
Algorithms 2010, 3, 244-254; doi:10.3390/a3030244

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Article

An O(n)-Round Strategy for the Magnus-Derek Game
Zhivko Nedev

International University VNU-HCM, Block 6, Linh Trung Ward, Thu Duc District, HCM City,
Vietnam; E-Mail: znedev@gmail.com

Received: 8 June 2010; in revised form: 6 July 2010 / Accepted: 8 July 2010 /
Published: 15 July 2010

Abstract: We analyze further the Magnus-Derek game, a two-player game played on a round
table with n positions. The players jointly control the movement of a token. One player,
Magnus, aims to maximize the number of positions visited while minimizing the number of
rounds. The other player, Derek, attempts to minimize the number of visited positions. We
present a new strategy for Magnus that succeeds in visiting the maximal number of positions
in 3(n− 1) rounds, which is the optimal number of rounds up to a constant factor.

Keywords: algorithmic game theory; additive combinatorics; combinatorial games

1. Introduction

In this paper we analyze further the Magnus-Derek game, a two-player game introduced in [1]. The
game is played on a circular table with n positions labeled consecutively from 0 to n− 1 in a clockwise
direction. A single token is initially placed at position 0. A round consists of the first player, Magnus
(from magnitude) choosing an integer magnitude 0 < ` ≤ n

2
, followed by the second player, Derek

(from direction) choosing whether the token will move clockwise or counter-clockwise. The token is
then moved ` positions in the chosen direction. Magnus’s primary goal is to maximize the total number
of distinct positions visited by the token over the course of the game (and secondarily, to minimize the
number of rounds), while Derek main aim is to minimize the number of positions visited. These goals
are natural since for all n not exact power of 2, Derek has a strategy to prevent the token from visiting
some of the positions [1]. For brevity, we will skip from now the word distinct in all expressions of type
“maximize the total number of distinct positions visited.”

In our analysis we will use Zn = {0, 1, 2, . . . , n − 1} to represent the table of size n. Let K ∈ Zn

denote the position of the token at the beginning of a round. The round then consists of Magnus choosing

Algorithms 2010, 3 245

a magnitude 0 < ` ≤ n
2
, Derek choosing a direction + or − (where the positive direction corresponds to

“clockwise”), and the token moving to (K ± `) mod n.
In [1,2], the following function on the set of positive integers was used. Let n > 0 be an integer. Then

f ∗(n) =

n if n = 2k for some k > 0,

p−1
p
· n otherwise, where p is the smallest odd prime factor of n.

In [1] (and subsequently with a shorter proof in [2]), the following theorem was obtained.

Theorem 1.

• Derek has a strategy to prevent the token from visiting more than f ∗(n) positions no matter how
long the game is played.

• Magnus has a strategy to ensure the token visits at least f ∗(n) positions.

One of the strategies previously given for Magnus by Nedev and Muthukrishnan requires O(n2)

rounds [1]. A recent paper by Hurkens, Pendavingh, and Woeginger gives anO(n log(n))-round strategy
[3]. In this paper, we will show that Magnus can visit f ∗(n) positions in 3(n − 1) rounds, the optimal
number of rounds up to a constant factor. Although some of the basic ideas in the two papers are the
same, we wrote our paper well before the paper of Hurkens, Pendavingh, and Woeginger was published
[4], and our results were found independently from theirs .

Our strategy for Magnus requires that he know the factorization of n. To our knowledge, this is the
first game in which the ability to factor conveys an advantage to a player. In another variant of the
game called the Vector game [5], the players’ goals are reversed: Magnus wants to minimize the set of
occupied positions, while Derek aims to maximize the number of positions visited. The ability to factor
can also give a crucial advantage to a player here. Moreover the analysis of this second variant of the
game is also not completely done yet; it created several new open problems (see [5,6]).

As mentioned in [1], the sequence {f ∗(n)}∞n=1 = (1, 2, 2, 4, 4, 4, 6, 8, 6, 8, . . .) diverges
non-monotonically and non-linearly to ∞. This sequence has not previously appeared in the
Encyclopedia of Integer Sequences [7].

2. An O(n)-Round Strategy for Magnus

We will give an algorithmic strategy, recursive on the factorization of the table size n, for Magnus to
visit f ∗(n) positions in O(n) rounds. We begin with the cases where n is a power of two or is prime.

2.1. When n is a power of two

An optimal strategy was given in [1] for when the table size is a power of two. We quote only the
result here:

Theorem 2. (from [1]) If n = 2k for some integer k, then f ∗(n) = n, and Magnus can visit all positions
in n− 1 rounds, regardless of Derek’s strategy.

Algorithms 2010, 3 246

2.2. When n is prime

Let n > 2 be prime. Since n is prime, by Theorem 1 we have that f ∗(n) =
(
n−1
n

)
n = n− 1. We will

prove that there is a strategy for Magnus to visit at least n− 1 positions in at most 2(n− 1) rounds.
Our key idea (which coincides with the idea in [3]) behind Magnus’ strategy is as follows. Let K

denote the current position of the token, and let A denote the set of unvisited positions. Notice that if K
is equidistant (with distance d) from two different positions in A, then Magnus can choose magnitude d
and, regardless of Derek’s choice, the token will move to one of those positions. We will use this fact
by constructing a nested sequence of sets A ⊆ M(A) ⊆ M (2)(A) ⊆ · · · ⊆ M (dlog2(n)e)(A) = Zn with
the property that for i > 0, each position in M (i)(A) \M (i−1)(A) is equidistant from a pair of positions
in M (i−1)(A). Then, if K ∈ M (i)(A) \M (i−1)(A) for some i, Magnus can move the token to a position
in M (i−1)(A) in one round. Since K ∈ Zn = M (dlog2(n)e)(A), Magnus can always move the token to
an unvisited position in at most dlog2(n)e rounds. This idea may be applied repeatedly, with the set
of unvisited positions A decreasing in size by one each time. We will show that in this manner n − 1

positions can be visited.
We begin with some necessary standard notations and background from additive number theory. Let

A and B be two subsets of Zn. Then the sumset of A and B is

A+B := {e ∈ Zn : there exist a ∈ A, b ∈ B such that e ≡ a+ b (mod n)}

and a q-dilate of A is

q ∗ A := {e ∈ Zn : there exists a ∈ A such that e ≡ qa (mod n)}.

We now define a map on the family of subsets of Zn.

Definition 1. Let A ⊆ Zn, |A| ≥ 2. The set of all middles between pairs of elements of A is defined by

M(A) := {z ∈ Zn : there exist x, y ∈ A such that 2z ≡ x+ y (mod n)}.

When n is odd, 2−1 ∈ Zn exists and then

M(A) = {2−1(x+ y) mod n : x, y ∈ A}.

We will use the notation M (i)(A) to denote the recursive application to A of the map M , i times, and
define M (0)(A) = A. For example, M (3)(A) =M(M(M(A))).

Thus A ⊆ M(A), and for each pair of points x, y ∈ A, all points equidistant from x and y are
contained in M(A). When n is odd, there is a unique midpoint equidistant from x and y.

Remark 1. If n is odd, and A is the arithmetic progression {a0 + iδ : 0 ≤ i ≤ m − 1} ⊆ Zn for some
a0, δ, and m, then M(A) = {a0 + iδ2−1 : 0 ≤ i ≤ 2m− 2} and is consequently easy to compute.

Bellow, we use the following well known Cauchy-Davenport Theorem [8,9].

Theorem 3. If p is a prime, and A,B are two non-empty subsets of Zp, then

|A+B| ≥ min{p, (|A|+ |B| − 1}

Algorithms 2010, 3 247

Lemma 1. Let n > 2 be prime and A ⊆ Zn. Then for any positive integer i,

|M (i)(A)| ≥ min{n, 2i(|A| − 1) + 1}. (1)

Proof. Since n is odd, M(A) = 2−1 ∗ (A + A) and so |M(A)| = |A + A|. By Theorem 3, |M(A)| =
|A+ A| ≥ min(n, 2|A| − 1) = min(n, 2(|A| − 1) + 1). Thus the lemma holds for i = 1.

Applying the above inequality recursively, we have that |M (i)(A)| ≥ min{n, ai} where ai is the i-th
term of the recurrence relation

am = 2am−1 − 1, for m = 1, . . . , i; a0 = |A|.

By induction, it is easy to prove that for any positive integer i, ai = 2i(|A| − 1) + 1. This is trivially
true for i = 1. Assuming the inductive hypothesis for i− 1, it follows that

ai = 2ai−1 − 1 = 2(2i−1(|A| − 1) + 1)− 1 = 2i(|A| − 1) + 1.

Lemma 2. Let n > 2 be prime, and A ⊆ Zn, |A| ≥ 2. Then A ⊆ M(A) ⊆ M (2)(A) ⊆ · · · ⊆
M (dlog2(n)e)(A) = Zn. Note that it is possible to have M (i)(A) = Zn for i < dlog2(n)e.

Proof. The inclusions follow from the definition of the map M .
For |A| ≥ 2, we have 2dlog2(n)e(|A| − 1) + 1 > n. Then by Lemma 1, |M (dlog2(n)e)(A)| = n, and so

M (dlog2(n)e)(A) = Zn.

Lemma 3. Let n > 2 be prime, and let A ⊆ Zn, |A| ≥ 2. Then if z ∈ M (i)(A) \M (i−1)(A) for some
i > 0, there exist two distinct positions x, y ∈M (i−1)(A) such that z is equidistant from x and y.

Proof. Since z ∈ M (i)(A) \ M (i−1)(A), by definition of the map M there exist positions x, y ∈
M (i−1)(A) such that z = 2−1(x + y). Thus z is equidistant from x and y. Since z 6∈ M (i−1)(A), x
and y are distinct.

Thus, given a set of unvisited positions A, we are able to construct a nested sequence of sets with
the desired property. While |A| ≥ 2, Lemmas 2 and 3 guarantee that Magnus can move the token to an
unvisited position. By repeated use of this idea until |A| = 1, Magnus can visit all but one position. It
remains to show that this takes at most 2(n− 1) rounds.

Remark 2. Notice that Derek controls which single position remains unvisited. We will use this fact
when we give the strategy for composite table sizes in Section 2.3.

Theorem 4. Let the table size n > 2 be prime. Then Magnus can visit f ∗(n) = n − 1 positions in at
most 2(n− 1) rounds.

Proof. Throughout this proof we will use A to denote the remaining set of unvisited positions, and K
the current position of the token. At the beginning of the game, |A| = n − 1, since the token initially
occupies a position. Let h = blog2(n)c.

Algorithms 2010, 3 248

In order to count the number of rounds required, we use the following idea. Let k be a non-negative
integer. By equation 1 in Lemma 1, if |A| ≥

⌈
n−1
2k

⌉
+1, then |M (k)(A)| ≥ min{n, 2k(|A| − 1) + 1} = n.

It follows that M (k)(A) = Zn, and so Magnus can move the token to an unvisited position in at most k
rounds.

Initially, |A| = n−1 =
⌈
n−1
20

⌉
≥
⌈
n−1
21

⌉
+1, soM (1)(A) = Zn and only one round is required to move

the token to an unvisited position. Magnus may continue to visit unvisited positions at the cost of one
round per position until |A| <

⌈
n−1
21

⌉
+1. Thus he visits

⌈
n−1
20

⌉
−
⌈
n−1
21

⌉
positions in 1×

(⌈
n−1
20

⌉
−
⌈
n−1
21

⌉)
rounds.

Similarly, when
⌈
n−1
21

⌉
+ 1 > |A| ≥

⌈
n−1
22

⌉
+ 1, he may visit

⌈
n−1
21

⌉
−
⌈
n−1
22

⌉
positions at the cost of

at most two rounds per position, for a total of at most 2×
(⌈

n−1
21

⌉
−
⌈
n−1
22

⌉)
rounds.

Eventually, |A| = 1 =
⌈

n−1
2h+1

⌉
<
⌈

n−1
2h+1

⌉
+ 1, and he must stop. We thus have that the total number of

rounds is at most

1×
(⌈

n− 1

20

⌉
−
⌈
n− 1

21

⌉)
+ 2×

(⌈
n− 1

21

⌉
−
⌈
n− 1

22

⌉)
+ · · ·

+ h×
(⌈

n− 1

2h−1

⌉
−
⌈
n− 1

2h

⌉)
+ (h+ 1)×

(⌈
n− 1

2h

⌉
−
⌈
n− 1

2h+1

⌉)
=

⌈
n− 1

20

⌉
+

⌈
n− 1

21

⌉
+ · · ·+

⌈
n− 1

2h

⌉
− (h+ 1)

⌈
n− 1

2h+1

⌉
(by telescoping)

≤
(
n− 1

20
+ 1

)
+

(
n− 1

21
+ 1

)
+ · · ·+

(
n− 1

2h
+ 1

)
− (h+ 1) (since

⌈
n− 1

2h+1

⌉
= 1)

= (n− 1)(
1

20
+

1

21
+

1

22
+ · · ·+ 1

2h
) ≤ 2(n− 1).

2.3. When n is composite

Let n be composite, and let p be the smallest odd prime factor of n. Then by Theorem 1 we have
f ∗(n) =

(
p−1
p

)
n. We will give a recursive strategy for Magnus, proving that he can visit at least f ∗(n)

positions in at most 3(n − 1) rounds. The better bound on the number of rounds is obtained using the
recursive strategy from [1].

We present the strategy in two phases. In the first phase of the strategy, Magnus partitions the table
into p congruence classes each of size n

p
, moves the token to p− 1 of these classes using a strategy based

on Section 2.2, and in each of these p − 1 classes recursively applies this two-phase strategy to visit at
least f ∗(n

p
) positions within the class. Thus at the end of the first phase, Magnus will have visited at least

(p − 1)f ∗(n
p
) positions, and at most (p − 1)n

p
= f ∗(n) positions. If Magnus succeeds in visiting f ∗(n)

positions then the second phase is not needed. Otherwise, he uses a second technique to visit some of
the unvisited positions left over from the first phase, bringing the total number of visited positions up to
f ∗(n).

2.3.1. The first phase: Decomposition into classes, and recursive visitation

Lemma 4 (Decomposition). Let the table size be n = ab, where a and b are integers greater than 1.
Suppose that on a table of size a (resp. b), Magnus has a strategy α (resp. β) to visit f ∗(a) (resp.f ∗(b))

Algorithms 2010, 3 249

positions in r(a) (resp. r(b)) rounds. Then on the table of size n, Magnus is able to visit f ∗(a)f ∗(b)
positions in r(b) + r(a)f ∗(b) rounds.

Proof. We partition the table positions (i.e., the elements of Zn) into the b congruence classes modulo b,
each of size a:

[i]b = {i+ jb : 0 ≤ j ≤ a− 1} for 0 ≤ i ≤ b− 1

We first note that Magnus can restrict his play to positions in a particular class. Let K denote the
current position of the token, and suppose that K ∈ [i]b for some 0 ≤ i ≤ b − 1. Magnus can then
play as follows on an imaginary table of size a whose positions are the elements of [i]b. On each round,
Magnus employs strategy α to calculate a magnitude ` as if the table size were a, but then chooses b` as
the actual magnitude to use. Then the new position of the token will be K ± b` ∈ [i]b, and so the token
will remain within the class.

Magnus’ overall strategy will be to repeatedly move the token to an unvisited class, and then, by
restricting his play to positions within that class, use strategy α to visit f ∗(a) positions within that class
in r(a) rounds.

Now suppose that K ∈ [i]b for some i, and notice that for any magnitude `, (K ± `) mod n ∈ [i± `
(mod b)]b. Magnus can use this idea to play on an imaginary table of size b whose positions correspond
to the b congruence classes. By employing strategy β on this imaginary table, Magnus will visit f ∗(b)
different classes in r(b) rounds. Each time the token lands in an unvisited class, Magnus temporarily
restricts his play to that class, and employs strategy α until he has visited f ∗(a) positions within that
class. He then continues with strategy β until he reaches another unvisited class.

Since Magnus can visit f ∗(b) classes in r(b) rounds, and can visit f ∗(a) positions in r(a) rounds
within each class, the total number of positions visited will be f ∗(a)f ∗(b) and the total number of rounds
will be r(b) + r(a)f ∗(b).

Magnus applies the Decomposition Lemma (Lemma 4) by letting n = pm, where p is the smallest
odd prime factor of n, and partitioning the table into p congruence classes modulo p, each of size n

p
. He

then proceeds as in the proof of the lemma, letting strategy β be the technique for playing on a table of
prime size from Section 2.2. Theorem 4 then guarantees that he will visit p− 1 congruence classes. As
he visits each class, he restricts his play to it and, depending on the size of the class, chooses one of the
following strategies to be strategy α:

Case 1) If the size is a power of two, he uses the strategy from Section 2.1. Then by Theorem 2 he will
visit all positions in the class.

Case 2) If the size is a prime, he uses the strategy from Section 2.2. Then by Theorem 4 he will visit all
but one position in the class.

Case 3) Otherwise, if the size is composite, he uses the strategy being described here (Section 2.3),
applied recursively.

We will use the terminology exploring a class to refer to the process of restricting play to a class and
choosing an appropriate strategy α. We will also say that a class that has been visited in this fashion has
been explored.

Algorithms 2010, 3 250

See phase 1 of algorithm 1, below, for a pseudo-code description of this strategy.
Recall that Magnus’ goal is to visit f ∗(n) =

(
p−1
p

)
n positions (in as few rounds as possible). Since

only p − 1 classes have been visited, Magnus will have visited f ∗(n) positions only if he visited all n
p

positions in each of the p − 1 classes. But this is possible only when n = 2kp for some integer k, since
only in case 1 does Magnus visit every position in a class. So for most table sizes n, the first phase is
insufficient for Magnus to visit f ∗(n) positions. We solve this issue by visiting in the second phase some
of the leftover unvisited positions, either in the classes that Magnus has explored, or in the one class that
was never visited.

2.3.2. The second phase: Visiting leftover unvisited positions

Here, Magnus’ strategy is the same as in Phase 2 from [1]. At the end of the first phase, there is one
unvisited class, which we denote [γ]p, and p − 1 explored classes, which we denote [δ1]p, . . . , [δp−1]p.
Inductively we assume that on a table of size n

p
Magnus can visit f ∗(n

p
) positions in at most 3(n

p
− 1)

rounds. (This will follow from the inductive hypothesis in our proof in Section 2.3.3.) It follows that
at the end of the first phase at least f ∗(n

p
) positions have been visited in each of the explored classes.

Without loss of generality we assume the worst case, in which exactly f ∗(n
p
) positions were visited. Let

p′ be the second smallest odd prime factor of n. By Theorem 1, f ∗(n
p
) = p′−1

p′
· n
p
. Then in each explored

class, n
p
− f ∗(n

p
) = n

pp′
positions remain unvisited.

We consider two ways in which Magnus can bring the total number of visited positions up to f ∗(n).
If Magnus visits all n

pp′
leftover positions in each of the explored classes, then he will have visited every

position in p − 1 classes for a total of f ∗(n) = (p − 1)n
p

positions. If instead he visits f ∗(n
p
) positions

of [γ]p, then he will have visited all but n
pp′

positions in every class, leaving n
p′
≤ n

p
unvisited positions in

total. But this means that he has visited f ∗(n) positions.
Therefore Magnus’ goal will be to either move the token to the class [γ]p, at which point he can

recursively explore that class, or to visit all unvisited positions in [δ1]p, . . . , [δp−1]p.
Notice that since γ, δ1, . . . , δp−1 are the p distinct elements of Zp, we have that γ, 2−1(δ1 +

γ), . . . , 2−1(δp−1 + γ) are also distinct in Zp. Therefore, up to re-ordering, we may write the explored
classes as [2−1(δ1 + γ)]p, . . . , [2

−1(δp−1 + γ)]p. Let J ∈ [δi]p be an unvisited position for some
1 ≤ i ≤ p − 1, and suppose for the moment that Magnus is able to move the token to a position
K ∈ [2−1(δi + γ)]p. Consider what happens when Magnus chooses the magnitude J − K. If Derek
chooses the positive (clockwise) direction, then the token moves to K + (J − K) = J , and Magnus
visits the unvisited position. Otherwise, the token moves to K − (J −K) ∈ [γ]p.

Using the above idea, Magnus has the following strategy. As in the first phase, he uses the technique
from Section 2.2 to play on an imaginary table of size p, where each position on this table corresponds
to a class. Then by Theorem 4 he will visit p − 1 classes. If at any time he visits the class [γ]p,
he recursively explores it and is done. Otherwise, he will visit each of the p − 1 explored classes,
[2−1(δ1 + γ)]p, . . . , [2

−1(δp−1 + γ)]p. Each time he visits a class [2−1(δi + γ)]p he has the opportunity to
visit an unvisited position in the class [δi]p.

By repeating this process n
pp′

times (for the n
pp′

unvisited positions in each explored class) he will
eventually visit all unvisited positions in every explored class.

Algorithms 2010, 3 251

We give Magnus’ strategy in pseudo-code in algorithm 1, below. It remains to prove that this strategy
visits at least f ∗(n) positions in at most 3(n− 1) rounds.

Algorithm 1 Recursive algorithm for exploring a table of size n.
Require: p is the smallest prime factor of n.
Require: The table is partitioned into p congruence classes modulo p, {[i]p : 0 ≤ i ≤ p − 1}, each of

size n
p
.-

1: //Phase 1: Visit p− 1 congruence classes, and recursively explore each one.
2: //In the below loop, Magnus plays on an imaginary table of size p where each position corresponds

to a class, as in the Decomposition Lemma (Lemma 4). The strategy from Section 2.2 is used as
strategy β in the Lemma.

3: while fewer than p− 1 classes have been visited do
4: Move to an unvisited class [i]p. //May require multiple rounds.
5: //Now choose strategy α.
6: if |[i]p| = 2k for some integer k then
7: Use the strategy from Section 2.1 to visit all 2k positions of [i]p in 2k − 1 rounds.
8: else if |[i]p| = q, where q is prime then
9: Use the strategy from Section 2.2 to visit q − 1 positions of [i]p in at most 2(q − 1) rounds.

10: else
11: Recursively apply this algorithm to the class [i]p.
12: end if
13: end while
14: //Phase 2: Visit remaining unvisited positions.
15: //We denote the unvisited class [γ]p, and the explored classes [δ1]p, . . . , [δp−1]p.
16: while there are unvisited positions in [δ1]p, . . . , [δp−1]p do
17: Mark the classes [δ1]p, . . . , [δp−1]p as not yet visited in this iteration.
18: //In the below inner loop, Magnus again plays on an imaginary table of size p where each position

corresponds to a class, using the strategy from Section 2.2.
19: while more than one class remains marked do
20: Move to a marked class [2−1(δi + γ)]p for some 1 ≤ i ≤ p− 1. //May require multiple rounds.
21: Choose the magnitude so that the token will move to either [γ]p or an unvisited position in [δi]p.

//Token moves in one round.
22: if the token is in [γ]p then
23: Recursively apply this algorithm to the class [γ]p, and stop.
24: else
25: Unmark the class [2−1(δi + γ)]p.
26: end if
27: end while
28: end while

Algorithms 2010, 3 252

2.3.3. Proof of the strategy

We will prove that Magnus’ strategy allows him to visit at least f ∗(n) positions in at most 3(n − 1)

rounds. First notice that Derek controls whether the token ever reaches [γ]p. For in Section 2.2, Derek
controls which position remains unvisited (Remark 2), and so here controls which class remains unvisited
(on the imaginary table whose positions are classes). Furthermore, each time the token is in a class
[2−1(δi + γ)]p for some i, Derek controls whether the token moves to [γ]p.

We will thus make the assumption that Magnus visits [γ]p if and only if he does not visit any of the
leftover unvisited positions in the explored classes. This assumption is justified by Derek’s primary goal
to minimize the number of positions visited by Magnus. For if Magnus is allowed to visit both [γ]p and
at least one leftover unvisited position in the explored classes, the total number of visited positions will
be greater than pf ∗(n/p) and since f ∗(n/p) ≥ (p−1)(n/p)

p
, the total number of visited positions will be

greater than f ∗(n).

Theorem 5. Let n = pm where p is the smallest odd prime factor of n. If Derek does not allow for more
than f ∗(n) visited positions and therefore is consistent in his choices (as stated above), then there exists
a strategy for Magnus to visit at least f ∗(n) =

(
p−1
p

)
n positions in at most 3(n− 1) rounds.

Proof. Let s denote the number of odd prime factors of n. We will prove by induction on s that Magnus
visits at least f ∗(n) positions in at most 3(n− 1) rounds.

Base case 1) n = 2k, k > 0. Then by Theorem 2 Magnus visits f ∗(n) = 2k positions in n−1 ≤ 3(n−1)
rounds.

Base case 2) n = p, p prime. Then by Theorem 4 Magnus visits f ∗(n) = p − 1 positions in at most
2(p− 1) ≤ 3(n− 1) rounds.

Base case 3) n = 2kp, k > 0, p prime. Then in the first phase Magnus visits all 2k positions in each of
p−1 classes. He requires at most 2(p−1) rounds to visit the classes, and 2k−1 to explore
each class, for a total of at most 2(p− 1)+ (p− 1)(2k − 1) ≤ 3(n− 1) rounds. No second
phase is needed.

We now let s > 1 and assume the following inductive hypothesis: If n has s − 1 odd prime factors
then Magnus can visit at least f ∗(n) positions in at most 3(n− 1) rounds.

Let n = 2kp1p2 · · · ps, where p1, p2, . . . , ps are prime and listed in increasing order. Then there are p1
classes, each of size n

p1
. Magnus’ goal is to visit at least f ∗(n) =

(
p1−1
p1

)
n positions, or equivalently, to

leave at most n
p1

positions unvisited.
In the first phase of the algorithm, Magnus visits p1 − 1 classes and recursively applies the algorithm

to explore within each class. Then by the inductive hypothesis, he leaves at most n
p1
− f ∗(n

p1
) = n

p1p2

unvisited positions in each explored class. Without loss of generality, we assume the worst case of n
p1p2

unvisited positions. Furthermore, [γ]p1 has not been visited, so a total of (p1 − 1) n
p1p2

+ n
p1

positions
remain unvisited.

Magnus requires at most 2(p1 − 1) rounds to visit the p1 − 1 classes (Theorem 4 as applied in the
first phase). Furthermore, by the inductive hypothesis he requires at most 3(n

p1
−1) rounds to recursively

Algorithms 2010, 3 253

explore each class. So by lemma 4, at the end of the first phase, at most 2(p1 − 1) + 3(p1 − 1)(n
p1
− 1)

rounds have occurred.
For the second phase we consider two cases.

Case A) Magnus never visits [γ]p1 . Then in order to achieve his goal Magnus must visit all of the
leftover unvisited positions in the p1− 1 explored classes. This requires that he repeatedly visit
the explored classes n

p1p2
times (using the strategy from Section 2.2). Each time, he takes at

most 3(p1 − 1) rounds, 2(p1 − 1) from Theorem 4, and p1 − 1 from the one round to move
from [2−1(δi + γ)]p1 to [δi]p1 for each 1 ≤ i ≤ p1− 1. Thus a total of at most 3

(
n

p1p2

)
(p1− 1)

rounds are required for the second phase.

Case B) Magnus visits [γ]p1 , but no leftover unvisited positions in the explored classes. By the inductive
hypothesis, Magnus leaves at most n

p1p2
positions unvisited in [γ]p1 . Since this is also true of

the explored classes, a total of at most p1
(

n
p1p2

)
≤ n

p1
positions remain unvisited, and Magnus

achieves his goal.

We now count how many rounds this requires. At the end of the first phase, at most one
round is required to move the token to [γ]p1 , for if the token is not already in [γ]p1 then it is
in [2−1(δi + γ)]p1 for some i. By the inductive hypothesis Magnus requires at most 3(n

p1
− 1)

rounds to explore [γ]p1 . Thus a total of at most 1+3(n
p1
−1) rounds are required for the second

phase.

In both cases, Magnus visits at least f ∗(n) positions, and a simple calculation shows that he achieves
this goal in at most 3(n− 1) rounds.

2.3.4. Efficiency of the strategy

In order for Magnus to calculate magnitudes in the above algorithm, he must know at each round the
smallest integer k such that M (k)(A) = Zn (see the proof of Theorem 4 in Section 2.2). In general,
the only way we know to determine this is to consecutively compute A,M(A),M (2)(A), . . . until we
reach Zn. Furthermore, Lemma 3 requires that as we calculate these sets we record for each position
z ∈ M (i)(A) \M (i−1)(A) (1 ≤ i ≤ j) a pair of positions x, y ∈ M (i−1)(A) such that z is equidistant
from x and y. With a naive algorithm, this is computationally time consuming. Given a set S of size m,
computing M(S) requires calculations of 2−1(x+ y) (mod m) for each x, y ∈ S, and so is O(m2).

3. Open Problems

We propose several open problems for future study.

1. What is the most efficient way for Magnus to compute magnitudes in this strategy?

2. Can we prove a tighter upper bound on the number of rounds required by Magnus? We conjecture
that there is a strategy for Magnus to visit f ∗(n) positions in at most n + c rounds, where c is a
small constant.

Algorithms 2010, 3 254

3. Can we find a nontrivial lower bound for the number of rounds Magnus needs to visit f ∗(n)
positions?

4. Which strategy of Derek’s would maximize the number of rounds Magnus requires to visit f ∗(n)
positions?

4. Acknowledgments

I am very grateful to Noam Sturmwind for editing assistance.

References

1. Nedev, Z.; Muthukrishnan, S. The Magnus-Derek Game. Theoret. Comput. Sci. 2008, 393, 124–132.
2. Nedev, Z. Universal Sets and the Vector Game. INTEGERS: Electr. J. Combinat. Number Theory

2008, 8, #A45.
3. Hurkens, C.A.J.; Pendavingh, R.A.; Woeginger, G.J. The Magnus–Derek game revisited. Inf. Proc.

Lett. 2008, 109, 38–40.
4. Sturmwind, N. University of Victoria, Victoria, BC, Canada, Personal communication, June 23 2008.
5. Nedev, Z.; Quas, A. Balanced Sets and The Vector Game. Int. J. Number Theory 2008, 4, 339–347.
6. Nedev, Z. An algorithm for finding a nearly minimal balanced set in Fp. Math. Comput. 2009, 78,

2259–2267.
7. Sloane, N. On line Encyclopedia of Sequences. Availible online: http://www.research.att.com/ njas/

sequences/ (accessed on 8 July 2010).
8. Cauchy, A.L. Recherches sur les nombres. J. Ec. Polytech. 1813, 9, 99–116.
9. Davenport, H. On the addition of residue classes. J. Lond. Math. Soc. 1935, 10, 30–32.

c© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
http://creativecommons.org/licenses/by/3.0/.

	Introduction
	An O(n)-Round Strategy for Magnus
	When n is a power of two
	When n is prime
	When n is composite
	The first phase: Decomposition into classes, and recursive visitation
	The second phase: Visiting leftover unvisited positions
	Proof of the strategy
	Efficiency of the strategy

	Open Problems
	Acknowledgments

