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Abstract: Chris Langton proposed a model of an artificial life that he named “ant”: an  

agent- called ant- that is over a square of a grid moves by turning to the left (or right) 

accordingly to black (or white) color of the square where it is heading, and the square then 

reverses its color. Bunimovich and Troubetzkoy proved that an ant’s trajectory is always 

unbounded, or equivalently, there exists no repeatable configuration of the ant’s system. 

On the other hand, by introducing a new type of color where the ant goes straight ahead 

and the color never changes, repeatable configurations are known to exist. In this paper, we 

prove that determining whether a given finite configuration of generalized Langton’s ant is 

repeatable or not is PSPACE-hard. We also prove the PSPACE-hardness of the ant’s 

problem on a hexagonal grid. 

Keywords: cellular automata; computational complexity; Langton’s ant; Lorentz lattice 

gas; PSPACE-hard 

 

1. Introduction 

1.1. Generalized Langton’s Ant 

The virtual ant defined by Chris Langton [1–3] is the following cellular automaton. The “ant”, 

represented by a pair        of a lattice point           and a direction          
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moves around on a two-dimensional square lattice   , where each lattice point, referred to as a “cell”, 

is colored by white or black (later we will also introduce gray cells). Initially, the ant is sitting on a 

given cell with a given direction, say       and      . It proceeds to travel from cell to cell according to 

the following rule (see Figure 1): the ant        moves to          
 

 
 
   when       is a white cell, and 

to           
 

 
 
   when       is a black cell; the cell       then reverses its color. In other words, the 

ant moves in the direction it is heading; when it lands on a white (or black) cell it rotates its direction 

  
 
 to the right (left); after that, the color of the cell changes to black (or white). 

Langton’s ant has been investigated independently as one model of Lorentz Lattice Gas Cellular 

Automata (LLGCA). Langton’s ant corresponds to the Flipping Rotator (FR) model on    [4]. In more 

general terms, the FR model was investigated on a triangular lattice           
 

 
   [5] and on a 

hexagonal lattice             
 

 
   [6], too. On    the ant       , where      and 

       
   

 
             , moves to          

  

 
 
   and           

  

 
 
   when       is white and black, 

respectively (see Figure 1), and the cell     then reverses its color. Another generalization of 

Langton's ant on    is to introduce a third type of cell, called “gray” cell [7]. The ant        moves to 

           if       is a grey cell, and the cell       never changes its color but remains gray forever 

(see Figure 1). In LLGCA models, gray cells were introduced naturally as empty lattice points. We 

remark that the    topology does not allow having such a gray cell. 

We denote by R, L and S the ant’s valid moves corresponding to the Right-turn, Left-turn and 

Straight-ahead respectively under these transaction rules; e.g., by R, L and S, the ant        on    

moves to          
 

 
 
  ,           

 

 
 
   and           , respectively. 

Figure 1. Transaction rules on each topology and each color of the cell that the ant is heading to. 

 white black gray 

   

   

   

  

 

1.2. Recognizing the Repeatable Configurations of GLA 

These transaction rules assure that Generalized Langton’s Ant (GLA) is a time-reversible cellular 

automaton: the current configuration of GLA, consisting of a coloring of the cells and an ant’s starting 

cell and direction, determines the past configurations as well as the future ones. As a consequence, the 
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configurations of GLA are divided into the following two kinds: an ant’s trajectory starting from a 

configuration of one kind is unbounded, never repeating the same configuration again; an ant’s 

trajectory starting from a configuration of the other kind is bounded, repeating a finite series of 

configurations an infinitive number of times.  

A “finite” configuration of GLA is defined by a finite coloring of the cells and an ant's starting cell 

and direction. Here, a coloring is finite if it has only a finite number of non-background-color cells. In 

this paper, we use the all white, all black, and half-and-half coloring as the background, where the  

half-and-half coloring gives white (black) color to the cells on the upper-half (lower-half) plane (see  

Figure 2Figure 2). We define size of a configuration by the minimum size of a closed square which 

contains the ant’s starting cell and the all non-background-color cells. In this paper, we study the 

computational complexity of determining whether a given finite configuration of GLA is repeatable or 

not. 

Figure 2. The half-and-half coloring. 

      

  

1.3. Previous Results 

Bunimovch and Troubetskoy [4] proved the following: when there is no gray cell, an ant's trajectory 

on    is always unbounded, or equivalently, there exists no repeatable configuration of the ant’s 

system. As a matter of fact, the set of repeatable configurations of GLA on    with no gray cell is 

empty, hence its recognition problem is trivial. On the other hand, repeatable configurations exist of 

GLA on    with some gray cells (see Figure 3, see also [8]). The    model is also known to have 

repeatable configurations (see Figure 3, see also [6]). 

The long-run behavior of Langton’s ant on    has been studied using both theories and experiments 

for more than two decades, yet it is still highly unpredictable. As a result, indicating hardness of the 

prediction, Gajardo, Moreira and Goles [9] proved that the following problem on    with no gray cell 

is PTIME-hard: “Does the ant ever visit this given cell?”. 

Figure 3. Repeatable configurations of GLA. 
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1.4. New Results 

In this paper, we prove the following theorems: 

Theorem 1. Recognizing the repeatable configurations of GLA on    with gray cells is PSPACE-hard. 

Theorem 2. Recognizing the repeatable configurations of GLA on    is PSPACE-hard. 

To prove these theorems, we should have unbounded trajectories of the ant on each of the 

topologies. For the half-and-half background, Figure 2 shows such unbounded trajectories where the 

ant, starting from the arrow, walks from left to right by repeating the LLRR (LLLRRR) moves forever 

on    (  ). On the other hand, for the monochromatic background, we do have the famous diagonal 

highway on    (see Figure 4), but no provable unbounded trajectory is known on    [6]. For this 

reason, we can prove Theorem 1 for both of the monochromatic and half-and-half backgrounds, but 

Theorem 2 for only the half-and-half background. 

Figure 4. The ant starting from the arrow proceeds as RLRLRLRLRL, and then starts 

repeating 104 steps forever, forming the famous diagonal highway going in a 

southeast direction.  

 

We will prove Theorem 1 for “everywhere sparse” gray cells. For a given function        , we 

say that a configuration is colored by  -sparse gray cells if the configuration size is   and its coloring 

has no more than one gray cell within any closed square of size no more than 
 

     
. For example, a 

configuration colored by  -sparse gray cells, for any constant    , contains no more than   gray cells, 

and a configuration colored by   -sparse gray cells could have an arbitrary number of gray cells. We 

prove the following theorem: 

Theorem 3. For any ε > 0 recognizing the repeatable configurations of GLA on    colored by  

n
ε
-sparse gray cells is PSPACE-complete. 

1.5. Reduction 

To prove Theorems 1–3, it is enough to reduce a known PSPACE-hard problem to the ant’s 

problems on square and hexagonal grids. In this paper, we will reduce QBF (Quantified Boolean 

Formula) evaluation problem to the ant's problems. An instance of QBF is given by a closed CNF 

(Conjunctive Normal Form) formula, which is written as  
 
    
                  by an open CNF 

formula            and arbitrary Boolean quantifiers  
 
      . Then, QBF evaluation problem asks 
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the truth value of a given closed CNF formula. QBF evaluation problem is a well known  

PSPACE-complete problem [10].  

1.6. Preparation 

A (ant’s walking) course is a sequence of ant’s consecutive valid moves; it also represents a 

sequence of the induced coloring. When a coloring   of the ant’s system turns to a coloring   by an 

ant’s walking course  , we write as  
 
  . When the ant, at a place  , moves to another place   by  , 

we write it as  
 
  . The reverse of the ant        is           . By time reversibility, we can define 

the reverse     of   by the following walking course: reverse the order of the coloring in  , and 

reverse the ants therein. We write  

 
 
   
 , meaning that   turns to   by  , and   turns to   by    . 

2. Gadgets 

A gadget is a collection of GLA’s coloring written on the all white background with an associated 

transition diagram and several input and output marked arrows. A polynomial number of gadgets are 

seamlessly connected to form an entire coloring of GLA, where some gadgets may be used after 

rotation or reflection. Note that the colors of reflected gadgets should be switched.  

2.1. Path 

We connect the rotations and reflections of PATH gadgets (see Figure 5) to form a long path along 

which the ant is guided. Its coloring is initially     , which turns to      by a course   
 
    . 

Figure 5. PATH. 

   

  

 

 

  
 
     

 

              

          

   

  

2.2. Switch & Pass 

A Switch & Pass (S&P) gadget (see Figure 6) can memorize 1 bit information by its coloring state. 

The coloring is initially    , which turns to    by a walking course      
  
      ; in other words, 

the ant is “Switching” the coloring state and “Passing” through it. When the coloring is    , the ant 

entering at    walks along    and exits at     , changing the coloring to     . When the coloring is 

  , the ant entering at    walks along    and exits at    , changing the coloring to    .  
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Figure 6. Switch & Pass. 
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2.3. Switch & Turn 

A Switch & Turn (S&T) gadget (see Figure 7) can memorize 1 bit information by its coloring state, 

too. The coloring is initially    , which turns to    by an ant’s walking course      
  
      ; in 

other words, since      is the reverse of     , the ant is “Switching” the coloring state and “Turning” 

around. When the coloring is    , the ant entering at IN walks along    and exits at       . When 

the coloring is   , the ant entering at    walks along    and exits at      .  

2.4. Conjunction 

The CONJunction (CONJ) gadget (see Figure 8, see also [9]) has two entrances and one exit. The 

coloring is initially     . The ant entering at     walks along    and exits at OUT, for each         .  
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Figure 7. Switch & Turn. 
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Figure 8. CONJunction (CONJ). 
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2.5. Pseudo-Crossing 

A Pseudo-Crossing (PC) gadget (see Figure 9, see also [9]) has two entrances     and     and two 

exits      and      such that the ant entering at     walks along    and exits at      for each 
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        . Since    ,    ,     ,      are placed clockwise in this order in 2D plane, these two walking 

courses    and    should be mutually crossing. Beginning from the initial coloring     , the ant can 

take mutually intersecting courses, first     
  
      and secondly     

  
         in order, changing 

the coloring to      
  
      

  
        .  

Figure 9. PC. 
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2.6. Crossing 

A CROSSing (CROSS) gadget (see Figure 10) is placed at each crossing point of two intersecting 

paths on 2D plane. It is built by one S&P gadget and three PC gadgets, named PC1, PC2 and PC3. The 

coloring of a CROSS gadget can be represented by the coloring of all gadgets composing it, that are 

S&P, PC1, PC2, PC3, two CONJ gadgets and many PATH gadgets connecting them. We indicate the 

coloring of a CROSS gadget only by those of (S&P, PC1, PC2, PC3). The coloring of CONJ (PATH) 

gadgets and PATH gadgets are initially     , that turn to       (    ) when the ant has passed 

through them. The ant can take mutually intersecting courses by first     
  
       and secondly 

    
  
      , as well as by first     

  
       and secondly     

  
      . In Figure 10, each of these 

paths are depicted by thick lines, where those gadgets that passed through are shown by the thick lines 

that have turned to used coloring, while the other gadgets remain in their initial coloring. 
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Figure 10. CROSS. 

  

            

    

 

 

                                   
            

   
             

          
  

            
   

           

           
  

            
     

              

           

  

            
     

           

              
  

 

3. CNF Formulae Evaluation 

In this section, we construct an       gadget for evaluating the truth value of a CNF formula   

by inputting a given truth-value assignment  . It has one entrance    and two exits          and 

OUTTURE. The ant entering at    is routed to exit at          (       ) if      is       (    ).  

Let               and                 . Let  
    

          be the  th literal in the 

 th term of           , where       and       . These literals  
   

 are implemented in       

by     gadgets, named        . Then, draw PATHs between         in the following manner to define 

an evaluator       of  :                (see Figure 11-1). When  
    

     (   ),        

(     ) of            of           (see Figure 11-2). When  
     

    (   ),        (     ) 

of                   (see Figure 11-3). When  
    

    (    ),       (       ) of  

                (see Figure 11-4).  

For each       ,       has an entrance     and an exit    such that the ant entering at    
 

switches the coloring states of all     gadgets corresponding to the literals  
    

      -    from     to 

  , and exits at    . Figure 11-5 is drawing such PATHs, where the ports    ,    ,    ,    ,...,    ,     

should be placed in this order for further development in the next section. 
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        for all    such that          in the descending order of  . Consequently,       sets the 

coloring of every         with  
    

              (  ) if          (    ). 

Figure 11.      . 
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Lemma 1. If the coloring of       is       and            (    ), then the ant entering at    

exits at          (       ). 

Proof. First, suppose that           . We can assume that the  th term of   is FALSE and the  th 

term of   is TRUE for every      . So, we can assume that for every       , if  
    

     

(    ) then         is      (  ), and for every       there exits    
 
    such that if  

 
     

     (   ) then         
 is   (   ); in addition, for every      

 
, if  

    
     (   ) then 

        is     (  ). Given these colorings of the    s, the ant walks from    to          in the 

following way:       of       ;    of                (     ) of             of          ;    

of         
       (      ) of         

     of         ;     of                (     ) of 

            of          ;     of                 (     ) of                 . Figure 11-6 

illustrates this walking course by a thick line when                     and  

  
 
                   , where the gadgets have passed through, shown by the thick line, have 

turned to used coloring states, while the other gadgets still remain in their initial coloring. 

Secondly, suppose that          . Then, all terms of   are     . So, we can assume that for 

every       there exits    
 
    such that if  

     
     (   ) then         

 is   (   ); in 

addition, for every      
 
, if  

    
     (   ) then         is     (  ). Given these colorings of 

the    s, the ant walks from    to         in the following way:       of       ;    of  

               (     ) of             of          ;     of         
       (      ) of 

        
     of         ;     of                (     ) of             of          ;     of 

        
       (      ) of         

       . Figure 11-7 illustrate this walking course when 

                    and   
 
                 . 

Let       be the coloring of an       gadget derived from       by the ant’s walking course 

from the entrance to an exit of      . 

4. Boolean Quantifiers Evaluation 

Let            be an arbitrary CNF formula of the variables        . For arbitrary taken 

quantifiers         , let               
   
              

 
            . In particular, 

                       . Let               built in the previous section. We have already 

defined                as a coloring of       for every                 . In the following, for 

each             , we define inductively an       gadget and its coloring          for every 

                . Figure 12 depicts our construction of an       gadget when  
   

  , 

containing an already constructed         gadget. We describe the coloring of       by those of the 

                          gadgets therein. For                  and                 , 

let                                   . Let          be the coloring of       that sets the 

coloring of the                           gadgets as                                        ; the 

coloring of the other gadgets are set to be initialized. Then, we denote by          the coloring derived 

from          by the ant’s walking course from the entrance to an exit of      . We have already 

defined                . In the following lemma,          are inductively defined, too. 

Lemma 2. For every                   if the coloring of       is          and              

      (    ) then the ant entering to the       gadget at     exits at             (          ). 
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Proof. Lemma 1 proves the     case of Lemma 2. Let                 . By the backward 

induction hypothesis, Lemma 2 is assumed to hold for both                and              . In the 

following proof, we prove Lemma 2 for       when  
 
   . 

Case 1. Suppose that                     . The ant walks as follows (Figure 12-1):  

                  , changing the coloring of             from              to 

            ; next, since the coloring of         is                   , by Lemma 2 for 

                the ant starting from       reaches to             , which changes the coloring of 

        from                     to                    ; finally, the ant walks from               to 

           . 

Case 2. Suppose                     and                    . First, the ant walks as 

follows (see Figure 12-2):                   ; next, since                    , the ant 

entering         at       reaches to            , changing the coloring of         from 

                    to                    ; after that, the ant walks as                       

                  , which change the coloring of the     gadget from     to   , and the 

coloring of the PATHs taken from      to     ; then, getting into the     gadget, the ant turns 

around and exits at     , switching the coloring of the     gadget from     to   .  

Secondly, the ant takes the following reversed walking course (see Figure 12-3):          

                      , changing the colorings of                      from 

                                   to                           ; the coloring of the taken PATH 

taken and CROSS gadgets are initialized, too.  

We remark that the gadgets that passed through, shown by the dotted line in Figure 12-3, are those 

gadgets that changed to the used color by the ant’s forward walking, but then initialized by the ant’s 

backward walking. These gadgets can be used again without violating the rules of the transition 

diagram given in Section 2; in other words, the already completely used gadgets, e.g.,      PATH 

gadgets or         CROSS gadgets, will never be used without being initialized in this manner. 

Finally, the ant walks as follows (see Figure 12-4):                  of 

                    of           of                  , changing the  

coloring of                           from                                 to 

                               ; we remark that, as shown in Figure 11, the walking course 

        going through the       gadget have polynomially many crossing points with other such 

courses        inside the       gadget; next, since                    , the ant entering to 

        at       reaches             ; finally, the ant walks as                          .  

Case 3. Suppose                     and                   . First, the ant walks as in 

Case 2:                                   of           of          

                        of          of                   of 

          of                  . 

Secondly, the ant walks as follows (see Figure 12-5): since the coloring of         has become 

              and                   , the ant reaches            ; after that, since the coloring 

of the     gadget has become   , the ant walks as                of           of  

             . 
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By these three Cases, Lemma 2 has shown to hold for       when  
 
  . Since   is a logical dual 

of  , a gadget of the  
 
   case is obtained from Figure 12 by switching the labels            and 

             for        and    . Accordingly, rewriting the above proof attains that of the  
 
   case. 

Figure 12.       when  
 
  .  

Figure 12-1 Figure 12-2  

  

Figure 12-3 Figure 12-4 Figure 12-5 
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5. Polynomial-Time Reduction 

For a given closed QBF formula   , Lemma 2 and its proof gives a polynomial-time construction of 

an       gadget such that if          (    ) then the ant placed at     of               

coloring of       finally reaches             (         ). So, as illustrated in Figure 13, plugging 

reflectors (see Figure 3) in both     and              , and a diagonal highway (see Figure 4) in 

           gives an initial configuration of GLA such that          (    ) if, and only if, the 

ant stays in a bounded area (goes out of any bounded area). This establishes an efficient reduction from 

the     evaluation problem to the recognition problem of the repeatable coloring of GLA on    with 

gray cells, proving Theorem 1. For the    model, plugging a highway along the horizon of the  

half-and-half background (see Figure 1) to           gives an efficient reduction, too, 

proving Theorem 2. 

Among our gadgets on    given in Section 2, only Switch & Turn gadget uses gray cell. In addition, 

the Switch & Turn gadget contains only one gray cell. So, putting these Switch & Turn gadgets 

mutually away from each other makes a size-  configuration of GLA colored by n
ε
-sparse gray cells 

for the reduction, proving Theorem 3. 

Figure 13. Reduction from QBF evaluation problem to the recognition problem of the 

repeatable coloring of GLA. 

      

  

6. Open Questions 

We can construct all gadgets shown in Section 2 on the    (triangular lattice) model with gray cells, 

excepting the Switch & Turn gadget. Although we are lacking the Switch & Turn gadget, we believe 

that the recognition problem of the repeatable configurations of GLA on    with gray cells is 

PSPACE-hard. The experimental results by Wang and Cohen [6] showed that randomly generated 

configurations of GLA on    for the monochromatic background, fall into the repeatable 

configurations with high probability. As far as we know, it is challenging to find even one provably 

unrepeatable configuration of GLA on    for the monochromatic background. Perhaps it is more 

challenging to prove the following: “an ant’s trajectory starting from a repeatable size-   configuration 
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of GLA is always at most a polynomial of  ”. If this were true, then the recognition problem of the 

repeatable configurations of GLA would belong to PSPACE. 
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