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Abstract:

 The problem of compressed pattern matching, which has recently been treated in many papers dealing with free text, is extended to structured files, specifically to dictionaries, which appear in any full-text retrieval system. The prefix-omission method is combined with Huffman coding and a new variant based on Fibonacci codes is presented. Experimental results suggest that the new methods are often preferable to earlier ones, in particular for small files which are typical for dictionaries, since these are usually kept in small chunks.
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1. Introduction

The problem of Compressed Pattern Matching, introduced by Amir and Benson [1], is of performing pattern matching directly in a compressed text without any decompressing. More formally, for a given text T, pattern P and complementing encoding and decoding functions [image: there is no content] and  [image: Algorithms 04 00061i1], respectively, our aim is to search for [image: there is no content](P) in [image: there is no content](T), rather than the usual approach which searches for the pattern P in the decompressed text  [image: Algorithms 04 00061i1]([image: there is no content](T)). This paper is an extended version of [2].

Most research efforts in compressed matching were invested in what could be called “classical” texts. These are texts written generally in some natural language, and which have been compressed by one of a variety of known compression techniques, such as Huffman coding [3] or various variants of the Lempel and Ziv (LZ) methods, including LZW [4–6], gzip, DoubleSpace and many others [7–9]. Note, however, that these methods are of general purpose and not restricted to the compression of natural language texts only.

We suggest to extend the problem to the search of patterns in the compressed form of structured files. The idea is that the raw texts form only a (sometimes, small) part of what needs to be stored in an Information Retrieval system to allow also efficient access to the data. Since the search on large scale systems is not performed by a linear scan, auxiliary files are adjoined, which are generally built in a preprocessing stage, but then permit very fast access during the production stage. These files include dictionaries, concordances, thesauri, bitmaps, signature files, grammatical files and many others, and their combined sizes are of the order of magnitude of the text they are based on. Obviously, these auxiliary files create a storage problem on their own, and thus are kept in compressed form. However, due to their special internal structure, which is known in advance, custom tailored compression techniques may be more effective than general purpose compressors.

Compression of structured data has been suggested in the past, though not in the context of compressed matching. For example, database compression techniques require the ability to retrieve arbitrary records even when compression is used. Ng and Ravishankar [10] explore the compression of large statistical databases and propose techniques for organizing the compressed data so that standard database operations such as retrievals, inserts, deletes and modifications are supported.

Another example is compressing XML files, as suggested in Levene and Wood [11], by separating the document structure from its data. Various XML compression methods exist, such as the offline compressor XMill [12], so called container-based compression, that is, the data is partitioned into containers depending on the element names, and the containers are then compressed using Gzip. The structure is encoded as a sequence of numeric tokens that represent both the XML markup (start-tags, end-tags, etc.) and the references to data containers. XMill achieves better compression than Gzip and runs at about the same speed. Another known online compressor is XMLPPM [13], based on a modification of the PPM2 compression scheme. It compresses better than XMill, but runs considerably slower, in part because of the use of arithmetic coding. XGrind [14] is another XML compressor which makes it possible to query compressed data by using Huffman coding. XMLZip [15] breaks the structural tree of the document at a specified depth, and compresses the resulting components using traditional dictionary compression techniques.

A further example of structured files compression is table compression, i.e., collections of fixed length records (unlike databases that might contain intermixed fixed and variable length fields). Table compression was introduced in the work of Buchsbaum et al. [16], where it was empirically shown that partitioning the table into contiguous intervals of columns, compressing each interval separately and grouping dependent columns, can achieve significant compression improvements. Buchsbaum et al. [17] provide theoretical evidence to a generalized partitioning approach of [16], and design new algorithms for continuous partitioning. Experimental results suggest that these algorithms yield better compression than optimal contiguous partitioning without reordering.

The structured files we deal with in this paper are dictionaries, the set of all the different words of an underlying text. Several possibilities exist to store such a file: among others, one can organize it as a hash table, or sort it according to some criterion, such as the frequency of occurrence or simply lexicographically. This latter approach has some evident advantages, as similar terms have a high chance to be requested simultaneously and can thus profit from the fact of being stored in neighboring positions. Some known Information Retrieval Systems storing their dictionaries in lexicographic order are the Responsa Retrieval Project [18] and the Trésor de la Langue Franąise [19]. We shall thus assume that dictionaries are lexicographically ordered, and more specifically that they were compressed by the prefix omission method (POM); the goal is to enable pattern matching that could be done directly on these files.

Prefix omission is a very simple, yet effective, dictionary compression technique, and is therefore widely used. For compressed matching, however, it raises problems that are reminiscent of the problems for a compressed match in LZ coded files: the pattern we are looking for, if it appears in the text, does not necessarily appear there contiguously [3].

One could argue that dictionaries are usually very small when compared to the text they derive from, and that they can often fit into memory even in their original form. One could thus avoid the compression altogether and use an uncompressed search, which has been studied extensively. But we also consider a scenario of weak machines with limited RAM on which we would like to run our application. Moreover, dictionaries are not always small (even if they are partitioned into independent small blocks), and in some applications, extended dictionaries are used that are an order of magnitude larger, for example to enable the processing of truncated terms [20].

The following section recalls the details of POM and presents an algorithm for searching in POM encoded files. Section 3 deals more specifically with Huffman coding and in Section 4, a new variant based on the use of Fibonacci codes is suggested. In Section 5 we mention an alternative solution to the problem, based on tries, and the final section brings some experimental results.



2. Pattern Matching in POM Encoded Dictionaries

The prefix omission method was apparently first mentioned by Bratley and Choueka [20]. It is based on the observation that in a dictionary of a natural language text, two consecutive entries will usually have a few leading letters in common. Therefore we eliminate these letters from the second entry, while adding to it the number of letters eliminated and to be copied from the previous entry. Since the entries have now variable length, their boundaries have to be identified, for example by adding a field representing the number of characters of the suffix string in the current entry, that is, the number of characters remaining after eliminating the prefix characters. More formally, we relate to the compressed form of the i-th entry Xi as an ordered triple (ℓi,ni,σi), where ℓi is the number of characters copied from the beginning of the previous (uncompressed) entry Xi−1, σi is the remaining suffix and ni is the length of this suffix, i.e., ni = |σi|.

Consider the example given in Table 1. The first column is a list of some consecutive words which were taken from the Oxford Dictionary of current English. The following column gives the compressed form of these words using the prefix omission method (the last two columns are referred to below, in Section 3).


Table 1. Example POM and the combined POM + Huffman.



	
Dictionary

	
POM

	
POM + Huffman Coding




	
with Preserving Codeword Boundaries

	
without …






	
compress

	
(0,8, compress)

	
(0,35,11001-0101-11011-111100-1001-000-1000-1000)

	
(0,35,⋯)




	
compression

	
(8,3, ion)

	
(35,12,0110-0101-0111)

	
(35,12,⋯)




	
comprise

	
(5,3, ise)

	
(24,11,0110-1000-000)

	
(25,10,110⋯)




	
compromise

	
(5,5, omise)

	
(24,20,0101-11011-0110-1000-000)

	
(26,18,01⋯)




	
compulsion

	
(4,6, ulsion)

	
(20,26,11000-10110-1000-0110-0101-0111)

	
(21,25,1000⋯)




	
compulsive

	
(8,2, ve)

	
(38,9,111110-000)

	
(38,9,⋯)




	
compulsory

	
(7,3, ory)

	
(34,14,0101-1001-111010)

	
(36,12,01⋯)




	
compunction

	
(5,6, nction)

	
(25,24,0111-11001-001-0110-0101-0111)

	
(25,24,⋯)




	
computation

	
(5,6, tation)

	
(25,22,001-0100-001-0110-0101-0111)

	
(26,21,01⋯)




	
compute

	
(6,1, e)

	
(28,3,000)

	
(29,2,00)




	
computer

	
(7,1, r)

	
(31,4,1001)

	
(31,4,1001)









Often the POM files are further compressed by some general method [image: there is no content], such as gzip, in order to reduce space. Accessing the dictionary itself is then done in two stages: first decompressing the file T by the corresponding decompression function  [image: Algorithms 04 00061i1] = [image: there is no content]−1 and then reversing the POM file, or more formally, searching for the pattern P in POM−1(  [image: Algorithms 04 00061i1](T)). The following algorithm, adapted from [20], is more direct.

Let P = p1 ⋯ pm denote the pattern of length m to be searched for, and P[i, j] the sub-pattern pi ⋯ pj, i.e., P[i, j] is the sub-pattern of P, starting at position i and ending at position j, both included. Let [image: there is no content] and  [image: Algorithms 04 00061i1] denote two complementing encoding and decoding functions. Given two strings S = s1 ⋯ sk and T = t1 ⋯ tℓ the function pre(S, T) returns the length of the longest common prefix of the two strings (or zero, if this prefix is empty), that is



si=tifor1≤i≤pre(S,T),andmin(k,ℓ)>pre(S,T)→sj≠tjforj=pre(S,T)+1.








To formulate it in words, the first pre(S, T) characters of S and T are identical, but the character indexed pre(S, T) + 1 differs, if such an index exists for both S and T. In particular, pre(S, T) = |S| if S is a prefix of T. Denote by ≻ the lexicographic order relation, i.e., S ≻ T if the string S follows T in lexicographic order.

Algorithm 1 presents the algorithm for searching for a pattern P in a dictionary compressed by POM, based on decompressing each entry. It assumes as input a POM compressed dictionary that has been further encoded by some function [image: there is no content], hence the use of the decoding function  [image: Algorithms 04 00061i1] for each of the components. The algorithm returns the index of the closest lexicographically preceding word to the word we are searching for. We start with  [image: Algorithms 04 00061i1](σ1), which is the first element, since ℓ1 is always zero. As long as the component  [image: Algorithms 04 00061i1](ℓi), indicating the number of characters copied from the previous entry, is larger than the current longest match, we simply move to the following entry (line 2.1) by skipping over  [image: Algorithms 04 00061i1](σi). This is done by decoding the following ni codewords. The correctness here is based on the fact that in this case there is at least one character following the characters of the longest match that is not part of an extended match. If the component  [image: Algorithms 04 00061i1](ℓi) is less than the length of the current longest match, we have already found the closest lexicographically preceding word in the previous entry, and we return its index (line 2.2). When  [image: Algorithms 04 00061i1](ℓi) is exactly equal to the current length of the longest match, we try to extend the match to the following characters (line 2.3).




	






	
Algorithm 1. Searching for P in  [image: Algorithms 04 00061i1](T).




	






	
1

	
i ← 2; j ← pre(P,  [image: Algorithms 04 00061i1](σ1));




	
2

	
 while (j < m) and dictionary not exhausted // Pattern not found




	

	
 {




	
2.1

	
  while  [image: Algorithms 04 00061i1](ℓi) > j




	
2.1.1

	
   i ← i + 1




	
2.2

	
  if  [image: Algorithms 04 00061i1](ℓi) < j // The closest lexicographically preceding word




	
2.2.1

	
   return i − 1




	
2.3

	
  else //  [image: Algorithms 04 00061i1](ℓi) = j




	

	
  {




	
2.3.1

	
   if P [j + 1, m] ≺  [image: Algorithms 04 00061i1](σi) return i − 1




	
2.3.2

	
   j ← j + pre(P [j + 1, m],  [image: Algorithms 04 00061i1](σi))




	
2.3.3

	
   i ← i + 1




	

	
  }




	

	
 }




	
3

	
 return i − 1




	








Line 2.3.1 deals with the special case when several consecutive words share a common prefix. Relying here only on  [image: Algorithms 04 00061i1](ℓi) without lexicographically comparing the suffixes could yield errors, as can be seen in the following example. If the sequence of dictionary entries is { aba, abb, abd, abe, aca} and we are looking for abc, the algorithm without line 2.3.1 would return abe instead of abb.

Note that it might be that the three fields of each POM entry are encoded in different ways. This would then imply that instead of using one decoding function  [image: Algorithms 04 00061i1], we use several different ones, e.g.,  [image: Algorithms 04 00061i1]1 in lines 2.1, 2.2 and 2.3,  [image: Algorithms 04 00061i1]2 in lines 1 and 2.3.2 and  [image: Algorithms 04 00061i1]3 for ni.



3. Combining POM with Huffman Coding

To perform the pattern matching directly in the Huffman compressed dictionary, we need to identify the codeword boundaries in order to skip to the beginning of the following dictionary entry by counting the number of characters left in the current entry. If the field ni represents the number of codewords to the following entry, we have to decode each one to know where the next one starts. By using Skeleton trees [21], we could skip over a part of the bits, to the beginning of the following codeword, but still each codeword has to be processed on its own. However, defining ni as the number of bits to the following entry, provides a way to jump directly to the beginning of the following entry, without any processing of the bits. But this way we increase the storage requirements, since larger numbers need to be stored.

The third column of Table 1 is an example of the dictionary obtained by using a Huffman code based on empirical statistics. Note that ℓi and ni are now given in bits, but their values still refer to the lengths of one or more whole codewords. In the last column of Table 1, the definition of ℓi is extended to be the maximal number of bits copied from the previous entry, regardless of codeword boundaries. Though the number of copied bits is only occasionally increased and only by a small number of bits, the extension frees the function pre(S, T) of the need of checking for codewords. One can thus apply pre() on bitstrings regardless of their interpretation as codewords, which can be done efficiently with a few assembly commands.

There is, however, a drawback when moving to perform the pattern matching directly on Huffman encoded dictionaries. In Algorithm 1, when the pattern word does not appear in the dictionary, we are able to locate the closest lexicographically preceding word, basing ourselves on the lexicographic order of the dictionary entries. The problem here stems from the fact that Huffman coding does not necessarily preserve the lexicographic order. Even canonical codes, for which the codewords are lexicographically ordered, induce the order from the frequencies of the encoded items, not from their own lexicographic order. For example, refer to the alphabet { t, c, b, a, q} encoded by the canonical code {00, 01, 10, 110, 111}. The string qt precedes tq, but considering their encodings, 11100 follows 00111. We can therefore only either locate the pattern, or announce a mismatch.

The compressed matching algorithm in POM files which were compressed by using Huffman coding is given in Algorithm 2, with pre() now working on bit strings. Note that instead of decompressing the σi components, as done in the previous approach, we compress the pattern P and refer to bits instead of characters.




	






	
Algorithm 2. Searching for [image: there is no content](P) in T for Huffman coding.




	






	
1.1

	
i ← 2; j ← pre([image: there is no content](P), σ1);




	
1.2

	
security ← maxc∈P{|[image: there is no content](c)|}




	
2

	
while (j < |[image: there is no content](P)|) and dictionary not exhausted // Pattern not found




	

	
{




	
2.1

	
 while  [image: Algorithms 04 00061i1](ℓi) > j




	
2.1.1

	
  skip ni bits to the following entry




	
2.1.2

	
  i ← i + 1




	
2.2

	
 if  [image: Algorithms 04 00061i1](ℓi) + security < j return FALSE




	
2.3

	
 else // j – security ≤  [image: Algorithms 04 00061i1](ℓi) ≤ j




	

	
 {




	
2.3.1

	
  tmp ← pre([image: there is no content](P) [  [image: Algorithms 04 00061i1](ℓi) + 1, |[image: there is no content](P)|], σi)




	
2.3.2

	
  j ←  [image: Algorithms 04 00061i1]([image: there is no content]i) + tmp




	
2.3.3

	
  skip ni – tmp bits to the following entry




	
2.3.4

	
  i ← i + 1




	

	
 }




	

	
}




	
3

	
return i − 1




	








An additional complication for this variant is the need for a security number to assure correctness. In Algorithm 1, the closest lexicographically preceding word is found once ℓi is smaller than the longest common prefix we have already detected. Here, to guarantee that the word does really not appear, the condition has to be reinforced and we check that  [image: Algorithms 04 00061i1](ℓi) + security is still less than j. To illustrate the need for that change, refer to the above mentioned canonical Huffman code and the dictionary of Table 2. Suppose we are searching for the pattern abtq, the encoded form of which is 110-10-00-111. Performing line 1.1 of Algorithm 2 we get that j = 6. As j < |[image: there is no content](P)| = 10, we perform line 2.1. But as  [image: Algorithms 04 00061i1](ℓ2) = 5 < j, we would return FALSE, which is wrong. The security number gives us a security margin, forcing a closer analysis in the else clause.

Table 2. Example for the need of a security number.


	i
	Dictionary Entry
	POM

(ℓi, ni, σi)
	POM & Huffman

ℓi, ni refer to bits





	1
	abc
	(0, 3, abc)
	(0, 7, 110-10-01)



	2
	abqt
	(2, 2, qt)
	(5, 5, 111-00)



	3
	abtq
	(2, 2, tq)
	(5, 5, 00-111)








If we detect an entry the ℓi component of which is less than the current longest match, we can be sure the word we are looking for is missing only if the difference is more than the length of the encoding of one character. Therefore, the security number could be chosen as the maximum number of bits which are used to encode the characters of the alphabet, i.e., [image: there is no content]. As we deal only with the characters of the pattern, we can choose the security number to be the maximum number of bits needed to encode one of the characters of P, i.e., [image: there is no content].



4. Combining POM with Fibonacci Coding

In the previous section we used Huffman codes in order to perform compressed pattern matching on POM files. This way we could skip to the following entry by counting the bits with no need of decompressing the σi coordinates. We still had to decompress the ℓi components for arithmetic comparison. A part of the processing time might be saved by using alternatives to Huffman codes which have recently been suggested, such as (s, c)-dense codes [22] or Fibonacci codes [23], trading the optimality of Huffman's compression performance against improved decoding and search capabilities.

In this section we present a pattern matching algorithm working on a POM file which has been compressed using a binary Fibonacci code. This is a universal variable length encoding of the integers based on the Fibonacci sequence rather than on powers of 2, and a subset of these encodings can be used as a fixed alternative to Huffman codes, giving obviously less compression, but adding simplicity (there is no need to generate a new code every time), robustness and speed [23,24].

The particular property of the Fibonacci encoding is that there are no adjacent 1's, so that the string 11 can act like a comma between codewords, yielding the following sequence: {11, 011, 0011, 1011, 00011, 10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011, …}. More precisely, the codeword set consists of all the binary strings for which the substring 11 appears exactly once, at the right end of the string. The specific order of the sequence above, which is used in the coding algorithms, is obtained as follows: just as any integer k has a standard binary representation, that is, it can be uniquely represented as a sum of powers of 2, Σi≥0bi2i, with bi ∈ {0, 1}, there is another possible binary representation based on Fibonacci numbers, k = Σi≥0fiF(i), with fi ∈ {0, 1}, where it is convenient to define the Fibonacci sequence here by F(0) = 1, F(1) = 2 and F(i) = F(i − 1) + F(i − 2) for i ≥ 2. This Fibonacci representation will be unique if, when encoding an integer, one repeatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is 13, for the remainder 6 one can use the Fibonacci number 5, and the remainder 1 is a Fibonacci number itself. So one would represent 19 as 19 = 13 + 5 + 1, yielding the binary string 101001. Note that the bit positions correspond to F(i) for increasing values of i from right to left, just as for the standard binary representation, in which 19 = 16 + 2 + 1 would be represented by 10011. Each such Fibonacci representation starts with a 1, so by preceding it with an additional 1, one gets a set of uniquely decipherable codewords. Decoding, however, would not be instantaneous, because the set lacks the prefix property, but this can be overcome by simply reversing each of the codewords, which yields the sequence above. The adjacent 1s are then at the right instead of at the left end of each codeword, e.g., the codeword corresponding to 19 would be 1001011.

In our case, we wish to encode dictionary entries, each consisting of several codewords. We know already how to parse an encoded string into its constituting codewords, what still is needed is a separator between adjacent dictionary entries. At first sight it seems that just an additional 1-bit would be enough, since the pattern 111 never appears within a codeword. However, a sequence of 3 consecutive ones can appear between adjacent codewords, as in 011-1011. Therefore we must add two 1-bits as separators between dictionary entries. The additional expense is alleviated by the fact that the ni component becomes redundant and can be omitted, so that the compressed dictionary will contain only the Fibonacci compressed forms of the ℓi and σi fields.

There is, however, a problem with the first codeword 11, which is exceptional, being the only one which does not have the suffix 011. Our goal is to be able to jump to the beginning of the following dictionary entry without having to decode the current one completely. If the first codeword 11 were to be omitted, one could then simply search for the next occurrence of the string 01111, but if 11 is permitted, a sequence of 1's of any length could appear, so no separator would be possible. Our first solution is thus simply omitting 11 from the Fibonacci code, which comes at the price of adding one bit to each codeword which is the last one of a block of codewords of the same length.

Table 3 compares the storage performance of the two Fibonacci encodings with or without 11, on three test dictionaries of different sizes. Details on the test files are given in the next section. The first column gives the size, in bytes, of the uncompressed dictionaries, the second and third columns the sizes of the POM-Fibonacci compressed dictionaries, without and with the use of the first codeword 11, respectively. As can be seen, it is worth eliminating the 11 codeword, though the difference is small.

Table 3. Memory storage of the two Fibonacci methods.


	Sv ize
	Fibonacci without 11
	Fibonacci with 11





	8002
	1812
	1836



	16496
	3811
	3855



	23985
	5558
	5585








Another solution is using the first codeword 11, but making sure that two such codewords cannot appear adjacently. This can be achieved by adding a new codeword for encoding the sequence of two occurrences of the most popular character. For Example, if e is the most frequent character in a given text file, we use the codeword 11 to encode a single occurrence of e. But if the sequence ee occurs in the text, it will be encoded by a special codeword (taking the probability occurrence of ee into account). In other words, if Σ denotes the alphabet, the new alphabet to be encoded by the Fibonacci code is Σ ∪ { ee}. If, e.g., the string eeeee occurs, we can use the special codeword twice and follow it by 11, the codeword for e. The longest sequence of 1-bits would thus consist of 5 1's, as in 1011-11-1011. Therefore, to identify a new entry in the POM file, a sequence of six 1-bits is needed, that is, our separator consists of four 1-bits, rather than just two in the previous solution. Comparisons between the compression performance of these two solutions are given in the following section, showing, at least on our data, that the first solution (omission of 11) is preferable to the second. The rest of our discussion therefore assumes this setting.

As mentioned, the reason for defining the codewords with the string 11 at their end is to obtain a prefix code, which is instantaneously decodable. If we add the 11 separator between dictionary entries at the end of the ℓi field, the appearance of the sequence 01111 can tell us that we have just read the ℓi part of the following entry. It turns out that for our current application, it is convenient to reverse the codewords back to their original form: by doing so, the string 11110 will physically separate two consecutive entries. Moreover, the codewords are then in numerical order, i.e., if i > j, then the Fibonacci encoding of i, when regarded as a number represented in the standard binary encoding, will be larger than the corresponding encoding of j. The compressed search in a dictionary using both POM and Fibonacci coding is given in Algorithm 3, where Fib(i) stands for the above Fibonacci representation of the integer i. There is no need for decompressing the Fibonacci encoded field ℓi, so that the comparisons in lines 2.1 and 2.2 can be done directly with the encoded binary strings.




	






	
Algorithm 3. Searching for [image: there is no content](P) in T for Fibonacci coding.




	






	
1

	
i ← 2; j ← fib-pre([image: there is no content](P), σ1);




	
2

	
while (j < m) and dictionary not exhausted // Pattern not found




	

	
 {




	
2.1

	
  while ℓi > Fib(j)




	
2.1.1

	
   skip to the following occurrence of the string ‘11110’




	
2.1.2

	
   i ← i + 1




	
2.2

	
  if ℓi < Fib(j) return FALSE




	
2.3

	
  else // ℓi = Fib(j)




	

	
  {




	
2.3.1

	
   j ← j + fib-pre([image: there is no content](P [j + 1, m]), σi)




	
2.3.2

	
   skip to the following occurrence of the string ‘11110’




	
2.3.3

	
   i ← i + 1




	

	
  }




	

	
 }




	
3

	
 return i − 1




	








For example, the Fibonacci codewords for 19 and 12 are, respectively, 1101001 and 110101; when being compared without decoding, they would be considered as the (standard) binary representations of 105 and 53, but for the algorithm to be correct, it is only their relative order that matters, not their exact values.

Given the pattern to be searched for, we can compute, as before, the longest common prefix of σi and [image: there is no content](P). However, it might be that this common prefix is not the encoding of the longest common prefix of  [image: Algorithms 04 00061i1](σi) and P. For example, if [image: there is no content](P) = 1100-1101 and σ1 = 1100-110101, then the longest common prefix in characters is of length 1, (i.e., the decoding of 1100), but the longest common prefix in bits is the binary string 1100-1101, which could be wrongly interpreted as two codewords. This can be corrected by checking whether the string which follows the longest common binary prefix in both [image: there is no content](P) and σi is at the beginning of a codeword, i.e., starts with 11. The function fib-pre in Algorithm 3 refers to this corrected version: it calculates the number of codewords, rather than the number of bits, in the common prefix, and returns the number of bits in these codewords. For the example above, fib-pre ([image: there is no content](P), σ1) = 4.

Since Fibonacci codes, like Huffman codes, do not necessarily preserve lexicographic order, they also cannot return the closest lexicographically preceding word in case the word is not found. Consider the same example used above, where the alphabet { t, c, b, a, q} is encoded by {110, 1100, 1101, 11000, 11001}, respectively. The dictionary entry bc precedes cb, contrarily to their respective encodings 1101-1100 and 1100-1101. Compressed pattern matching in POM and Fibonacci can thus only return the matched entry or announce a mismatch.



5. Alternative Method

Ristov and Laporte [25] introduce a data structure called an LZ-trie for compressing static dictionaries which is a generic Lempel-Ziv compression of a linked list trie. This compressed trie reduces the size of the dictionary beyond that of a minimal finite automaton and allows the incorporation of the additional data in the trie itself. They perform it by sharing not only common prefixes or suffixes, but also internal patterns. In order to speed up the quadratic time compressing procedure, they use suffix arrays for looking for repeated substrings in the trie.

LZ linked list tries perform best for dictionaries of inflected languages (e.g., Romanic, Slavic) and are less efficient for English. The compression performance of the LZ-trie improves over larger dictionaries.

Since the strings are represented by a compressed trie structure, the look up is not performed sequentially but by following the trie links. The search done by the LZ linked list trie is therefore significantly faster than that of other methods, that use sequential searching.



6. Experimental Results

The experiments were performed on small POM files of several K bytes because of the following particular application: POM is often used to store dictionaries in B-trees; since the B-tree structure supports an efficient access to memory pages, each node is limited to a page size, and each page has to be compressed on its own, that is, for the first entry of each page, ℓ1 = 0. A part of the B-tree may reside in cache, but if it does not fit in its entirety in memory, parts of it have to be fetched on request. Experiments were performed on an Intel PC with 900 MHz AMD Athlon CPU with 256KB cache memory and 256 MB of main memory running RedHat Linux-7.3.

For our experiments, we have chosen files of different nature: the English Bible bib, and a large XML file xml. Their dictionaries were built from all the words that occur in these files. We then considered different prefixes of these dictionaries, so that we get sub-dictionaries of approximate sizes 2K, 4K, 8K and 16K. To see how the methods scale up, we have also included as last line the dictionary of all the words in the Hebrew Bible. Table 4 gives the compression performance: the second column gives the sizes of the original sub-dictionaries, the third column gives the size of the POM file after using Huffman coding, when the values for ni and ℓi are expressed in bits, the fourth column contains the corresponding values for the Fibonacci variant, ℓi being expressed in characters. The fifth column corresponds to a Huffman encoded POM file, for which ni and ℓi represent character counts (as in the third column of Table 1), rather than the number of bits (as in the fourth column): the encoded numbers are thus smaller, yielding a reduced size of the file. The sixth column is the performance of POM alone. The last column gives the sizes of the LZ tries of [25]. All the sizes are given in bytes and include the overhead caused by storing the Huffman trees. The POM-Huffman methods use three Huffman trees, one for each of the components σi, ℓi and ni. The POM-Fibonacci method uses only two components σi and ℓi. As can be seen, the Fibonacci variant performs better for small files. This advantage could be explained by the use of two fields instead of three, and the fact that Huffman coding requires more additional space: even if Canonical Huffman codes are used, one still needs information about the shape of the trees, i.e., the number of codewords of a given length, while for Fibonacci codes, these numbers are fixed and need not to be stored. The LZ trie improves on POM, but is inferior to the Huffman encoded POM files, and on the small files also to the Fibonacci encoded ones. Recall that, as mentioned above, the small files are our main target application.

Table 4. Comparative chart of compression performance.


	File
	Size
	Huffman

(bit encoding)
	Fibonacci
	Huffman

(char encoding)
	POM
	LZ trie





	bib1
	2044
	775
	716
	616
	1171
	1000



	bib2
	4095
	1709
	1666
	1413
	2754
	2369



	bib3
	8067
	2769
	2749
	2253
	4663
	3496



	bib4
	16199
	5242
	5379
	4276
	9217
	6002



	xml1
	2047
	1097
	999
	905
	1481
	1614



	xml2
	4093
	1640
	1527
	1327
	2457
	2138



	xml3
	8190
	2427
	2350
	1957
	4079
	2696



	xml4
	16,383
	3898
	4001
	3156
	7336
	3785



	Hebbib
	253,230
	72,514
	80,079
	55,149
	148,890
	74,363








To empirically compare the processing times, we considered all of the words which occur in the dictionary. We thus considered one pattern for each entry in the dictionary, and averaged the search times. The results in milliseconds are given in Table 5. For comparison, we added also the search times with the LZ trie and a column headed “decode + search”, corresponding to the character oriented Huffman coded POM file which is decoded and then scanned with the algorithm of Figure 2. The direct access of the trie approach, in comparison with the sequential access of the other methods, makes the LZ trie several orders of magnitude faster. Among the other methods, for the smaller files, there is a clear advantage of the Fibonacci approach since a part of the encoded file is not scanned. For the largest file the Huffman variant is better, which could be explained by the smaller file to be processed. Both compressed matching techniques are generally better than decompressing and searching afterwards.

Table 5. Empirical comparison of processing time.


	File
	size
	Huffman
	Fibonacci
	decode + search
	LZ trie





	bib1
	2044
	6.7
	2.8
	7.7
	.02



	bib2
	4095
	7.5
	3.7
	8.8
	.01



	bib3
	8067
	8.4
	4.9
	8.9
	.01



	bib4
	16,199
	9.9
	6.8
	10.1
	.01



	xml1
	2047
	7.3
	3.2
	7.0
	.01



	xml2
	4093
	7.9
	3.8
	7.6
	.01



	xml3
	8190
	8.5
	4.7
	8.3
	.02



	xml4
	16,383
	9.7
	6.1
	9.7
	.02



	Hebbib
	253,230
	50
	65
	64
	.02










7. Conclusions

We introduced two new methods to represent a POM file so that direct search could be done in these compressed dictionaries. The processing time is typically twice as fast for the Fibonacci variant than for the Huffman based algorithm, and also compared to decoding a Huffman encoded POM file and searching on the uncompressed version. We see that in the case of small files, which is the important application since dictionaries are usually kept in small chunks, the Fibonacci variant is much faster than decoding and searching or than the POM–Huffman method. Even though the compression performance might be slightly inferior to the character version of Huffman (but is still generally better than the bit version), this might well be a price worth to pay for getting the faster processing. On the other hand, one can get much faster processing using tries, rather than sequential search, but for small dictionaries, compression will then be inferior.
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