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Abstract:



The metric average is a binary operation between sets in [image: there is no content] which is used in the approximation of set-valued functions. We introduce an algorithm that applies tools of computational geometry to the computation of the metric average of 2D sets with piecewise linear boundaries.
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1. Introduction


Approximation of set-valued functions has various potential applications in optimization, mathematical economics, control, robotics and more. While approximation of set-valued functions with convex sets as images can be achieved with methods based on Minkowski averages c.f. [1], it is shown in [2] that Minkowski averages are not suitable for approximation of set-valued functions with general (not necessarily convex) images. In order to develop approximation methods for set-valued functions with general images, other averaging operations on compact sets are required. Along with theoretical construction of such averaging operations, efficient algorithms for their computation are needed.



First introduced by Z. Artstein in [3], the metric average of two compact sets in [image: there is no content] is a union of weighted averages between any point from any of the two sets and the subset of all its closest points from the other set. The interest in the metric average is due to its metric property in relation to the Hausdorff distance [3]. The metric property of the metric average is that its Hausdorff distance from any of the averaged sets changes linearly with the weight parameter of the average.



In [3], the metric average is used for piecewise linear approximation of set-valued functions. Extending these results, Dyn et al. applied the metric average to the approximation of set-valued functions from a finite number of their samples, using spline subdivision schemes and more generally positive approximation operators [4,5]. These methods are based on repeated computations of the metric average.



The applicability of metric average based approximation methods requires efficient algorithms for the computation of the metric average of compact sets. An algorithm for the computation of the metric average of two 1D compact sets with computation time, which is linear in the number of connected subsets in the two sets, is introduced in [6]. A first step in the development of algorithms for the computation of the metric average of 2D sets is done in [7], where an algorithm for the computation of the metric average of two intersecting convex polygons is introduced and analyzed. The algorithm of [7] has linear time complexity in the number of vertices of the input polygons.



In this work we introduce an algorithm that applies tools of computation geometry, segment Voronoi diagrams (c.f. [8]) and planar arrangements (c.f. [9]) to the computation of the metric average of 2D sets with piecewise linear boundaries. Such sets are collections of simple polygons and of simple polygons with holes. Since a compact 2D set with boundary consisting of closed curves can be linearly approximated by a 2D set with piecewise linear boundaries, our algorithm provides a computational method for approximation of set-valued functions with 2D images from a finite number of samples.



Although the definition of the metric average of two sets with piecewise linear boundaries requires at least one operation for each point in the two sets, our algorithm reduces the computation to boundaries of cells of the partition of the two sets, obtained by the segment Voronoi diagram. The complexity of the algorithm is [image: there is no content], where n is the total number of vertices on the boundaries of the two sets.



Our algorithm is based on geometric objects such as segment Voronoi diagrams, arrangements of conic arcs and conic polygons with holes. We implemented the algorithm in C++, using the CGAL library [10], for handling the various geometric objects.



The outline of this paper is as follows. Section 2 contains definitions and notation. In particular we review the main geometric concepts relevant to our work such as the metric average, segment Voronoi diagrams, planar arrangements and conic polygons with holes. In Section 3 we present the algorithm for the computation of the metric average of two simple polygons. The algorithm is extended to general 2D sets with piecewise linear boundaries in Section 4. Examples of the metric average computed by our algorithm, are presented in Section 5. In Section 6 we derive the run-time complexity bounds for our algorithm and obtain bounds on the combinatorial complexity of the computed metric average. Conclusions and directions for possible extensions are given in Section 7.




2. Preliminaries


To define the metric average of two sets, we first introduce some notation. The Euclidean distance from a point p to a set A⊂[image: there is no content] is


[image: there is no content]








with [image: there is no content] the Euclidean norm. A point q is called a projection point of a point p on a set A, if q belongs to the closure of A and [image: there is no content]. Generally the projection point is not unique, and the set of all projection points of p on A is denoted by [image: there is no content]. For two sets [image: there is no content] and [image: there is no content], we introduce the asymmetric operation [image: there is no content], which is the set of all t-weighted averages between any point in A and all its projection points on B, namely


[image: there is no content]



(2.1)




Finally the t-weighted metric average of two compact sets [image: there is no content] is defined as,


[image: there is no content]



(2.2)




It is easy to verify that [image: there is no content], [image: there is no content], and [image: there is no content]. An example of the metric average of two sets in 1D is given in Figure 1.


Figure 1. The metric average of two non-convex sets in 1D, where [image: there is no content] , [image: there is no content], [image: there is no content].
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Since for [image: there is no content], the projection point of p on A, and also the projection point of p on B is the point p itself, we have


[image: there is no content]



(2.3)




where ∖ denotes the usual set difference.



Now since for points outside a set, the projection on the set is equivalent to the projection on the boundary of the set, relation (2.3) can be further rewritten as,


[image: there is no content]



(2.4)




where ∂ denotes the boundary of a set.



Next we briefly recall the definitions of the geometric objects used in this work. A collection of points [image: there is no content] satisfying


[image: there is no content]








with [image: there is no content], is called a planar conic curve. We refer to segments of conic curves as conic segments.



A simple polygon is a region of the plane bounded by a single closed and not self-intersecting chain of linear segments, termed edges. A simple polygon with holes is a simple polygon that contains holes,


which are simple polygons. If we allow the edges to be conic segments, we get a simple conic polygon with holes. A set with piecewise linear boundaries is a collection of pairwise disjoint simple polygons with holes.



A collection of simple conic polygons with holes can be treated as a planar arrangement (c.f. [9]). Given a set C of bounded planar curves, the arrangement [image: there is no content] is the subdivision of the plane induced by the curves in C into zero-dimensional, one-dimensional and two-dimensional cells, called vertices, edges and faces respectively. The overlay of two arrangements [image: there is no content] is the arrangement [image: there is no content] produced by the edges from [image: there is no content] and [image: there is no content].



Given a collection Σ of geometric objects in [image: there is no content], called Voronoi sites, the Voronoi diagram (see e.g. [8,11]) of Σ is the subdivision of the plane into regions (called Voronoi faces), each region being associated with a site [image: there is no content] , and containing all points of the plane for which [image: there is no content] is closest (with respect to the Euclidean distance) among all the sites in Σ. A Voronoi bisector is a set of points that are equidistant from two Voronoi sites. The Voronoi diagram induced by a collection of linear segments in [image: there is no content] is termed segment Voronoi diagram. The standard technique is to treat a segment as three disjoint geometric objects: two endpoints and an open segment [8]. The bisector between an open segment [image: there is no content] and a point [image: there is no content] is defined by the line through [image: there is no content] that is perpendicular to [image: there is no content]. We also assume that the diagram is bounded by a rectangular frame, which is large enough not to influence the computation of the metric average.




3. The Algorithm for Simple Polygons


Here we assume that [image: there is no content] are simple polygons. We begin with the representation (2.4) of the metric average. The main part of the computation of the metric average is the computation of the sets [image: there is no content] and [image: there is no content] with [image: there is no content]. We describe in details the computation of [image: there is no content]. First we apply a sequence of reductions, which simplify the computations. The main idea is to partition [image: there is no content] by the segment Voronoi diagram induced by [image: there is no content]. We show that it is sufficient to perform the computations only on the boundary curves of the cells of this partition.



Denote by VD[image: there is no content] the collection of faces of the segment Voronoi diagram induced by the [image: there is no content]. The Voronoi faces in VD[image: there is no content] constitute a partition of the plane. Therefore the set [image: there is no content] can be represented as,


A∖B=⋃F∈VD[image: there is no content]((A∖B)⋂F),



(3.1)




and thus, by the definition of [image: there is no content] in (2.1),


[image: there is no content]A∖B,∂B=⋃F∈VD[image: there is no content][image: there is no content](A∖B)⋂F,∂B.



(3.2)




Denoting by [image: there is no content] the Voronoi site associated with a Voronoi face F, we observe that by the definition of VD[image: there is no content], the closest point on [image: there is no content] to p∈F∈VD[image: there is no content] is on [image: there is no content], and obtain


[image: there is no content]A∖B,∂B=⋃F∈VD[image: there is no content][image: there is no content](A∖B)⋂F,S(F).



(3.3)




We call a connected component of [image: there is no content] with non-empty interior a metric face of F. For [image: there is no content] a metric face of F, we define S([image: there is no content])=S(F). We denote by MF[image: there is no content](A∖B) the collection of all the metric faces induced by the Voronoi faces in VD[image: there is no content] and by [image: there is no content]. With this notation (3.3) can be rewritten as,


[image: there is no content]A∖B,∂B=⋃F∈MF[image: there is no content](A∖B)[image: there is no content]F,S(F).



(3.4)







In order to compute [image: there is no content]A∖B,∂B using the reduction (3.4), it is required first to find the metric faces and then for each metric face F to compute [image: there is no content]F,SF,



The computation of the metric faces are based on planar arrangements. The bisectors of the segment Voronoi diagram are conic curves [8], hence VD[image: there is no content] constitutes an arrangement of conic segments. Obviously [image: there is no content] can be represented by an arrangement of linear segments. Thus the metric faces are the intersections of the bounded faces of the two arrangements and can be computed by the overlay of these two arrangements.



Next we show that the computation of [image: there is no content]F,SF for a metric face F can be further reduced to the computation of [image: there is no content]∂F,SF. The Voronoi site [image: there is no content] is either an open linear segment or a point, thus the set Π[image: there is no content](p) of all projection points of a point p∈[image: there is no content] on [image: there is no content] is a singleton. It is easy to see, that the operation p→[image: there is no content]p,SF , can be regarded as a continuous one-to-one function from the metric face F to [image: there is no content]. Consequently, [image: there is no content]∂F,SF is a simple closed curve, since the boundary of a metric face is so. Thus the region bounded by [image: there is no content]∂F,SF is [image: there is no content]F,SF, and it is sufficient to compute [image: there is no content]∂F,SF. Denoting by Ω[image: there is no content]∂F,SF the region bounded by [image: there is no content]∂F,SF, we have


[image: there is no content]F,SF=Ω[image: there is no content]∂F,SF.



(3.5)







Finally the computation is reduced to that of [image: there is no content]τ,SF for a conic segment τ on the boundary of a metric face F. This straightforward task is completed by a fixed number of operations. The obtained set [image: there is no content]τ,SF is also a conic segment, and therefore [image: there is no content]F,SF is a conic polygon.



To conclude, our algorithm computes the metric average of two simple polygons using (2.4), (3.4) and (3.5), and


[image: there is no content]∂F,SF=⋃τ∈C[image: there is no content][image: there is no content]τ,SF,



(3.6)




where [image: there is no content] is the collection of conic segments comprising [image: there is no content].




4. Extension to 2D Sets with Piecewise Linear Boundaries


The algorithm for the computation of the metric average of two simple polygons introduced in the previous section can be straightforwardly extended to 2D sets with piecewise linear boundaries, namely each set is a collection of simple polygons with holes. We discuss the computation of [image: there is no content]A∖B,∂B with such sets [image: there is no content].



The boundary of B consists of linear segments and therefore the segment Voronoi diagram VD[image: there is no content] is well defined. The metric faces are defined as in the previous section, and Relations (3.1)-(3.4) stay valid. However a metric face F is now a connected component of the intersection of a Voronoi face with a collection of simple polygons with holes, so it is a simple conic polygon with holes. Let a metric face F be a simple conic polygon P with holes [image: there is no content]. The arguments of the previous section imply that [image: there is no content]F,SF is a simple conic polygon [image: there is no content]P,SF with holes [image: there is no content]H1,SF,…,[image: there is no content]Hn,SF. Consequently, the computation of [image: there is no content]F,SF is reduced to the computation of [image: there is no content]∂P,SF and [image: there is no content]∂H1,SF,…,[image: there is no content]∂Hn,SF.




5. Examples


We implemented the algorithm in C++, using the CGAL library [10] for computational geometry algorithms. In particular we used [12] for 2D arrangements, [13] for segment Voronoi diagrams and [14] for Boolean set operations. The input to the algorithm is two collections of polygons with holes comprising the input sets, and the output is a collection of conic polygons with holes comprising the computed metric average.



We present a collection of examples of the metric average of two sets with piecewise linear boundaries. In the following examples the boundaries of the input sets [image: there is no content] are depicted in dotted green and blue respectively, and the boundary of their metric average is depicted in bold red.
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Figure 2. [image: there is no content] where [image: there is no content] are simple convex polygons. 






Figure 2. [image: there is no content] where [image: there is no content] are simple convex polygons.
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Figure 3. [image: there is no content], where A is a simple polygon and B consists of two simple polygons included in A. 






Figure 3. [image: there is no content], where A is a simple polygon and B consists of two simple polygons included in A.
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Figure 4. [image: there is no content], where [image: there is no content] are sets with piecewise linear boundaries. 






Figure 4. [image: there is no content], where [image: there is no content] are sets with piecewise linear boundaries.
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The examples indicate that the metric average is more suitable for applications of set-valued approximation, where the Hausdorff distance between the sampled function and the approximant is of interest, but it is less suitable for geometry oriented applications. The geometric “artifacts” produced by the metric average are explained by the fact that the projection point on a set may move discontinuously for points near the boundaries between faces of the Voronoi diagram induced by the boundary of the set.




6. Complexity Bounds


In this section we discuss the run-time complexity bounds for our algorithm and the combinatorial complexity of the obtained set. We assume here that [image: there is no content] are simple polygons, and the extension of the results of this section to 2D sets with piecewise linear boundaries is straightforward. The complexity bounds depend on the well known complexity of the underlying algorithms for the computation of segment Voronoi diagrams and planar arrangements.



Recall that by (2.4) and (3.4),


A⊕tB=A⋂B⋃F∈MF[image: there is no content][image: there is no content][image: there is no content]F,SF⋃F∈MF∂A[image: there is no content]M1−tF,SF.



(6.1)




Our main task in this complexity analysis is to show that (6.1) is a union of simple conic polygons with pairwise disjoint interiors. For this goal, we first prove several results about the metric average that will be later used in the complexity analysis.




Lemma 6.1 

Let p1,p2∈[image: there is no content]∖B such that [image: there is no content], then for [image: there is no content]


[image: there is no content]p1,∂B⋂[image: there is no content]p2,∂B=ϕ.
















Proof. 

Assume to the contrary that there exists a point p in [image: there is no content]p1,∂B⋂[image: there is no content]p2,∂B, then there exist [image: there is no content]∈Π[image: there is no content][image: there is no content],i=1,2 such that


[image: there is no content]



(6.2)




From above equality we conclude that [image: there is no content]. Without loss of generality assume, that


[image: there is no content]



(6.3)




Recall, by definition, that


[image: there is no content]



(6.4)




Since [image: there is no content] and [image: there is no content], (6.2) implies [image: there is no content] . Thus by (6.3), [image: there is no content] in contradiction to (6.4).




☐



An immediate consequence of Lemma 6.1 is

Corollary 6.2 

Let p∈[image: there is no content]A∖B,∂B, then there is a unique point [image: there is no content], denoted by [image: there is no content], such that p∈[image: there is no content]q,∂B. Moreover simple geometric arguments imply that for p1,p2∈[image: there is no content]A∖B,∂B, [image: there is no content] .







Since any two metric faces contained in the same polygon have disjoint interiors, we conclude from the above lemma,




Corollary 6.3 

Let [image: there is no content] be metric faces such that [image: there is no content], then [image: there is no content]F1,SF1 and [image: there is no content]F2,SF2 have disjoint interiors.







Next we prove a result complementing Lemma 6.1.




Lemma 6.4 

Let [image: there is no content], [image: there is no content]. If


[image: there is no content]p1,∂B⋂M1−tp2,∂A≠ϕ,








then


p1∈Π∂Ap2andp2∈Π∂Bp1.
















Proof. 

Let p∈[image: there is no content]p1,∂B⋂[image: there is no content]p2,∂A , then there exist points s1∈Π[image: there is no content]p1 and [image: there is no content] such that


[image: there is no content]



(6.5)




Without loss of generality assume that


[image: there is no content]



(6.6)




By definition,


[image: there is no content]



(6.7)




By (6.5) and (6.6),


[image: there is no content]



(6.8)




We prove the lemma by contradiction. Suppose [image: there is no content], then by (6.5) [image: there is no content]. Thus [image: there is no content], and therefore by (6.8) [image: there is no content], which is a contradiction to (6.7).




☐



Note that under the conditions of Lemma 6.4, [image: there is no content] and [image: there is no content], and therefore we get, in view of Corollary 6.2, that




Corollary 6.5 

The sets A⋂B,[image: there is no content]A∖B,∂B,M1−tB∖A,∂A have pairwise disjoint interiors.







Next we discuss the combinatorial complexity of the metric average of two simple polygons. The discussion is based on the notion of the combinatorial complexity of a planar arrangement, which is the sum of the number of vertices, the number of edges, and the number of faces in the arrangement.




Proposition 6.6 

Let n be the sum of the numbers of vertices in A and in B. The combinatorial complexity of [image: there is no content] with [image: there is no content] is [image: there is no content].








Proof. 

The combinatorial complexity of [image: there is no content] is [image: there is no content] and the combinatorial complexity of VD[image: there is no content] is [image: there is no content] [8]. Since the metric faces in MF[image: there is no content][image: there is no content] are partial to the overlay of the arrangements representing VD[image: there is no content],∂A and [image: there is no content] their total combinatorial complexity is [image: there is no content] and the same bound holds for the metric faces in [image: there is no content]. By Corollaries 6.3 and 6.5, (6.1) is a union of sets with pairwise disjoint interiors. So the combinatorial complexity of [image: there is no content] is bounded by the combinatorial complexity of [image: there is no content] and the combinatorial complexity of the metric faces, namely it is [image: there is no content].




☐



Finally we derive the run-time complexity of our algorithm.




Proposition 6.7 

Let n be the sum of the numbers of vertices in A and in B. Let k be the combinatorial complexity of the overlay of the arrangements representing [image: there is no content] and VD[image: there is no content]. Then the run-time complexity of the computation of the metric average [image: there is no content] is [image: there is no content].








Proof. 

It follows from the proof of Proposition 6.6 that k is [image: there is no content]. Computation of the sets [image: there is no content], [image: there is no content], [image: there is no content] can be done in [image: there is no content] and the combinatorial complexity of each of these sets is bounded by k [15]. The segment Voronoi diagrams [image: there is no content] and VD[image: there is no content] can be computed in [image: there is no content] [8]. Since the metric faces in MF[image: there is no content][image: there is no content] are computed by the overlay of the arrangements representing [image: there is no content] and VD[image: there is no content], with the combinatorial complexity of the result bounded by k, they can be found in [image: there is no content]. Computation of [image: there is no content]∂F,SF for all metric faces in MF[image: there is no content][image: there is no content] is performed in [image: there is no content]. The same bounds hold for metric faces in [image: there is no content]. Finally we compute [image: there is no content] as in (6.1). By the proof of Proposition 6.6 the combinatorial complexity of [image: there is no content] is [image: there is no content], so the corresponding arrangement can be computed in [image: there is no content] [9,15].




☐




7. Conclusions


In this work we present an algorithm for the computation of the metric average of 2D sets with piecewise linear boundaries. Our algorithm provides a computational method for the approximation of set valued functions with images in [image: there is no content] from a finite number of samples, by techniques based on the metric average [3,4,5].



Although the metric average of 2D sets is defined by operations on each point in the two operand sets, our algorithm reduces the computation to manipulation of 1D objects. This is achieved using segment Voronoi diagrams and planar arrangements. The implementation of the algorithm uses the relevant geometric algorithms in the CGAL [10] library.



The main idea of our algorithm, namely the simplification of the computation of the metric average with Voronoi diagrams has straightforward extension to any two objects in any finite dimension, such that the Voronoi diagrams of the boundaries of the two objects are well defined. A natural extension of this work is to develop and implement an algorithm for the computation of the metric average of two polyhedra.



Whereas the metric average is of interest in applications where the Hausdorff distance is important, it does not possess good geometric properties, as is indicated by the examples in Section 5. For geometric applications, it is of interest to develop set averaging operations that possess good geometric properties, i.e. comprise a gradual transformation of the geometric shape between the two sets, and also have the “metric property” relative to some metric. The first two authors have recently developed a new set averaging operation with good geometric features, having the “metric property” relative to the measure of the symmetric difference of two sets [16].
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