication, for [image: there is no content] and [image: there is no content], Step 2 of Algorithm ModSegmentLLL performs [image: there is no content] arithmetic computations. We can perform these computations using integers of bit length [image: there is no content].





The proof of the first statement in Theorem 1 is already complete. The second statement on the bit length needed for computations in proved in Section 5.2. We note that Step 1 of the ModSegmentLLL algorithm computes F and T, and Step 3 performs a global size reduction. Step 1 is performed in [image: there is no content] arithmetic operations on integers of bit length [image: there is no content] [14]. Step 3 is also performed in [image: there is no content] arithmetic operations on integers of bit length [image: there is no content]. Therefore, we have the following corollary.



Corollary 1 

For a basis [image: there is no content] and [image: there is no content], the running time of Algorithm ModSegmentLLL is bounded by [image: there is no content] arithmetic operations using integers of bit length [image: there is no content].





The bound in Corollary 1 is [image: there is no content] better than the bound in Algorithm SegmentLLL when [image: there is no content], which is possible in the worst case. Section 5.2 is devoted to showing the correctness of Algorithm ModSegmentLLL and proving Theorem 1.




5.2. Correctness of the ModSegmentLLL Algorithm


The following lemma allows us to compute U modulo M, and T modulo [image: there is no content]di−1M during the ModSegmentLLL algorithm.



Lemma 3 

Upon termination, the reduced basis from the SegmentLLL and ModSegmentLLL algorithms has the following upper bound


∥[image: there is no content]∥2≤nM0for1≤i≤n,and∥[image: there is no content]∥≤M0








throughout the algorithm.





Proof: 

Follow the proof of Lemma 2, while observing that size reduction or modular reduction of the elements in T leave ∥[image: there is no content]∥ unchanged. ☐





The following lemma of Schönhage allows to give a proper value of β, which is used to reduce the entries of [image: there is no content] and C modulo β. We now show that [image: there is no content], A, C, and E are correctly updated using integers of [image: there is no content] bits.



Lemma 4 

[8] Let [image: there is no content]beg, [image: there is no content]end∈Z2k×d be size-reduced bases. The unimodular matrix [image: there is no content] that transforms [image: there is no content]beg to [image: there is no content]end, satisfies


∥[image: there is no content]∥1≤(2k)2(32)2k−1Msc≤Msc2








where ∥[image: there is no content]∥1=maxj{∥[image: there is no content]jt∥1} and [image: there is no content]jt is the j-th column of [image: there is no content].





Lemma 4 allows to take [image: there is no content], where [image: there is no content] while reducing the entries of [image: there is no content] modulo β. Note that taking β as a multiple of M is important because [image: there is no content] is used to update U whose elements are computed modulo M.



Updating E


Let R be the [image: there is no content] diagonal matrix with the i-th diagonal entry [image: there is no content] for [image: there is no content], and H the [image: there is no content] diagonal matrix with [image: there is no content] and [image: there is no content] for [image: there is no content], where [image: there is no content] are the diagonal entries of [image: there is no content]. Following Storjohann’s development of his algorithm for finding a semi-reduced basis in [14, Equation (29)], we can show that the matrix E is updated by


[image: there is no content]=QE,whereQ=1dk(l−1)H(Cnew−1)t[image: there is no content]dk(l−1)CbegtR−1








These computations are performed in a specific order to maintain integrality of operations: (i) backtrack fraction free Gaussian elimination by pre-multiplying E by [image: there is no content]; (ii) pre-multiply by the basis modular transformation matrix [image: there is no content]; (iii) forwardtrack fraction free Gaussian elimination by pre-multiplying the result from (ii) by [image: there is no content].



To establish a bound on the magnitudes of the integers in [image: there is no content], we need to bound [image: there is no content]. Let S be the [image: there is no content] diagonal matrix with the i-th diagonal entry [image: there is no content] for [image: there is no content] so that [image: there is no content] is unit upper triangular with all off diagonal entries [image: there is no content], (Recall that the basis vectors corresponding to [image: there is no content] are size-reduced). In particular, the entries in (S−1[image: there is no content])−1 are [image: there is no content] minors of (S−1[image: there is no content]) which is bounded by [image: there is no content] using Hadamard’s inequality. It follows that the entries in Cnew−1=(S−1[image: there is no content])−1S−1 are bounded by [image: there is no content] because [image: there is no content]≥1,1≤i≤n. We get


∥[image: there is no content]∥∞=∥QE∥∞≤(2k)3∥H∥∞∥Cnew−1∥∞∥[image: there is no content]∥∞∥Cbegt∥∞β










≤(2k)3Msc2[image: there is no content](2k)2(3/2)2k−1MscMscβ










≤2(2k)k+5(3/2)2k−1Msc6



(5.7)




The above inequality shows that the entries of [image: there is no content] are bounded by [image: there is no content] bit length. Furthermore, if [image: there is no content] is computed by multiplying E with matrices in Q from right to left, then all intermediate matrices are fraction free, and the computations are performed on integers of size [image: there is no content]. This completes the proof for the correctness of the algorithm.





5.3. The Modular Segment LLL using Fast Matrix Multiplication


The complexity of Step 2 of the ModSegmentLLL algorithm is bounded by the following theorem when using fast matrix multiplication.



Theorem 2 

If [image: there is no content], [image: there is no content], then using fast matrix multiplications Step 2 of the ModSegmentLLL algorithm can be performed in [image: there is no content] operations using integers of bit length [image: there is no content].





Proof: 

As discussed above, there are at most [image: there is no content] LLL-exchanges, each requiring [image: there is no content] arithmetic operations for a local δ-reduction. According to [20, Theorem 3], there are [image: there is no content] calls of the ModLocSegmentLLL algorithm. Each call requires [image: there is no content] arithmetic operations for updating matrices A and T. The complexity of Step 2 of the ModSegmentLLL algorithm is bounded by


O(nk(log1/δMsc))+O(2nk3(log1/δMsc)(nkθ−1+nk+k2(log2k)))≤O(nk(log1/δMsc))+O(n2k4−θ(log1/δMsc))=[image: there is no content]








when [image: there is no content]. ☐





Storjohann [14] showed that the fraction free Gaussian elimination and Step 3 of the algorithm can be performed in [image: there is no content] arithmetic operations for [image: there is no content] with integers of bit length [image: there is no content]. The bound in Theorem 2 is [image: there is no content] where [image: there is no content]. Hence Step 2 of Algorithm ModSegmentLLL dominates the overall effort giving the following corollary.



Corollary 2 

For [image: there is no content], and [image: there is no content] the running time of Algorithm ModSegmentLLL is bounded by [image: there is no content] operations using integers of bit length [image: there is no content] when using fast matrix multiplication.







6. Concluding Remarks


Schnorr [17, Section 6] remarked that it is possible to further improve the running time of the iterated subsegment algorithm in [17] using modular arithmetic. This is possible since the iterated subsegment algorithm runs in [image: there is no content] operations by recursively transporting local transforms from a segment-level to the next higher segment. Note that by comparison the basic segment-LLL algorithm analyzed in this paper requires [image: there is no content] operations while using standard arithmetic, and [image: there is no content] operations while using fast matrix multiplications. In all cases the modular arithmetic computations are performed on numbers of length [image: there is no content]. Unfortunately the worst-case [image: there is no content] bit-length required for the modular arithmetic is large, and floating point arithmetic is more practical. Numerical experience using implementations based on floating point arithmetic were reported in [23] for the LLL algorithm and in [11] for the segment-LLL reduction algorithm. The possibility of combining modular arithmetic with floating point computations remains a topic of future research.
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IF (b7 < (5 — T3, )lIbf_, || THEN
Swap (B, T, k, k — 1);
SizeReduceBasis (B, ', n, k);
IFk>2THENEk + k—1;
ELSE
k+k+1;

bl i=1,...






media/file15.png
Algorithm: ModularLLL [14]
INPUT: B € Z™*% 5, M;
OUTPUT: An LLL-reduced basis B;
(1) [Fraction Free Gaussian elimination]
T < F(BB?Y);
(2) [6-reduction]
k=2U=1I, and M = 2[(nmax(||b||2,.. ., ||ba]|2)¥/2] + 1;
WHILE k& < n DO
ModReduce(U, T, M, k. k — 1, [Tx_1x]);
IF % < (5 —T7_, )%=t THEN
ModSwap(U, T, M, k),
IFk>2THENEk < k—1;
ELSE
k+—k+1;
(3) [Size Reduction]
FOR £ from 2 to n DO
FOR j from k — 1 to 1 DO ModReduce(U, T, M, k, j, [Ty ;]):
(4) [Post Processing]
B :=UB(mod M);
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Algorithm: SegmentLLL [20]

INPUT: B €z k,m,n=km,d;

OUTPUT: A k-segment LLL-reduced basis B;

[Gram-Schmidt] Compute ', and |bf,i = 1,...,7n

[Size Reduction] SizeReduceBasis(B,I,n,1);

Setl =2;

[Segment-LLL Iterations] WHILE [ < m — 1 DO
Loc-LLL(]);
IF 1> 2and (D(l —1) > (a/8)" D(I) or 8% ||by,_ |1* > er|lb;
THENl(—l—l;ELSEl(—H—L

-+l
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Subroutine: FFSwap(U, T, k)
/* Switch rows k — 1 and k£ in U and update 7'. */
switch rows k — 1 and £ in U;
row (T, k) < (1/Tj—15—1)Tk—2p—2 xtow(T, k) + Tj_1  * row (T, k — 1));
switchrows £ — 1 and k of T';

switch columns £ — 1 and k of T';
row (1, k) < (1/Tk—2k—2)(Tk—1 k-1 *roW(T, k) — T—1  x row(T, k — 1));
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Algorithm: LLL [7]
INPUT: B € Z™*4.§;
OUTPUT: An LLL-reduced basis B;
[Gram-Schmidt] qyi=1,...,m;
[Size Reduction] SizeReduceBasis(5,1',n,1);
Set k£ = 2;
[LLL iterations] WHILE k< nDO
IF [[b]12 < (6 — T3 ) 64| THEN
Swap (B,I',k, k — 1);
SizeReduceBasis (B,1', n, k);
IFk>2THENk < k —1;
ELSE
k<« k—+1;
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Subroutine: FFReduce(U, T, k, 7, q)
/* Subtract g times row 7 from row k of U and update T". */
row(U, k) < row(U, k) — q x row(U, r);
col(T, k) < col(T, k) — g = col(T,r);
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Method: SizeReduceVector (B (or U), I, k, j)
19=[Fj7k], bk = bk—ﬁbj (01‘ Uk = Uk—ﬁUj);
FORi=1,...,j

Dig=Tik— 00
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Algorithm: ModularLLL [14]
INPUT: B € Z™*4 6, M;
OUTPUT: An LLL-reduced basis B;
(1) [Fraction Free Gaussian elimination]
T <+ F(BBY);
(2) [0-reduction]
k=2,U=1,, and M = 2[(nmax(||b1]%, ..., anHQ))l/QW + 1;
WHILE k£ < n DO
ModReduce(U, T, M, k. k — 1, [I'x_1 £]);
IF 7 < (5-T7_, )%= THEN
ModSwap(U, T, M, k);
IFk>2THENk < k — 1;
ELSE
k< k+1;
(3) [Size Reduction]
FOR k from 2 to n DO
FOR j from k& — 1 to 1 DO ModReduce(U, T, M, k, j, [I'y ;]);
(4) [Post Processing]
B :=UB(mod M);
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Method: SizeReduceVector (B (or U), I, k, j)
V=[], br=br—9b; (or Uy = Uy — vUj);
FORi:=1,...,7

Uik = — O ;
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Algorithm: SegmentLLL [20]
INPUT: B € Z™% k. m,n = km,§;
OUTPUT: A k-segment LLL-reduced basis B;
[Gram-Schmidt] Compute I, and ||b}]|,7i =1, ..., n;
[Size Reduction] SizeReduceBasis(B,1',n,1);
Setl = 2;
[Segment-LLL Iterations] WHILE [ < m — 1 DO
Loc-LLL());
IF > 2and (D(I—1) > (/)% D(1) or 8¥||b7 ;111 > allbf )1 1)
THEN [+ [ —1;ELSE[ «+ [ + 1;
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Algorithm: LLL [7]
INPUT: B € Z"*4,§;
OUTPUT: An LLL-reduced basis B;
[Gram-Schmidt] Compute I" and ||b}|,i = 1,...,n;
[Size Reduction] SizeReduceBasis(B,I",n,1);
Setk =2;
[LLL iterations] WHILE k& < n DO

SizeReduceVector(B,I",k,k — 1);

IF [I67 2 < (6 = T3_, IV, > THEN
Swap(B, T, k.k — 1);
IFk>2THENk < k—1;

ELSE
& For j =k —2,...,1SizeReduceVector(B,I'.k,));
k+—k+1;
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Algorithm: ModSegmentLLL
INPUT: B € Z"¢ k.m,n = km,8,U = I,,, M ;
OUTPUT: A k-segment LLL-reduced basis U B(mod f3);
(1) [Fraction free Gaussian elimination]
T < F(BBY);
|l =2and 8 = qgM,
(2) [Modular Segment Iterations]
WHILE ! <m — 1 DO
ModLocSegmentLLL([);
IF! > 2and (D(l — 1) > («/5)¥ D(I) or 6*° difﬁ;;jl > adgg(—l—jl)
THEN [« [ —1;ELSE[ < [ + 1;
(3) [Global Size Reduction]
FOR 7 from 2 to n DO
FOR j from ¢ — 1 to 1 DO ModReduce(U, T, M, 1, 7, [I'; ;]);
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Subroutine: FFReduce(U, T k., q)
/* Subtract g times row r from row k of U and update T'. */
row (U, k) < row(U, k) — q * row(U, r);
col(T, k) < col(T, k) — q = col(T,r);






media/file3.png
Method: SizeReduceBasis (B (or U), I', n, k)
FOR j=mn,....k
FORi=j—-1,...,1
SizeReduceVector(B (or U), I, 7, 1);
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Subroutine: ModReduce(U, T, M, k,r, q)
/* Subtract ¢ times row r from row & of U and update 7. */
FFReduce(U, T, k,r,q);
FOR ito k — 1 DO T; , < T, (mod d;d;—1 M);
FOR j to d DO Uy, ; < Uy, ; (mod M);
Subroutine: ModSwap(U, T, M, k)
/* Swap rows k — 1 and % in U and update T". */
FFSwap(U, T\ k),
FORito k —2DO T; ;1  Tj—1 (mod d;d;—1 M);
FOR i to k — 1 DO Ti,k — Ti,k (mod did;_1M);
FOR j from k to n DO T}y j < Tj—1; (mod dj_1dp_aM);
FOR j from k + 1 to n DO T}, j < T}, j (mod dydy—1 M);
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Algorithm: LLL [7]
INPUT: B € Z™*4, §;
OUTPUT: An LLL-reduced basis B;
[Gram-Schmidt] Compute I' and ||b}]|,7i =1,...,n;
[Size Reduction] SizeReduceBasis(B,1',n,1);
Set k£ = 2;
[LLL iterations] WHILE k£ < n DO

SizeReduceVector(B,I',k,k — 1);

IF [[b;]12 < (6 = T3, p)lIbj,_, || THEN
Swap(B, I, k,k — 1);
IFk>2THENk < k — 1;

ELSE
& For j =k —2,...,1 SizeReduceVector(B,I',k,j);
k< k+1;






media/file25.png
Algorithm: ModLocSegmentLLL
INPUT: U, B, T, 5, M;
OUTPUT: locally reduced Band updated U, T';

1. [Prep W, B);
Cheg :=C;
Update U with U « [ — U(mod M), and A < AW (mod d;d;_1M);
I, k(l+1)

2. [Local ¢-Reduction] Initialize i = 2, U; = Iy, and 3 = qgM:
WHILE ¢ < 2k DO
ModReduce(U;, C, 3,i,i— 1, [[i_14]);
IF 4 < (§- T2, ) %=L THEN
ModSwap(U,, C, 3, t),
IFi>2THENi«+i—1;
ELSEi i+ 1;
3. [Postp C Red W, B),
Chew < C, Uy = WU (mod 3);

4. [Update A, U] A + AUy;
For all rows in A, A; < A;Uj(mod d;d;— M), where A; is the ith row of A;
1,
U |4 U(mod M);
o
5. [Update E] E + HC,}, U,C,ﬁeq lE where H, R are given in the discussion.
For all rows in E, E; < E; (mod d;d;—1 M), where E; is the ith row of E;
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Algorithm: Loc-LLL(l)

INPUT: T, B, B, §;

OUTPUT: Reduced B and updated I';

Initialize U; = Iy, (FC)beg =T

[Local LLL-reduction]
SizeReduceBasis (U;,I',2k,1);
-LLL reduce B using the LLL-iterations while updating I'¢; and
recording the unimodular operations in the matrix U;
(i.e., perform Step 2 of ModifiedLLL on B);
(FC)end =T¢;

[Update B] B «+ U} B;

[Segment Size Reduction]
Update I'y < I'4U;
g+ (FC)e7LdUl_1(FC>[;3;FE§
SizeReduceBasis (B,I',n,k(l — 1) + 1);






