Univariate Cubic L_{1} Interpolating Splines: Analytical Results for Linearity, Convexity and Oscillation on 5-Point Windows

Qingwei Jin ${ }^{1, \star}$, John E. Lavery ${ }^{1,2}$ and Shu-Cherng Fang ${ }^{1}$
${ }^{1}$ Industrial and Systems Engineering Department, North Carolina State University, Raleigh, NC 27695-7906, USA; E-Mail: fang@ ncsu.edu
${ }^{2}$ Mathematical Sciences Division, Army Research Office, Army Research Laboratory, P.O. Box 12211, Research Triangle Park, NC 27709-2211, USA; E-Mail: john.lavery2 @us.army.mil

* Author to whom correspondence should be addressed; E-Mail: qjin2@ncsu.edu; Tel.: +01-919-513-1909; Fax: +01-919-515-5281.

Received: 9 June 2010; in revised form: 11 July 2010 / Accepted: 20 July 2010 /
Published: 30 July 2010

Abstract

We analytically investigate univariate C^{1} continuous cubic L_{1} interpolating splines calculated by minimizing an L_{1} spline functional based on the second derivative on 5-point windows. Specifically, we link geometric properties of the data points in the windows with linearity, convexity and oscillation properties of the resulting L_{1} spline. These analytical results provide the basis for a computationally efficient algorithm for calculation of L_{1} splines on 5-point windows.

Keywords: convexity; cubic L_{1} spline; 5-point window; interpolation; linearity; locally calculated; oscillation; second-derivative-based; univariate

Classification: MSC 65D05, 65D07

1. Introduction

Shape-preserving techniques for interpolating and approximating multiscale data, that is, data with sudden large changes in magnitude and/or spacing, are important for modeling of natural and urban terrain, geophysical features, biological objects, robotic paths and many other irregular surfaces,
processes and functions. Over the past decade, a new class of univariate and bivariate splines, namely, L_{1} splines, that have superior shape-preserving properties for interpolating and approximating multiscale data has arisen ([1-21]). The L_{1}-norm minimization principles on which L_{1} splines are based result in non-differentiable convex generalized geometric programs that, so far, have been more complex and more computationally expensive to solve than the programs by which other variants of splines, e.g., conventional and tension splines, T-splines, etc., are solved, but the shape preservation provided by L_{1} splines is significantly better than the shape preservation provided by these alternative approaches.
L_{1} splines have typically been calculated by minimization of global spline functionals, that is, spline functionals that extend over the whole range of the data to be interpolated. However, there have been three reports in the literature of L_{1} splines on local windows. The first such report is in [17], where bivariate L_{1} splines were calculated by a non-iterative "domain decomposition" procedure on overlapping 80×80 windows and 40×40 subsets of these windows were pieced together to create global surfaces. With parallel computation, the domain-decomposition procedure results in sharply reduced computing time.

In 2007, a result for univariate L_{1} splines on much smaller windows arose. In [2], Auquiert, Gibaru and Nyiri showed that, given five points on a Heaviside function with two to the left of the discontinuity and three to the right, the L_{1} spline for these five points is linear over the set of three points ([2], Proposition 9). Even though preservation of linearity is not all of what we desire in shape preservation, it is a large part thereof. This linearity-preservation result suggests that calculation of L_{1} splines on small, 5-point windows, is geometrically meaningful. An immediate generalization of Proposition 9 of [2] is that, if, in a set of five points, three consecutive points on one end are collinear, then the L_{1} spline through those three points is, except in the case of a V-shaped corner, linear. Such a result does not hold when the five points are embedded in a larger data set and a global L_{1} spline functional is minimized. The best result that can be achieved in the case of a global L_{1} spline functional is the following.

Theorem 1. (Theorem 2 of [7]) If four consecutive data points $\left(x_{i}, z_{i}\right),\left(x_{i+1}, z_{i+1}\right),\left(x_{i+2}, z_{i+2}\right)$ and $\left(x_{i+3}, z_{i+3}\right)$ lie on a straight line, then a cubic L_{1} spline $z(x)$ preserves linearity over the middle interval $\left[x_{i+1}, x_{i+2}\right]$. If $\beta_{i-1}^{*} \neq \pm \frac{5}{3}$, then $z(x)$ preserves linearity over the first interval $\left[x_{i}, x_{i+1}\right]$. If $\beta_{i+2}^{*} \neq \pm \frac{5}{3}$, then $z(x)$ preserves linearity over the last interval $\left[x_{i+2}, x_{i+3}\right]$. (Here β_{i-1}^{*} and β_{i+2}^{*} are components of the optimal dual solution in [7].)

In this case, one needs four (rather than just three) consecutive collinear points and the L_{1} spline is guaranteed to be linear only in the second interval (the interval between the second and the third of the four points). The L_{1} spline is linear in the first and third of the three cells only if additional conditions, ones that do not have clear geometric meaning, are fulfilled. Proposition 9 of [2] is thus a significant improvement over Theorem 2 of [7].

Proposition 9 of [2] shows that one can preserve linearity over a larger set of points by calculating the L_{1} spline using local 5-point windows rather than globally. This has a potential strategic implication, namely, that one may be able, by replacing a global minimization problem by a set of local minimization problems, to both further improve the shape preservation capabilities of L_{1} splines and at the same time reduce the computing time because the local problems are independent of each other and can be
solved in parallel. This is the opportunity that this paper wishes to investigate. The authors Auquiert, Gibaru and Nyiri of [2] have followed up on their results of 2007 with an article [22] containing new analytical results about preservation of linearity by windowed, rotation-invariant parametric L_{1} splines of degrees 3 and higher. In contrast, this present paper considers linearity, convexity and oscillation for 5-point-window, rotation-dependent nonparametric cubic L_{1} splines.

The precise purpose of this present paper is to provide analytical results that link linearity, convexity and oscillatory properties of the data on 5-point windows with linearity, convexity, oscillatory and uniqueness properties of the resulting L_{1} spline. In each 5-point window, a local L_{1} spline functional is used to determine the first derivative at the middle (or, near boundaries, other) point in this window. After the first derivatives at all of the data points have been determined, a C^{1} piecewise cubic interpolant, called the L_{1} spline (or "locally calculated cubic L_{1} spline"), is set up by Hermite interpolation in each interval. In Section 2, we investigate analytical properties of the spline functional that link local geometric properties of 5-point windows of the data with geometric properties of the local L_{1} splines on these windows. Based on the analytical results for 5-point windows, we investigate in Section 3 the properties of the C^{1} piecewise cubic interpolant that has derivatives determined by these 5-point-window L_{1} splines. In Section 4, we summarize the results presented in the previous sections and describe potential computational implications of these results.

All of the quantities in this paper are real quantities. The nodes $x_{i}, i=0,1, \ldots, I$, are a strictly monotonic but otherwise arbitrary partition of the finite interval $\left[x_{0}, x_{I}\right]$. Let $h_{i}=x_{i+1}-x_{i}, i=$ $0,1, \ldots, I-1$. At each node x_{i}, the function value z_{i} is given, $i=0,1, \ldots, I$. The slope of the line segment connecting $\left(x_{i}, z_{i}\right)$ and $\left(x_{i+1}, z_{i+1}\right)$ is $\triangle z_{i}:=\frac{z_{i+1}-z_{i}}{h_{i}}, i=0,1, \ldots, I-1$. The L_{1} splines discussed in this paper are cubic polynomials in each interval $\left(x_{i}, x_{i+1}\right), i=0,1, \ldots, I-1$, and are C^{1} continuous at the nodes. The first derivative of the spline at node $x_{i}, i=0,1, \ldots, I$, is denoted by b_{i} (to be determined by minimization of the L_{1} spline functional). We use δ_{i} to denote the slope of the chord between neighboring points:

$$
\begin{equation*}
\delta_{i}=\frac{z_{i+1}-z_{i-1}}{x_{i+1}-x_{i-1}}, \quad i=2, \ldots, I-2 \tag{1}
\end{equation*}
$$

We use ζ to denote the linear spline:

$$
\begin{equation*}
\zeta(x)=\frac{\left(x_{i+1}-x\right) z_{i}+\left(x-x_{i}\right) z_{i+1}}{h_{i}}, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=0,1, \ldots, I-1 \tag{2}
\end{equation*}
$$

2. Analytical Properties of 5-Point-Window L_{1} Splines

The splines that we will consider in this paper are calculated locally as described in this paragraph. For the interpolation problem under consideration in the present paper, the function values are given. In the 5 -point window with middle point $x_{i}, 2 \leq i \leq I-2$, the derivative at x_{i} is calculated by minimizing

$$
\begin{equation*}
\int_{x_{i-2}}^{x_{i+2}}\left|\frac{\mathrm{~d}^{2} z}{\mathrm{~d} x^{2}}\right| \mathrm{d} x \tag{3}
\end{equation*}
$$

over the finite-dimensional spline space of C^{1} piecewise cubic polynomials z that interpolate the data. The free parameters in the minimization of functional (3) are the derivatives b_{i} of the spline at the five
nodes. The derivative at node x_{i} that occurs at the minimum of functional (3) is denoted by b_{i}^{*}. Whenever the minimum of functional (3) is nonunique, we choose b_{i}^{*} to be the scalar in the optimal set (the interval $\left.\left[b_{i}^{l}, b_{i}^{u}\right]\right)$ closest to the slope δ_{i} of the chord between the neighboring points, that is, median $\left\{b_{i}^{u}, b_{i}^{l}, \delta_{i}\right\}$. Previously, nonuniqueness was resolved by "regularization" of the spline functional, specifically, by adding to the spline functional (3) a sum consisting of the absolute values of various expressions involving the derivatives at the nodes times a sufficiently small number $\varepsilon(c f .[5,9,16])$. The method for resolving nonuniqueness that we use in the present paper differs from the regularization approach used in previous L_{1} spline work but leads to both simpler analysis and simpler computational procedures. The derivatives at the points x_{0} and x_{1} are determined by b_{2}^{*} which is calculated by minimizing (3) for $i=2$. Analogously, the derivatives at the points x_{I-1} and x_{I} are determined by b_{I-2}^{*} which is calculated by minimizing (3) for $i=I-2$. After obtaining all of the b_{i}^{*}, a C^{1} piecewise cubic interpolant z is set up by Hermite interpolation

$$
\begin{equation*}
z(x)=z_{i}+b_{i}^{*}\left(x-x_{i}\right)-\frac{1}{h_{i}}\left(2 b_{i}^{*}+b_{i+1}^{*}-3 \triangle z_{i}\right)\left(x-x_{i}\right)^{2}+\frac{1}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}\right)^{3} \tag{4}
\end{equation*}
$$

for $x \in\left(x_{i}, x_{i+1}\right), i=0, \ldots, I-1\left(c f\right.$. [9]). The C^{1} piecewise cubic interpolant calculated in this manner is the L_{1} spline (locally calculated cubic L_{1} spline).

In the remainder of this section, we investigate the relation between the geometry of the 5 points in each window and the derivative at the middle point of the window. For the five points under consideration, we use the notation $\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right),\left(x_{2}, z_{2}\right),\left(x_{3}, z_{3}\right)$ and $\left(x_{4}, z_{4}\right)$. For the window with these 5 points, the objective function (3) is

$$
\begin{equation*}
E(\mathbf{b})=\sum_{i=0}^{3} \int_{x_{i}}^{x_{i+1}}\left|\frac{\mathrm{~d}^{2} z}{\mathrm{~d} x^{2}}\right| \mathrm{d} x=\sum_{i=0}^{3} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{i+1}-b_{i}\right)+6 t\left(b_{i}+b_{i+1}-2 \triangle z_{i}\right)\right| \mathrm{d} t \tag{5}
\end{equation*}
$$

where \mathbf{b} denotes $\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}\right)$. Each term in the summation is a function

$$
\begin{equation*}
\theta(p, q)=\int_{-\frac{1}{2}}^{\frac{1}{2}}|(q-p)+6 t(p+q)| \mathrm{d} t \tag{6}
\end{equation*}
$$

that is continuously differentiable and has the properties stated in the following lemma.
Lemma 2. ([2]) $\theta(p, q)$ is convex,

$$
\theta(p, q)= \begin{cases}|q-p| & \text { if }|q-p| \geq 3|p+q| \tag{7}\\ \frac{3}{2}|p+q|+\frac{(q-p)^{2}}{6|p+q|} & \text { otherwise }\end{cases}
$$

and
(1) $\min _{p \in R} \theta(p, q)=\frac{2(\sqrt{10}-1)}{3}|q|$ with $p=\frac{2-\sqrt{10}}{\sqrt{10}} q$,
(2) $\min _{q \in R} \theta(p, q)=\frac{2(\sqrt{10}-1)}{3}|p|$ with $q=\frac{2-\sqrt{10}}{\sqrt{10}} p$,
(3) $\min _{(p, q) \in R^{2}} \theta(p, q)=0$ with $p=q=0$.

On the basis of Lemma 2, we have

$$
\begin{aligned}
\min _{\mathbf{b} \in R^{5}} E(\mathbf{b})= & \min _{b_{1}, b_{2}, b_{3}}\left\{\frac{2(\sqrt{10}-1)}{3}\left|b_{1}-\triangle z_{0}\right|+\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{2}-b_{1}\right)+6 t\left(b_{1}+b_{2}-2 \triangle z_{1}\right)\right| \mathrm{d} t\right. \\
& \left.+\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{3}-b_{2}\right)+6 t\left(b_{2}+b_{3}-2 \triangle z_{2}\right)\right| \mathrm{d} t+\frac{2(\sqrt{10}-1)}{3}\left|b_{3}-\triangle z_{3}\right|\right\} \\
= & \min _{b_{2}}\left\{\min _{b_{1}}\left\{\frac{2(\sqrt{10}-1)}{3}\left|b_{1}-\triangle z_{0}\right|+\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{2}-b_{1}\right)+6 t\left(b_{1}+b_{2}-2 \triangle z_{1}\right)\right| \mathrm{d} t\right\}\right. \\
& \left.+\min _{b_{3}}\left\{\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{3}-b_{2}\right)+6 t\left(b_{2}+b_{3}-2 \triangle z_{2}\right)\right| \mathrm{d} t+\frac{2(\sqrt{10}-1)}{3}\left|b_{3}-\triangle z_{3}\right|\right\}\right\}
\end{aligned}
$$

Minimization of $E(\mathbf{b})$ is a two-level minimization problem that can be written in the form

$$
\begin{equation*}
\min _{\mathbf{b}} E(\mathbf{b})=\min _{b_{2}}\left\{G_{1}\left(b_{2}\right)+G_{2}\left(b_{2}\right)\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}\left(b_{2}\right)=\frac{2(\sqrt{10}-1)}{3}\left|b_{1}\left(b_{2}\right)-\triangle z_{0}\right|+\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{2}-b_{1}\left(b_{2}\right)\right)+6 t\left(b_{1}\left(b_{2}\right)+b_{2}-2 \triangle z_{1}\right)\right| \mathrm{d} t \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}\left(b_{2}\right)=\frac{2(\sqrt{10}-1)}{3}\left|b_{3}\left(b_{2}\right)-\triangle z_{3}\right|+\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\left(b_{3}\left(b_{2}\right)-b_{2}\right)+6 t\left(b_{2}+b_{3}\left(b_{2}\right)-2 \triangle z_{2}\right)\right| \mathrm{d} t \tag{10}
\end{equation*}
$$

For later use, we introduce the notation

$$
\begin{equation*}
\phi(p, q ; c)=\frac{2(\sqrt{10}-1)}{3}|p-c|+\int_{-\frac{1}{2}}^{\frac{1}{2}}|(q-p)+6 t(p+q)| \mathrm{d} t \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
G(q ; c)=\min _{p}\{\phi(p, q ; c)\}=\phi(p(q), q ; c), \tag{12}
\end{equation*}
$$

where c is a parameter.
Lemma 3. The functions $\phi(p, q ; c)$ and $G(q ; c)$ are both convex. $G(q ; c)$ is continuous on $q \in R$ and differentiable except at $q=0$. When $c=0$, we have $p(q)=0$ and

$$
\frac{\mathrm{d} G(q ; 0)}{\mathrm{d} q}=\left\{\begin{aligned}
\frac{5}{3} & \text { if } q>0 \\
-\frac{5}{3} & \text { if } q<0
\end{aligned}\right.
$$

When $c>0$,
(i) If $q>\frac{\sqrt{10}+1}{3} c$, then $p(q)=c$ and

$$
\frac{4 \sqrt{10}-8}{3}<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<\frac{5}{3}
$$

(ii) If $0<q \leq \frac{\sqrt{10}+1}{3} c$, then $p(q)=\frac{\sqrt{10}-1}{3} q$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=\frac{4 \sqrt{10}-8}{3}
$$

(iii) If $\frac{2-\sqrt{10}}{\sqrt{10}} c \leq q<0$, then $p(q)=\frac{\sqrt{10}}{2-\sqrt{10}} q$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=0
$$

(iv) If $-\frac{1}{2} c<q<\frac{2-\sqrt{10}}{\sqrt{10}} c$, then $p(q)=c$ and

$$
-1<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<0 .
$$

(v) If $-2 c \leq q \leq-\frac{1}{2} c$, then $p(q)=c$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=-1 .
$$

(vi) If $q<-2 c$, then $p(q)=c$ and

$$
-\frac{5}{3}<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=-\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<-1
$$

When $c<0$,
(i) If $q>-2 c$, then $p(q)=c$ and

$$
1<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<\frac{5}{3} .
$$

(ii) If $-\frac{1}{2} c \leq q \leq-2 c$, then $p(q)=c$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=1
$$

(iii) If $\frac{2-\sqrt{10}}{\sqrt{10}} c<q<-\frac{1}{2} c$, then $p(q)=c$ and

$$
0<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=-\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<1 .
$$

(iv) If $0<q \leq \frac{2-\sqrt{10}}{\sqrt{10}} c$, then $p(q)=\frac{\sqrt{10}}{2-\sqrt{10}} q$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=0
$$

(v) If $\frac{\sqrt{10}+1}{3} c \leq q<0$, then $p(q)=\frac{\sqrt{10}-1}{3} q$ and

$$
\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=-\frac{4 \sqrt{10}-8}{3} .
$$

(vi) If $q<\frac{\sqrt{10}+1}{3} c$, then $p(q)=c$ and

$$
-\frac{5}{3}<\frac{\mathrm{d} G(q ; c)}{\mathrm{d} q}=-\frac{10 q^{2}+20 c q+6 c^{2}}{6(c+q)^{2}}<-\frac{4 \sqrt{10}-8}{3} .
$$

Proof. The function $\phi(p, q ; c)$ is the sum of two convex functions, so it is also convex. The convexity of $G(q ; c)$ comes from the fact that it is the partial minimization of $\phi(p, q ; c)$ (see [23]).

If $q>0$, we calculate using Lemma 2

$$
\frac{\partial \theta(p, q)}{\partial p}= \begin{cases}-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}, & \text { if } p<-2 q \\ -1, & \text { if }-2 q \leq p \leq-\frac{1}{2} q \\ \frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}, & \text { if } p>-\frac{1}{2} q\end{cases}
$$

which is a nondecreasing function of p for any fixed q. Moreover, when $p<\frac{\sqrt{10}}{2-\sqrt{10}} q$,

$$
\frac{\partial \theta(p, q)}{\partial p}=-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}<-\frac{2(\sqrt{10}-1)}{3} .
$$

When $p>\frac{\sqrt{10}-1}{3} q$,

$$
\frac{\partial \theta(p, q)}{\partial p}=\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}>\frac{2(\sqrt{10}-1)}{3} .
$$

Analogously, if $q<0$, we calculate from Lemma 2

$$
\frac{\partial \theta(p, q)}{\partial p}= \begin{cases}-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}, & \text { if } p<-\frac{1}{2} q \\ 1, & \text { if }-\frac{1}{2} q \leq p \leq-2 q \\ \frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}, & \text { if } p>-2 q\end{cases}
$$

which is a nondecreasing function of p for any fixed q. When $p<\frac{\sqrt{10}-1}{3} q$,

$$
\frac{\partial \theta(p, q)}{\partial p}=-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}<-\frac{2(\sqrt{10}-1)}{3}
$$

When $p>\frac{\sqrt{10}}{2-\sqrt{10}} q$,

$$
\frac{\partial \theta(p, q)}{\partial p}=\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}>\frac{2(\sqrt{10}-1)}{3} .
$$

Note that

$$
\phi(p, q ; c)=\frac{2(\sqrt{10}-1)}{3}|p-c|+\theta(p, q) .
$$

When $c=0$ and $q>0$,

$$
\frac{\partial \phi(p, q ; c)}{\partial p}= \begin{cases}\frac{2(\sqrt{10}-1)}{3}+\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}>0, & \text { if } p>0, \\ -\frac{2(\sqrt{10}-1)}{3}+\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}<0, & \text { if }-\frac{1}{2} q<p<0, \\ -\frac{2(\sqrt{10}-1)}{3}-1<0, & \text { if }-2 q \leq p \leq-\frac{1}{2} q, \\ -\frac{2(\sqrt{10}-1)}{3}-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}<0, & \text { if } p<-2 q .\end{cases}
$$

Therefore, $p(q)=0$ and

$$
G(q ; 0)=\frac{5}{3} q,
$$

which implies that

$$
\frac{\mathrm{d} G(q ; 0)}{\mathrm{d} q}=\frac{5}{3} .
$$

When $c=0$ and $q<0$,

$$
\frac{\partial \phi(p, q ; c)}{\partial p}= \begin{cases}\frac{2(\sqrt{10}-1)}{3}+\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}>0, & \text { if } p>-2 q, \\ \frac{2(\sqrt{10}-1)}{3}+1>0, & \text { if }-\frac{1}{2} q \leq p \leq-2 q, \\ \frac{2(\sqrt{10}-1)}{3}-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}>0, & \text { if } 0<p<-\frac{1}{2} q, \\ -\frac{2(\sqrt{10}-1)}{3}-\frac{10 p^{2}+20 p q+6 q^{2}}{6(p+q)^{2}}<0, & \text { if } p<0 .\end{cases}
$$

Therefore, $p(q)=0$ and

$$
G(q ; 0)=-\frac{5}{3} q
$$

which implies that

$$
\frac{\mathrm{d} G(q ; 0)}{\mathrm{d} q}=-\frac{5}{3} .
$$

The proofs for $c>0$ and $c<0$ are similar to the proof for $c=0$ and are omitted.
Now, we let

$$
\begin{array}{ll}
p_{1}=b_{1}-\triangle z_{1}, & p_{2}=b_{3}-\triangle z_{2}, \\
q_{1}=b_{2}-\triangle z_{1}, & q_{2}=b_{2}-\triangle z_{2}, \tag{13}\\
c_{1}=\triangle z_{0}-\triangle z_{1}, & c_{2}=\triangle z_{3}-\triangle z_{2}
\end{array}
$$

With this notation, we have

$$
\begin{equation*}
G_{1}\left(b_{2}\right)+G_{2}\left(b_{2}\right)=G\left(q_{1} ; c_{1}\right)+G\left(q_{2} ; c_{2}\right)=G\left(b_{2}-\triangle z_{1} ; c_{1}\right)+G\left(b_{2}-\triangle z_{2} ; c_{2}\right) \tag{14}
\end{equation*}
$$

Remark. Later in this paper, we will use $\triangle z_{1}-\triangle z_{0}, \triangle z_{2}-\triangle z_{1}$ and $\triangle z_{3}-\triangle z_{2}$ to classify cases of linearity, convexity and oscillation. However, for clarity of the analysis in much of the remainder of this section, we use c_{1} to denote $\triangle z_{0}-\triangle z_{1}$ instead of $\triangle z_{1}-\triangle z_{0}$ because G_{1} and G_{2} are defined in a symmetric manner in (9) and (10) and b_{0} and b_{4} are determined by b_{1} and b_{3}, which are in turn determined by b_{2} (progression outward from the middle point).

From Lemma 3, $G_{1}\left(b_{2}\right)+G_{2}\left(b_{2}\right)$ is convex and continuous for $b_{2} \in R$ and is differentiable except at $b_{2}=\triangle z_{1}$ and $b_{2}=\triangle z_{2}$. If $b_{2}<\min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{1}\right|, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{2}\right|\right\}$, then

$$
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 .
$$

If $b_{2}>\max \left\{\triangle z_{1}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{1}\right|, \triangle z_{2}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{2}\right|\right\}$, then

$$
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 .
$$

Therefore, the scalars

$$
\begin{align*}
& \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{1}\right|, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{2}\right|\right\} \\
& =\min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|\triangle z_{0}-\triangle z_{1}\right|, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}}\left|\triangle z_{3}-\triangle z_{2}\right|\right\} \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& \max \left\{\triangle z_{1}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{1}\right|, \triangle z_{2}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|c_{2}\right|\right\} \\
& =\max \left\{\triangle z_{1}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|\triangle z_{0}-\triangle z_{1}\right|, \triangle z_{2}-\frac{2-\sqrt{10}}{\sqrt{10}}\left|\triangle z_{3}-\triangle z_{2}\right|\right\} \tag{16}
\end{align*}
$$

form a lower and upper bound, respectively, for b_{2}^{*}, the optimal b_{2}. Since $G_{1}\left(b_{2}\right)+G_{2}\left(b_{2}\right)$ is convex, we could (if the lower bound is less than the upper bound) use any line search method to find b_{2}^{*}. However, simply using line search methods at this point does not reveal geometric properties of the spline and does not lead to efficient calculation of b_{2}^{*}.

The geometric properties of the set of 5 data points can be classified by looking at $\triangle z_{1}-\triangle z_{0}$, $\triangle z_{2}-\triangle z_{1}$ and $\triangle z_{3}-\triangle z_{2}$. For example, $\triangle z_{1}-\triangle z_{0}=0$ means that the the first three points lie on a straight line; $\triangle z_{1}-\triangle z_{0}>0$ means that the first three points are convex. When $\triangle z_{1}-\triangle z_{0}>0$, $\triangle z_{2}-\triangle z_{1}>0$ and $\triangle z_{3}-\triangle z_{2}>0$, all five points are convex. When $\triangle z_{1}-\triangle z_{0}>0, \Delta z_{2}-\triangle z_{1}<0$ and $\triangle z_{3}-\triangle z_{2}>0$, the five points "oscillate." As shown in Table 1, there are 27 cases to consider, of which, due to symmetry, only 10 cases need be analyzed. We will analyze the location of b_{2}^{*} in these 10 cases. Recall that b_{2}^{*} is the unique optimal solution after applying the choice procedure to resolve nonuniqueness, if it occurs.

Remark. The portions of the following results related to linearity (Cases 1, 2, 4, 5, 6, 11 and 12 and cases that are equivalent to these cases) overlap with analogous linearity results in [22]. In the present paper, however, these linearity results are presented in a wider context where not only linearity but also convexity and oscillation, measured by increases and decreases in the Δz_{i}, are considered.

Recall that from equation (1), we have

$$
\delta_{2}=\frac{z_{3}-z_{1}}{x_{3}-x_{1}} .
$$

Case 1. In this case, $\triangle z_{0}=\triangle z_{1}=\triangle z_{2}=\triangle z_{3}$ and $c_{1}=c_{2}=0$. From Lemma 3,

$$
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=\left\{\begin{aligned}
\frac{10}{3} & \text { if } b_{2}-\triangle z_{1}>0 \\
-\frac{10}{3} & \text { if } b_{2}-\triangle z_{1}<0
\end{aligned}\right.
$$

The unique optimal solution is therefore $b_{2}^{*}=\triangle z_{1}$.
Case 2. In this case, $\triangle z_{0}=\triangle z_{1}=\triangle z_{2}<\triangle z_{3}, c_{1}=0$ and $c_{2}>0$. From Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>\frac{5}{3}>0 & \text { if } b_{2}-\triangle z_{1}>0, \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}} \leq-\frac{5}{3}<0 & \text { if } b_{2}-\triangle z_{1}<0
\end{array}
$$

Table 1. 27 cases in the 5-point window method.

Case	$\triangle z_{1}-\triangle z_{0}$	$\begin{gathered} \text { Sign of } \\ \triangle z_{2}-\triangle z_{1} \end{gathered}$	$\triangle z_{3}-\triangle z_{2}$	Same as Case	Linearity	Convexity / Concavity	Oscillation
1	0	0	0		Yes	Yes	No
2	0	0	+		Yes	Yes	No
3	0	0	-	2	Yes	Yes	No
4	0	+	0		Yes	Yes	No
5	0	+	+		Yes	Yes	No
6	0	+	-		Yes	No	No
7	0	-	0	4	Yes	Yes	No
8	0	-	+	6	Yes	No	No
9	0	-	-	5	Yes	Yes	No
10	+	0	0	2	Yes	Yes	No
11	+	0	+		Yes	Yes	No
12	+	0	-		Yes	No	No
13	+	+	0	5	Yes	Yes	No
14	+	+	+		No	Yes	No
15	+	+	-		No	No	No
16	+	-	0	6	Yes	No	No
17	+	-	+		No	No	Yes
18	+	-	-	15	No	No	No
19	-	0	0	2	Yes	Yes	No
20	-	0	+	12	Yes	No	No
21	-	0	-	11	Yes	Yes	No
22	-	+	0	6	Yes	No	No
23	-	+	+	15	No	No	No
24	-	+	-	17	No	No	Yes
25	-	-	0	5	Yes	Yes	No
26	-	-	+	15	No	No	No
27	-	-	-	14	No	Yes	No

The unique optimal solution is $b_{2}^{*}=\triangle z_{1}$.
Case 4. In this case, $\triangle z_{0}=\triangle z_{1}<\Delta z_{2}=\triangle z_{3}, c_{1}=0$ and $c_{2}=0$. From Lemma 3,

$$
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=\left\{\begin{aligned}
\frac{10}{3} & \text { if } b_{2}-\triangle z_{2}>0, \\
0 & \text { if } \triangle z_{1} \leq b_{2} \leq \triangle z_{2}, \\
-\frac{10}{3} & \text { if } b_{2}-\triangle z_{1}<0 .
\end{aligned}\right.
$$

Any solution in $\left[\triangle z_{1}, \triangle z_{2}\right]$ is optimal. Since $\triangle z_{1}<\delta_{2}<\triangle z_{2}$, the unique solution (the b_{2} in the optimal interval closest to δ_{2}) is $b_{2}^{*}=\delta_{2}$.

Case 5 and 6. In Case 5, $\triangle z_{0}=\triangle z_{1}<\triangle z_{2}<\triangle z_{3}, c_{1}=0$ and $c_{2}>0$. In Case 6, $\triangle z_{0}=\triangle z_{1}<\triangle z_{2}$, $\triangle z_{2}>\Delta z_{3}, c_{1}=0$ and $c_{2}<0$. In both cases, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>\frac{5}{3}-\frac{5}{3}=0 & \text { if } b_{2}-\triangle z_{1}>0 \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}} \leq-\frac{5}{3}<0 & \text { if } b_{2}-\triangle z_{1}<0
\end{array}
$$

The unique optimal solution in both cases is $b_{2}^{*}=\triangle z_{1}$.
Case 11. In this case, $\triangle z_{0}<\triangle z_{1}=\triangle z_{2}<\triangle z_{3}, c_{1}<0$ and $c_{2}>0$. From Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}-\triangle z_{1}>0 \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}-\triangle z_{1}<0
\end{array}
$$

The unique optimal solution is $b_{2}^{*}=\triangle z_{1}$.
Case 12. In this case, $\triangle z_{0}<\triangle z_{1}=\triangle z_{2}, \triangle z_{2}>\triangle z_{3}, c_{1}<0$ and $c_{2}<0$. From Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}-\triangle z_{1}>\min \left\{\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\} \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=0 & \text { if } 0<b_{2}-\triangle z_{1} \leq \min \left\{\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\} \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}-\triangle z_{1}<0
\end{array}
$$

Any solution that lies in $\left[\triangle z_{1}, \triangle z_{1}+\min \left\{\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right]$ is optimal. Since $\triangle z_{1}=\delta_{2}=\triangle z_{2}$, the unique solution is $b_{2}^{*}=\delta_{2}=\triangle z_{1}$.
Case 14. In this case, $\triangle z_{0}<\triangle z_{1}<\triangle z_{2}<\triangle z_{3}, c_{1}<0$ and $c_{2}>0$. From Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}-\triangle z_{2}>0 \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}-\triangle z_{1}<0
\end{array}
$$

Therefore, the optimal b_{2} lies in $\left[\triangle z_{1}, \Delta z_{2}\right]$. This case is divided into 4 subcases as follows.
Subcase 14-1. If $\triangle z_{2}-\triangle z_{1} \leq \frac{\sqrt{10}-2}{\sqrt{10}}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=0 & \text { if } \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}\right\} \leq b_{2} \leq \max \left\{\triangle z_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\max \left\{\triangle z_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\} .
\end{array}
$$

From the condition $\frac{\sqrt{10}-2}{\sqrt{10}}\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \geq \triangle z_{2}-\triangle z_{1}$, the interval $\left[\max \left\{\triangle z_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}, \min \left\{\triangle z_{1}+\right.\right.$ $\left.\left.\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}\right\}\right]$ is not empty, and any b_{2} in this interval is optimal. The unique solution is

$$
b_{2}^{*}=\operatorname{median}\left\{\max \left\{\triangle z_{1}, \Delta z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}\right\}, \delta_{2}\right\}
$$

Subcase 14-2. If $\frac{\sqrt{10}-2}{\sqrt{10}}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)<\triangle z_{2}-\triangle z_{1}<\frac{1}{2}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\min \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\max \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \Delta z_{2}-\frac{1}{2} c_{2}\right\} .
\end{array}
$$

From the condition $\frac{\sqrt{10}-2}{\sqrt{10}}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)<\triangle z_{2}-\triangle z_{1} \leq \frac{1}{2}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, the interval

$$
\left[\max \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \Delta z_{2}-\frac{1}{2} c_{2}\right\}, \min \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right]
$$

is not empty. Since $\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}$ is strictly increasing on this interval, there exists exactly one b_{2}^{*} in this interval such that $\frac{\mathrm{d} G_{1}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}=0$.
Subcase 14-3. If $\frac{1}{2}\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \leq \triangle z_{2}-\triangle z_{1} \leq 2\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\min \left\{\triangle z_{1}-2 c_{1}, \triangle z_{2}-\frac{1}{2} c_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=0 & \text { if } \max \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}-2 c_{2}\right\} \leq b_{2} \leq \min \left\{\triangle z_{1}-2 c_{1}, \triangle z_{2}-\frac{1}{2} c_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\max \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}-2 c_{2}\right\} .
\end{array}
$$

From the condition $\frac{1}{2}\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \leq \triangle z_{2}-\triangle z_{1} \leq 2\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, the interval

$$
\left[\max \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}-2 c_{2}\right\}, \min \left\{\triangle z_{1}-2 c_{1}, \triangle z_{2}-\frac{1}{2} c_{2}\right\}\right]
$$

is not empty and any b_{2} in this interval is optimal. The unique solution is

$$
b_{2}^{*}=\operatorname{median}\left\{\max \left\{\triangle z_{1}-\frac{1}{2} c_{1}, \triangle z_{2}-2 c_{2}\right\}, \min \left\{\triangle z_{1}-2 c_{1}, \Delta z_{2}-\frac{1}{2} c_{2}\right\}, \delta_{2}\right\}
$$

Subcase 14-4. If $2\left(\left|c_{1}\right|+\left|c_{2}\right|\right)<\triangle z_{2}-\triangle z_{1}$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\triangle z_{2}-2 c_{2}, \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\triangle z_{1}-2 c_{1} .
\end{array}
$$

From the condition $\triangle z_{2}-\triangle z_{1}>2\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, the interval

$$
\left[\triangle z_{1}-2 c_{1}, \triangle z_{2}-2 c_{2}\right]
$$

is not empty. Since $\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}$ is strictly increasing on this interval, there exists exactly one b_{2}^{*} in this interval such that $\frac{\mathrm{d} G_{1}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}=0$.
Case 15. In this case, $\triangle z_{0}<\triangle z_{1}<\triangle z_{2}, \triangle z_{2}>\triangle z_{3}, c_{1}<0$ and $c_{2}<0$. Then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\max \left\{\triangle z_{2}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right\} \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\min \left\{\triangle z_{1}-\frac{7+\sqrt{10}}{3} c_{1}, \triangle z_{2}\right\}
\end{array}
$$

Therefore, b_{2}^{*} lies in

$$
\left[\min \left\{\triangle z_{1}-\frac{7+\sqrt{10}}{3} c_{1}, \triangle z_{2}\right\}, \max \left\{\triangle z_{2}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right\}\right]
$$

This case is divided into 3 subcases as follows.
Subcase 15-1. If $\triangle z_{2}-\triangle z_{1}<\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}$, then, from Lemma 3,

$$
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}=0
$$

when b_{2} lies in the interval

$$
\begin{aligned}
& {\left[\min \left\{\triangle z_{1}-\frac{7+\sqrt{10}}{3} c_{1}, \triangle z_{2}\right\}, \max \left\{\triangle z_{2}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right\}\right]} \\
& =\left[\triangle z_{2}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \triangle z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right] .
\end{aligned}
$$

Therefore, any b_{2} in this interval is optimal. The unique solution is $b_{2}^{*}=\triangle z_{2}$.
Subcase 15-2. If $\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}<\triangle z_{2}-\triangle z_{1}<-\frac{7+\sqrt{10}}{3} c_{1}$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}-\triangle z_{2}>0 \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}-\triangle z_{2}<0
\end{array}
$$

The unique optimal solution is $b_{2}^{*}=\triangle z_{2}$.
Subcase 15-3. If $-\frac{7+\sqrt{10}}{3} c_{1}<\triangle z_{2}-\triangle z_{1}$, then b_{2}^{*} is in the interval

$$
\begin{aligned}
& {\left[\min \left\{\triangle z_{1}-\frac{7+\sqrt{10}}{3} c_{1}, \triangle z_{2}\right\}, \max \left\{\triangle z_{2}, \min \left\{\triangle z_{1}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{1}, \Delta z_{2}+\frac{2-\sqrt{10}}{\sqrt{10}} c_{2}\right\}\right\}\right]} \\
& =\left[\triangle z_{1}-\frac{7+\sqrt{10}}{3} c_{1}, \triangle z_{2}\right] .
\end{aligned}
$$

Since $\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}$ is strictly increasing on this interval, there exists exactly one b_{2}^{*} in this interval such that $\frac{\mathrm{d} G_{1}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}=0$.
Case 17. In this case, $\triangle z_{0}<\triangle z_{1}, \triangle z_{1}>\triangle z_{2}, \triangle z_{2}<\triangle z_{3}, c_{1}<0$ and $c_{2}>0$. Then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}-\triangle z_{1}>0 \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}-\triangle z_{2}<0
\end{array}
$$

Therefore, b_{2}^{*} lies in $\left[\triangle z_{2}, \triangle z_{1}\right]$. This case is divided into 2 subcases as follows.
Subcase 17-1. If $\triangle z_{1}-\triangle z_{2}>\frac{\sqrt{10}+1}{3}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\triangle z_{1}+\frac{\sqrt{10}+1}{3} c_{1}, \\
\frac{\mathrm{~d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\triangle z_{2}+\frac{\sqrt{10}+1}{3} c_{2}
\end{array}
$$

From the condition $\triangle z_{1}-\triangle z_{2}>\frac{\sqrt{10}+1}{3}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, the interval

$$
\left[\triangle z_{2}+\frac{\sqrt{10}+1}{3} c_{2}, \Delta z_{1}+\frac{\sqrt{10}+1}{3} c_{1}\right]
$$

is not empty. Since $\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}$ is strictly increasing on this interval, there exists exactly one b_{2}^{*} in this interval such that $\frac{\mathrm{d} G_{1}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}^{*}\right)}{\mathrm{d} b_{2}}=0$.
Subcase 17-2. If $\triangle z_{1}-\triangle z_{2} \leq \frac{\sqrt{10}+1}{3}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, then, from Lemma 3,

$$
\begin{array}{ll}
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}>0 & \text { if } b_{2}>\min \left\{\triangle z_{1}, \triangle z_{2}+\frac{\sqrt{10}+1}{3} c_{2}\right\}, \\
\frac{\mathrm{d} G_{1}\left(b_{2}\right)}{\mathrm{d} b_{2}}+\frac{\mathrm{d} G_{2}\left(b_{2}\right)}{\mathrm{d} b_{2}}<0 & \text { if } b_{2}<\max \left\{\triangle z_{2}, \triangle z_{1}+\frac{\sqrt{10}+1}{3} c_{1}\right\} .
\end{array}
$$

From the condition $\triangle z_{1}-\triangle z_{2} \leq \frac{\sqrt{10}+1}{3}\left(\left|c_{1}\right|+\left|c_{2}\right|\right)$, the interval

$$
\left[\max \left\{\Delta z_{2}, \Delta z_{1}+\frac{\sqrt{10}+1}{3} c_{1}\right\}, \min \left\{\Delta z_{1}, \Delta z_{2}+\frac{\sqrt{10}+1}{3} c_{2}\right\}\right]
$$

is not empty and any b_{2} in this interval is optimal. The unique solution is

$$
b_{2}^{*}=\operatorname{median}\left\{\max \left\{\triangle z_{2}, \Delta z_{1}+\frac{\sqrt{10}+1}{3} c_{1}\right\}, \min \left\{\triangle z_{1}, \Delta z_{2}+\frac{\sqrt{10}+1}{3} c_{2}\right\}, \delta_{2}\right\}
$$

3. Linkage of Geometric Properties of Data Points and L_{1} Spline

In this section, based on the analytic results for the solution at the middle point in each 5-point window, we present two theorems that link the local linearity, convexity and oscillatory properties of the original data set with the local linearity, convexity and oscillatory properties of the locally calculated L_{1} spline. In particular, we show that the locally calculated L_{1} spline does not "over-oscillate".

The capability of the 5-point local window method to preserve linearity is described in the following theorem.

Theorem 4. (Proposition 3 of [22]) If any three consecutive points in a five-point window are collinear with slope $\triangle z$, then $b_{i}^{*}=\triangle z$ except in Cases 4 and 7 .

Proof. See Cases 1, 2, 4, 5, 6, 11 and 12 in Section 2.
Theorem 4 indicates that local linearity of the data is preserved in the 5 -point-window L_{1} spline with the "reasonable" exception of when two lines intersect at the point $\left(x_{i}, z_{i}\right) . C^{1}$ continuity of the spline prevents linearity from being preserved in both intervals bordering on a corner $\left(x_{i}, z_{i}\right)$.

Convexity is not as simple as linearity. To study the convexity of the L_{1} spline, we need to consider not just a node x_{i} but the whole interval $\left[x_{i}, x_{i+1}\right]$. In this interval, the L_{1} spline is determined by b_{i}^{*} and b_{i+1}^{*}, which are calculated using the six data points $\left(x_{k}, z_{k}\right), k=i-2, i-1, i, i+1, i+2, i+3$ in the two overlapping 5-point windows for b_{i}^{*} and b_{i+1}^{*}. In the remainder of this section, we focus on the L_{1} spline in the interval $\left[x_{i}, x_{i+1}\right]$ and assume that these six data points (and, therefore, also their linear spline interpolant) are convex on $\left[x_{i-2}, x_{i+3}\right]$. The analysis in the rest of this section will reveal that the spline in $\left[x_{i}, x_{i+1}\right]$ is not always convex, but, when not, the oscillation is not large.

Lemma 5. The following statements are equivalent:
(i) The cubic spline function is convex on the interval $\left[x_{i}, x_{i+1}\right]$;
(ii) $\quad\left(b_{i+1}^{*}-b_{i}^{*}\right) \geq 3\left|\left(b_{i+1}^{*}-\triangle z_{i}\right)+\left(b_{i}^{*}-\triangle z_{i}\right)\right|$;
(iii) $0 \leq-\frac{1}{2}\left(b_{i}^{*}-\triangle z_{i}\right) \leq\left(b_{i+1}^{*}-\triangle z_{i}\right) \leq-2\left(b_{i}^{*}-\triangle z_{i}\right)$.

Remark. Condition (iii) in Lemma 5 is equivalent to Proposition 3.1 in [24].
Proof. Recall from the definition in Section 1 that $h_{i}=x_{i+1}-x_{i}, i=0,1, \ldots, I-1$.
The second derivative of the cubic spline function on $\left[x_{i}, x_{i+1}\right]$ is

$$
\begin{aligned}
& -\frac{2}{h_{i}}\left(2 b_{i}^{*}+b_{i+1}^{*}-3 \triangle z_{i}\right)+\frac{6}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}\right) \\
& =\frac{1}{h_{i}}\left(b_{i+1}^{*}-b_{i}^{*}\right)+\frac{6}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}-\frac{h_{i}}{2}\right) .
\end{aligned}
$$

Let $x-x_{i}=\lambda h_{i}, 0 \leq \lambda \leq 1$, then

$$
\begin{aligned}
& \frac{1}{h_{i}}\left(b_{i+1}^{*}-b_{i}^{*}\right)+\frac{6}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}-\frac{h_{i}}{2}\right) \\
& =\frac{1}{h_{i}}\left(b_{i+1}^{*}-b_{i}^{*}\right)+\frac{6}{h_{i}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(\lambda-\frac{1}{2}\right)
\end{aligned}
$$

Hence the cubic spline function is convex on the interval $\left[x_{i}, x_{i+1}\right]$ if and only if

$$
\begin{aligned}
& \frac{1}{h_{i}}\left(b_{i+1}^{*}-b_{i}^{*}\right)+\frac{6}{h_{i}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(\lambda-\frac{1}{2}\right) \geq 0, \quad \forall \lambda \in[0,1], \\
\Leftrightarrow & \left(b_{i+1}^{*}-b_{i}^{*}\right) \geq 3\left|b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right| \\
\Leftrightarrow & 0 \leq-\frac{1}{2}\left(b_{i}^{*}-\triangle z_{i}\right) \leq\left(b_{i+1}^{*}-\triangle z_{i}\right) \leq-2\left(b_{i}^{*}-\triangle z_{i}\right) .
\end{aligned}
$$

Every contiguous set of six points comes from two 5-point windows. Let Case $\alpha \leftrightarrow \beta$ denote Case/Subcase α for the left window (27 cases and 9 subcases) and Case/Subcase β for the right window (also 27 cases and 9 subcases). After applying Lemma 5 to all convex situations and eliminating equivalent cases, we can identify that the L_{1} spline is convex on $\left[x_{i}, x_{i+1}\right]$ in Cases $1 \leftrightarrow 1,1 \leftrightarrow 2,2 \leftrightarrow 5$, $10 \leftrightarrow 2,11 \leftrightarrow 5,5 \leftrightarrow 14-3$, is not convex in Cases $2 \leftrightarrow 4,4 \leftrightarrow 11,5 \leftrightarrow 14-1,5 \leftrightarrow 14-2,5 \leftrightarrow 14-4,14-1 \leftrightarrow 14-4$, $14-2 \leftrightarrow 14-4$, and is not determined in Cases $5 \leftrightarrow 13,14-1 \leftrightarrow 14-1,14-1 \leftrightarrow 14-2,14-1 \leftrightarrow 14-3,14-2 \leftrightarrow 14-3$. However, the L_{1} spline does not have extraneous oscillation on $\left[x_{i}, x_{i+1}\right]$ as is shown in the remainder of this section.

Lemma 6. $b_{i}^{*} \in\left[b_{i}^{l}, b_{i}^{u}\right]$, where $b_{i}^{l}=\min \left\{\triangle z_{i-1}, \triangle z_{i}\right\}$ and $b_{i}^{u}=\max \left\{\triangle z_{i-1}, \triangle z_{i}\right\}$.
Proof. The proof comes directly from the analysis of the 27 cases.
Remark. Lemma 6 does not hold for global L_{1} splines. Consider, for example, the 11 data points $(-5,4),(-4,3),(-3,2),(-2,1),(-1,0),(0,0),(1,0),(2,-1),(3,-2),(4,-3)$ and $(5,-4)$. By the 5 -point-window method, b_{5}^{*} (the derivative at $x=0$) is 0 . In contrast, the b_{5}^{*} of the global L_{1} spline is 0.37304 .

Lemma 7. If $b_{i}^{*} \leq \triangle z_{i} \leq b_{i+1}^{*}$, then the cubic L_{1} spline is bounded above by the linear spline $\zeta(x)$ on the interval $\left[x_{i}, x_{i+1}\right]$.

Proof. Given $b_{i}^{*} \leq \triangle z_{i} \leq b_{i+1}^{*}$, the cubic L_{1} spline on $\left[x_{i}, x_{i+1}\right]$ can be written as

$$
z(x)=z_{i}+b_{i}^{*}\left(x-x_{i}\right)-\frac{1}{h_{i}}\left(2 b_{i}^{*}+b_{i+1}^{*}-3 \triangle z_{i}\right)\left(x-x_{i}\right)^{2}+\frac{1}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}\right)^{3} .
$$

Let $x-x_{i}=\lambda h_{i}, 0 \leq \lambda \leq 1$, then

$$
\begin{aligned}
\zeta(x)-z(x)= & \left(\triangle z_{i}-b_{i}^{*}\right)\left(x-x_{i}\right)+\frac{1}{h_{i}}\left(2 b_{i}^{*}+b_{i+1}^{*}-3 \triangle z_{i}\right)\left(x-x_{i}\right)^{2} \\
& -\frac{1}{h_{i}^{2}}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right)\left(x-x_{i}\right)^{3} \\
= & \lambda h_{i}\left(\triangle z_{i}-b_{i}^{*}\right)+\lambda^{2} h_{i}\left(2 b_{i}^{*}+b_{i+1}^{*}-3 \triangle z_{i}\right)-\lambda^{3} h_{i}\left(b_{i}^{*}+b_{i+1}^{*}-2 \triangle z_{i}\right) \\
= & \lambda h_{i}\left[\left(1-2 \lambda+\lambda^{2}\right)\left(\triangle z_{i}-b_{i}^{*}\right)+\left(\lambda-\lambda^{2}\right)\left(b_{i+1}^{*}-\triangle z_{i}\right)\right] \\
\geq & 0, \quad \forall 0 \leq \lambda \leq 1 .
\end{aligned}
$$

Theorem 8. If the linear spline is convex on the interval $\left[x_{i-1}, x_{i+2}\right]$, that is, $\triangle z_{i-1} \leq \triangle z_{i} \leq \triangle z_{i+1}$, then the cubic L_{1} spline is bounded above by the linear spline on the interval $\left[x_{i}, x_{i+1}\right]$.

Proof. The proof comes from Lemmas 6 and 7.
The results in this section indicate that the L_{1} splines produced by the 5-point-window method with the proposed choice procedure for resolving nonuniqueness preserve linearity and convexity in many cases and do not oscillate excessively. From Lemma 6, we see that the b_{i}^{*} calculated by this method is always bounded by $\triangle z_{i-1}$ and $\triangle z_{i}$. This property is a prime factor in restricting oscillation of L_{1} splines and may in the future lead to additional theoretic results about the properties of L_{1} splines for non-over-oscillating interpolation of oscillatory data.

4. Conclusions

In summary, the results presented in this paper indicate that a new class of univariate L_{1} interpolating splines calculated using 5-point windows as suggested by [2] has superior geometric shape preservation properties-better than those of L_{1} splines calculated using global functionals. Lemma 6 ensures that the optimal solution b_{i}^{*} (the first derivative at node x_{i}) of 5-point-window L_{1} splines is bounded by $\triangle z_{i-1}$ and $\triangle z_{i}$. This property does not hold for globally calculated L_{1} splines and is not known to hold for locally calculated L_{1} splines with uniqueness being enforced by adding a regularization term to the spline functional as was done in [7,9]. Theorems analogous to Theorem 8 that will assist in understanding how local convexity and oscillation in the data set translate into local convexity and oscillation of the L_{1} spline are an excellent topic for future research. The results presented here for univariate interpolation are a basis for development of locally calculated univariate L_{1} approximating splines and locally calculated bivariate L_{1} interpolating and approximating splines.

The algorithmic implications of the analytical results of the present paper are large. In the past, there have been a few published reports and more unpublished reports about deficiencies of the primal affine,
primal-dual and active-set algorithms that have been used to minimize L_{1} splines. The convergence of these algorithms for medium to large data sets is often unsatisfactory. In addition, the discretization required by the primal affine and primal-dual algorithms is not desirable. The results of the present paper are a basis on which an efficient algorithm that minimizes the original continuum spline functional (not a discretization thereof) can be constructed. In a companion [25] article, we present such an algorithm and provide computational results for it.

Acknowledgements

The authors wish to thank Olivier Gibaru and Eric Nyiri of the Ecole Nationale Supérieure d'Arts et Métiers de Lille and Philippe Auquiert of the Université de Valenciennes et du Hainaut-Cambrésis for discussions related to the topic of this paper. The reviewers of this paper provided insightful comments and questions that led to improvements in the paper. This work was generously supported by US Army Research Office Grant \# W911NF-04-D-0003, the NCSU Edward P. Fitts Fellowship and US NSF Grant \# DMI-0553310.

References

1. Auquiert, P.; Gibaru, O.; Nyiri, E. C^{1} and C^{2}-continuous polynomial parametric L_{p} splines $(p \geq 1)$. Comput. Aided Geom. Design 2007, 24, 373-394.
2. Auquiert, P.; Gibaru, O.; Nyiri, E. On the cubic L_{1} spline interpolant to the Heaviside function. Numer. Algorithms 2007, 46, 321-332.
3. Bulatov, D.; Lavery, J.E. Comparison of reconstruction and texturing of 3D urban terrain by L_{1} splines, conventional splines and alpha shapes. In VISAPP 2009, the Fourth International Conference: Computer Vision Theory and Applications, Lisboa, Portugal, February 2009.
4. Bulatov, D.; Lavery, J.E. Reconstruction and texturing of 3D urban terrain from uncalibrated monocular images using L_{1} splines. Photogr. Eng. Remot. Sens. 2010, in press.
5. Cheng, H.; Fang, S.-C.; Lavery, J.E. Univariate cubic L_{1} splines: A geometric programming approach. Math. Methods Oper. Res. 2002, 56, 197-229.
6. Cheng, H.; Fang, S.-C.; Lavery, J.E. An efficient algorithm for generating univariate cubic L_{1} splines. Comput. Optim. Appl. 2004, 29, 219-253.
7. Cheng, H.; Fang, S.-C.; Lavery, J.E. Shape-preserving properties of univariate cubic L_{1} splines. J. Comput. Appl. Math. 2005, 174, 361-382.
8. Cheng, H.; Fang, S.-C.; Lavery, J.E. A geometric programming framework for univariate cubic L_{1} smoothing splines. Ann. Oper. Res. 2005, 133, 229-248.
9. Lavery, J.E. Univariate cubic L_{p} splines and shape-preserving, multiscale interpolation by univariate cubic L_{1} splines. Comput. Aided Geom. Design 2000, 17, 319-336.
10. Lavery, J.E. Shape-preserving, multiscale fitting of univariate data by cubic L_{1} smoothing splines. Comput. Aided Geom. Design 2000, 17, 715-727.
11. Lavery, J.E. Shape-preserving, multiscale interpolation by bi- and multivariate cubic L_{1} splines. Comput. Aided Geom. Design 2001, 18, 321-343.
12. Lavery, J.E. Shape-preserving, multiscale interpolation by univariate curvature-based cubic L_{1} splines in Cartesian and polar coordinates. Comput. Aided Geom. Design 2002, 19, 257-273.
13. Lavery, J.E. Shape-preserving approximation of multiscale univariate data by cubic L_{1} spline fits. Comput. Aided Geom. Design 2004, 21, 43-64.
14. Lavery, J.E. Shape-preserving interpolation of irregular data by bivariate curvature-based cubic L_{1} splines in spherical coordinates. Comput. Aided Geom. Design 2005, 22, 818-837.
15. Lavery, J.E. Shape-preserving, first-derivative-based parametric and nonparametric cubic L_{1} spline curves. Comput. Aided Geom. Design 2006, 23, 276-296.
16. Lavery, J.E. Shape-preserving univariate cubic and higher-degree L_{1} splines with function-value-based and multistep minimization principles. Comput. Aided Geom. Design 2009, 26, 1-16.
17. Lin, Y.-M.; Zhang, W.; Wang, Y.; Fang, S.-C.; Lavery, J.E. Computationally efficient models of urban and natural terrain by non-iterative domain decomposition with L_{1} smoothing splines. In Proceedings of the 25th Army Science Conference, Washington, DC, USA, November 2006.
18. Wang, Y.; Fang, S.-C.; Lavery, J.E. A geometric programming approach for bivariate cubic L_{1} splines. Comput. Math. Appl. 2005, 49, 481-514.
19. Zhang, W.; Wang, Y.; Fang, S.-C.; Lavery, J.E. Cubic L_{1} splines on triangulated irregular networks. Pacific J. Optim. 2006, 2, 289-317.
20. Zhao, Y.; Fang, S.-C.; Lavery, J.E. Geometric dual formulation for first-derivative-based univariate cubic L_{1} splines. J. Global Optim. 2008, 40, 589-621.
21. Wang, Y.; Fang, S.-C.; Lavery, J.E. A compressed primal-dual method for bivariate cubic L_{1} splines. Comput. Math. Appl. 2007, 201, 69-87.
22. Auquiert, P.; Gibaru, O.; Nyiri, E. Fast $L_{1}-C^{k}$ polynomial spline interpolation algorithm with shape-preserving properties. Comput. Aided Geom. Design 2010, in press.
23. Bertsekas, D.P.; Nedić, A.; Ozdaglar, A.E. Convex Analysis and Optimization; Athena Scientific: Belmont, MA, USA, 2003.
24. Neuman, E. Uniform approximation by some Hermite interpolating splines. J. Comput. Appl. Math.1978, 4, 7-9.
25. Yu, L.; Jin, Q.; Lavery, J.E.; Fang, S.-C. Univariate cubic L_{1} interpolating splines: Spline functional, window size and analysis-based algorithm. Algorithms 2010, in press.
(c) 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
