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Abstract: Tantrix (Tantrix® is a registered trademark of Colour of Strategy Ltd. in
New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of
M. McManaway, the inventor.) is a puzzle to make a loop by connecting lines drawn on
hexagonal tiles, and the objective of this research is to solve it by a computer. For this
purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed
board. We then formulate it as an integer program by describing the rules of Tantrix as its
constraints, and solve it by a mathematical programming solver to have a solution. As a
result, we establish a formulation that can solve Tantrix of moderate size, and even when the
solutions are invalid only by elementary constraints, we achieved it by introducing additional
constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.
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1. Introduction

Games and puzzles are entertainments for human beings, and solving puzzles or playing games are
lots of fun for everybody. Such games and puzzles are often logical enough, and they have long been

attracted interests of mathematicians and computer scientists not only for the pleasure but for their
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research [1]. Those may include Nim, Hex, Peg Solitaire, Tetris, Geography, Sudoku, Rubik’s Cube,
Chess, Othello, Go, and so on [2-6].

There are also a lot of directions and objectives when games and puzzles are treated as research
topics [1,7-9]. Some of those are investigating their mathematical structures [2,10,11], computational
complexities [3,12], winning strategies [1,7], and so on. As computers evolve and their utilization
methods expand, they are rapidly incorporated into these research areas [2,4—6]. That is, for example,
to develop a computer program that can beat humans in playing games or can solve puzzles faster
than humans.

In this paper, we focus on a puzzle called Tantrix to make a loop by connecting lines drawn on
hexagonal tiles [13—15]. The objective of this research is to solve it by a computer. Specifically, we
first give a simplified problem setting of solving Tantrix as making a loop on a given fixed board. We
then formulate it as an integer program (IP) [16,17] by representing the rules or properties (necessary
conditions) that solutions of Tantrix satisfy as its constraint conditions. We finally obtain a solution by
solving that IP formulation by a commercial mathematical programming solver. After that, since we
may not have valid solutions only by elementary constraints, we introduce new additional constraints
in order to derive correct solutions. Furthermore, we give some observations and proposals for solving
larger problems in less computational time. Finally we show the current best solution of Tantrix obtained
by the proposed approach. Our approach of using IP formulation to solving puzzles seems unique, and
to the best of our knowledge, this is one of very few cases that IP meets solving puzzles successfully.

In Section 2, we introduce a puzzle called Tantrix and explain its rules. Next in Section 3, we give
a problem setting for solving Tantrix by a computer and terminology for IP formulations. Then in
Section 4, we describe a framework for solving this problem by using integer programming and propose
its formulations. We solve these formulations by a solver and show its experimental results. In Section 5,
we develop some ideas to accelerate their computational time. Finally Section 6 presents some future

work and concludes the paper.
2. Tantrix

Tantrix is a puzzle originally invented in 1988 by Mike McManaway of New Zealand [13]. Several
variants of commercial Tantrix products have been sold so far, and among those a solitaire version is
named “Tantrix Discovery” [13—15,18]. Throughout this paper, we only focus on this solitaire version,
Tantrix Discovery, and we simply call it “Tantrix” in the rest of this paper.

Tantrix is played by 10 sorts of hexagonal tiles of the same size. A tile has two surfaces, which we
call a top (surface) and a back (surface). On a top surface three lines are drawn in red, blue and yellow,
respectively (Figure 1(a)), and on a back surface one of the numbers from 1 to 10 is drawn in either
one of the three colors red, blue or yellow (Figure 1(b)). The 10 patterns of lines drawn on tops are all

different from each other.
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Figure 1. (a) Tops of 10 sorts of tiles (with their orientations 1), and (b) their
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corresponding backs.
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Tantrix is played by putting tiles in the form of hexagonal lattice and the goal is to make a loop in one
designated color of the three colors according to the following rules.

1. determine the number of tiles for the challenge (challenge number), which is greater than 2,

2. prepare the tiles as many numbers as the challenge number consecutively starting from a tile with
number 1 on its back (in case it is more than 10, start from 1 again),

3. the designated color is the one in which the lowest digit of the challenge number is written (on the
back of the tile),

4. connect all the lines of the designated color (drawn on prepared tiles) so that they form a
single loop,

5. connect the lines of the other colors than the designated color so that their touching colors match.

Here such arrangements in which there is a hole (places without tiles surrounded by more than 5 tiles)
(Figure 2(a)), or any one of the lines of the designated color is not a part of a loop (Figure 2(b)) are
not allowed. When one completes making a loop according to the above rules, we say that we cleared
that challenge number of Tantrix (To be authorized as an official record, an arrangement must satisfy the
following condition: in the arrangement let one of the three directions (axes) that has the most number
x of tiles be A, and the other two directions that cross A be B and C. Then there must be more tiles than
30% of x in more rows than 75% of those in directions B and C, respectively. This condition is set to
exclude the so-called “4-tiles’ equation” discovered by C. Fraser of England. This information was once
posted in [13], however, we can no longer find it on Nov. 15, 2011.).

Figure 2. Examples of “uncleared” arrangements although they satisfy rules from 1 to 5:
(a) there 1s a hole; and (b) a line of the designated color (red) is not a part of a loop.
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Suppose we try Tantrix of challenge number 5. The designated color of that number is red
(Figure 1(b)). In Figure 3, a single loop of the designated color red is made by using all the red lines
drawn on five tiles that have numbers from 1 to 5, and the colors of touching lines of the other colors
also match (in this case blue only) at the same time. In addition there is no hole in this arrangement of
tiles. Therefore, we say that we cleared Tantrix of challenge number 5.

Figure 3. An example of a “cleared” arrangement; a Tantrix solution of challenge number 5.

A solution (of challenge number n) is an arrangement how n tiles are placed, and a Tantrix solution
is the one that satisfies all the above conditions (Figure 3). A shape of a solution is its boundary formed
by n hexagonal tiles.

3. A Problem Setting and Terminology for Formulations

We attempt to solve this puzzle by formulating its solutions as an integer program and using
mathematical programming solver for it. In this section, we give a simplified problem setting for this
purpose and give some terminology for IP formulations.

3.1. A Problem Setting for Solving Tantrix by a Computer

Humans may play Tantrix on the table, on the floor or at any other places they like. For computers,
however, we have to prepare artificially and appropriately a space where solutions are made. Consider
an infinite hexagonal lattice plane (as shown in Figure 4), where the size of each hexagon is as the same
as the one of a tile. When Tantrix is played by a computer, a tile is placed to fit on each hexagon, which
we call a place (Figure 4(a)). In addition, a collection of multiple places where a solution is supposed to
be made is called a board (Figure 4(b)). The size of a board is the number of hexagons that constitute it.

Figure 4. A place (left) and an example of a board (of size 5) (right) on a hexagonal
lattice plane.
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When a human solves Tantrix, one may connect the lines of the designated color to make a single
loop, while connecting lines of the other colors simultaneously, as well as arranging tiles so that they do
not create a hole in its shape at the same time. Especially, one cannot supposed to imagine the final shape
of a loop (and thus, a solution) in advance. In other words, even if once one determined the challenge
number, the shape of a solution cannot be fixed uniquely. It is not so easy for computers to deal with this
situation since they have to assume unfixed shapes of boards on an infinite hexagonal lattice plane. To
avoid this difficulty, in this paper, we consider a following simplified setting of Tantrix, in which we also
give as an input a fixed board of the same size as a challenge number and place tiles on that board.

FIXED_BOARD TANTRIX
Input: a challenge number n and a board of size n that satisfies the rules of Tantrix,

Question: a Tantrix solution if there is on the input board, or no, otherwise.

Remark that on this problem setting, the shape of a solution always matches the shape of an input board.
Furthermore, to concentrate on developing integer program formulations for making a loop that satisfies
rules of Tantrix, we give a board whose shape is known to have a Tantrix solution (confirmed by humans)
as an input. This implies that we do not have to consider “no” instances under this assumption.

In the subsequent sections, we solve this problem FIXED_BOARD TANTRIX by utilizing a
mathematical programming solver after formulating it as an IP. We use IBM ILOG CPLEX 12.2 [19]
as a solver, which is installed on a single PC of Intel Pentium Dual E2200 processor (2.2 GHz) with
1 GB RAM.

3.2.  Terminology and Definitions for IP Formulation

We call a tile with number 7 on its back tile i. Remind that the designated color of a number is the
one in which the number is written. We define an angle of a line as its central angle when we regard it
as a circular arc of a circle, where we define the angle of a straight line to be 0°. Then an angle of a line
is either one of 0°, 60° or 120° (Figure 5). For example, tile 2 is said to have a red line of an angle 120°,
0° blue line and 120° yellow line (Figure 1(a)).

Figure 5. Three angles of lines.
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To distinguish places and orientations of tiles to be placed, we next assign numbers to them. For places

of an input board (of the same size as a challenge number n), we give numbers from 1 to n appropriately
(e.g., Figure 6). We also give numbers from 1 to 6 to the edges of each place counterclockwise as shown
in Figure 7. The orientations of a tile to be placed take values from 1 to 6. We define it in the following
way (Figure 8): place a tile showing its back and its number in the upright position; flip it horizontally,
and it is orientation 1; every time we rotate it by 60° clockwise, its orientations will be 2, 3, 4, 5 and 6,
respectively. Figure 1(a) shows each tile in its orientation 1.
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Figure 6. An example of a board of size 10 and given numbers to its places.

Figure 8. Orientations of a tile.

Next, let a(j, ) be a function that returns the number of the place that is adjacent to place j with
its edge ¢, and returns O if such a place is out of a board. In Figure 6, for example, a(1,1) = 2 and
a(1,4) = 0. For simplicity, once a tile is (or supposed to be) placed on a certain place with a certain
orientation, we allow to identify the tile with that place. That is, we alternatively say, for example,
that the color of a line of an edge of a place instead of saying that the color of a line (of a placed tile)
appearing on the corresponding edge (of the place where the tile is placed in a certain orientation), and
SO on.

4. An Integer Programming Formulation

In this section, we formulate FIXED_BOARD TANTRIX as an integer program. We first introduce
variables, and then explain constraints and an objective function. Then we show experimental results of
solving this formulated IP by a solver.

4.1. Variables

We distinguish all the tiles prepared for challenge number n, that is, we number the tiles from 1 to n.
Then we use the following two integral variables for our IP formulation.
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First, for each tile i (1 < i < n), for each place j (1 < j < n) and each orientation k (1 < k < 6),
let a 01 variable x;;;, be

1, tile is placed on place j with orientation &
Y 0, tile 7 is not placed on place j with orientation k

Next for each place j (1 < j < n) and its edge ¢ (1 < ¢ < 6), let a variable y;, that expresses the color

of its corresponding line (of a placed tile) be

(1, for place j, the color of the line corresponding to edge ¢
is neither the designated color nor color 2,

) 2, for place j, the color of the line corresponding to edge ¢

Yit = is neither the designated color nor color 1,

3, for place j, the color of the line corresponding to edge /¢

is the designated color.

Here we use values 1, 2 and 3 to indicate three colors of lines, and the value 3 is intended to denote
the designated color. Remark here that if we define a function ¢(, k, £) that returns the color of the line
corresponding to edge ¢ when tile 7 is placed in orientation k£ (we can know it according to the top of
tiles), the variable y;, is represented by using z;;, and c(i, k, ) as the following:

6

ng:ZZC(Z,k',g)Qf”k (j:1,2,,n, le,,G)

i=1 k=1

4.2.  Constraints and an Objective Function

We now describe the (necessary) conditions to hold for a Tantrix solution as constraints of an integer
program. Based on the rules of Tantrix, we introduce the following four constrains.

Constraint 1 (C1). Exactly one tile is placed on each place.

Constraint 2 (C2). Each tile is used exactly once.

Constraint 3 (C3). The color of a line of an edge that is on the boundary of a board is not the
designated color.

Constraint 4 (C4). The colors of lines whose corresponding edges are touching each other have
to match.

Constraint 1 is required to hold for any place on a board that it cannot happen that no tiles or more than
two tiles are placed, and it is represented by the following formula:

n

6
Cl: > N wp=1 (j=1,2,....n)

i=1 k=1

Constraint 2 can be set since we distinguish all the tiles. Each tile ¢ is used exactly once and this is

n 6
C2: szwkzl (221,2,,77,)

j=1 k=1

formulated as follows:
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Constraint 3 implies that a line of the designated color of any tile cannot become adjacent to the boundary
of a board, and it is expressed as follows:

C3: 1<yyp<2 (j=1,....m;L=1,...,6; a(j,f) =0)

Constraint 4 implies the rules 4 and 5 of Tantrix; that is, connect lines of the same color for every three
colors. This condition is formulated as follows:

C4. Yje = Yjro (jaj/ = 1,...,71; 676, = 17767 a(]ag) :]/7 a(jlvgl) = ])

Remark here that, by C3 and C4, any line of the designated color must be a part of a loop, that is, they
constitute a necessary and sufficient condition for that all the lines of the designated color form loops.

We call a loop of the designated color consists of less than n tiles a subloop. Then by C1-C4 we
cannot avoid subloops. That is, they do not imply sufficient conditions that a loop of the designated
color is unique, which must be satisfied by a Tantrix solution. It is, of course, not impossible to
introduce constraints that eliminates all the probable subloops in a formulation as it is introduced for
TSP formulations [16,17,20,21], however, it may require exponential number of constraints, which
may also cause a long computational time. Therefore, to guarantee the uniqueness of the loop of the
designated color, in our formulation, we add constraints for eliminating subloops every time they appear
and re-solve it.

In our approach, since a (Tantrix) solution is formulated as constraints of an integer program, it
suffices to find one of its feasible solutions. In such a case, an objective function is enough to be virtual,

and therefore, we set it as z1 1 ; — min, for a descriptive purpose.
4.3. Elementary Experiments and the Results

We solve the integer program formulated so far by a solver to obtain a solution and to examine the
solution time. We use IBM ILOG CPLEX 12.2 [19] as a solver, which is installed on a single PC of
Intel Pentium Dual E2200 processor (2.2 GHz) with 1 GB RAM. Since the computational time spent for
solving a fixed formulation by a solver on a same computer is always the same in principle, we adopt the
one by a single computation throughout our experiments.

We performed experiments for challenge numbers 5, 10, 15, 20, 25 and 30. Remind here that we give
as an input an appropriate board on which it has a Tantrix solution. Table 1 shows its computational
time and the number of loops in a solution for each challenge number. Figure 9 depicts the obtained
solution for challenge number 10. We see that we can solve our formulation within 3 seconds up to
challenge number 25. For challenge numbers 30 and 35, on the other hand, it requires approximately 100
and 13,000 seconds, respectively, and we can confirm that the computational time increases drastically.
We can imagine that it is difficult to obtain solutions more than these challenge numbers under our

current formulation.
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Table 1. Computational time (s) of solving IP formulations using constraints C1, C2, C3 and

C4, and the number of loops in each solution.

constraints C1,C2,C3,C4

challenge# time #loops

) 0.02 1
10 0.06 1
15 0.27 1
20 2.23 2
25 2.28 2
30 98.88 1
35 12,944.06 2

Figure 9. The solution for challenge number 10, where we use a board in Figure 6.

As we mentioned, elementary constraints C1-C4 cannot eliminate subloops. In fact, for challenge
numbers 20, 25 and 35, their solutions include subloops. We show in Figure 10(a) a board used for
challenge number 20, and in Figure 10(b) the obtained solution. Hence, we have to eliminate these

subloops to obtain a Tantrix solution.

Figure 10. (a) A board of size 20 used for challenge number 20; (b) a solution obtained
by solving a formulation using C1-C4; including 2 subloops of its designated color blue,
where an orange line is a cut defined by them; and (c¢) a final solution obtained by solving a
formulation by adding CS5.

(c)
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4.4.  Subloop Elimination

To eliminate subloops appearing in a solution, we introduce new constraints. We add them to the
original formulation, and re-solve the updated one. We iterate this process every time subloops appear in
a solution until we finally obtain a Tantrix solution. Now we call a border that divides a board into two
parts a cut. Then if the loop of the designated color is unique, it crosses over an arbitrary cut more than

once. Therefore, we introduce the following new constraint.
Constraint 5 (C5). Lines of the designated color cross the cut over which they do not cross.

To describe this constraint, we introduce for convenience a new 0-1 variable z;,.

0, for place j, the color of the line corresponding to edge ¢
is not the designated color (y;, = 1, 2),
Zjg =
o 1, for place j the color of the line corresponding to edge ¢

is the designated color (y;, = 3).

More precisely, we define a cut K as a pair (j, £) of place j and its edge ¢, where one of the divided part
by that cut is adjacent to. Then C5 can be formulated as follows:

CSs: > oz >2

(OEK

and we give this constraint for all the cuts that lines of the designated color do not cross in a solution.
For example, in a solution of challenge number 20 (Figure 10(b)), such a cut is K = {(19, 1), (19, 6),
(14,1), (11,2), (11,1), (7,2), (8, 3)}, and thus CS for this cut becomes 2191 +2196 +2141 +2112 +211.1
+2720 +283 > 2.

The value of this variable zj is, in fact, determined by those of the variable y;,; that is, z;, = 0 if
yje = 1 or 2 (i.e., not the designated color), or z;, = 1 if y;, = 3 (i.e., the designated color). In other
words, possible combinations of values for y;, and zj, are (y,¢, zj¢) € {(1,0),(2,0), (3,1)}. Therefore,
zj¢ can be represented by the following two inequalities:

yie 1
S
Zje 2 Yje — 2

For challenge numbers 20, 25 and 35, whose solutions include subloops, we iterated adding C5 to
each of their formulations and re-solving it until we obtain a Tantrix solution. Table 2 is the results for
this experiment, and it shows the computational time required in each iteration (#iteration) and the sum
of those for all iterations (total). (We define the first trial of solving the original formulation without
C5 as the Oth iteration.) Figure 10(c) depicts the final solution for challenge number 20, where we can
confirm that a subloop in the original solution (Figure 10(b)) is eliminated and that there is a single loop.
We are now able to obtain a Tantrix solution by formulations using C1, C2, C3, C4 with adding C5
if needed.
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Table 2. Computational time (s) of solving IP formulations using C1-C4 with adding C5 for
challenge numbers 20, 25 and 35.

. C1,C2,C3,C4 + C5
constraints
#iterations challenge#
20 25 35
0 2.23 2.28 12,944.06
1 0.61 1.27 740.72
2 — 097 —

total 2.84 452 13,684.78

5. Improvement for Larger Challenge Number

According to the framework of IP formulations which we proposed in the previous section, we can at
worst obtain Tantrix solutions unless we bother consuming time and spending work of re-solve. On the
other hand, if we try to solve it for larger challenge numbers, the increase of computational time (as is
observed in Table 2) and the re-solve due to subloops are still big issues to make it tractable. To cope
with these problems, we propose some new ideas, and adopt them one by one if it is confirmed to be
effective (in a way, trial and error).

5.1. Reduce Variables and Constraints

In general, introducing too many variables and constraints often causes the increase of computational
time spent by a solver. Therefore, we first consider a direct way to eliminate some of the variables.
For this purpose, we decide to use only 10 sorts of tiles (as is the original rules of Tantrix) instead of
distinguishing all the tiles and give them numbers from 1 to n. More specifically, the number of tile ¢,

ntl—i

used when challenge number is n, is (1—()} . Hence we change C2 into the following:

Constraint 2’ (C2'). Each tile i is used [*11=*| times.

Thus, this constraint is formulated as follows:

n

6
C2: >N e =M (i=1,2,...,n)
j=1 k=1

where n’ = min{n, 10}.

By this modification, the range of the index ¢ of the variable x;;, becomes from 1 to n’, which was from
1 to n before the modification. We notice that n’ is at most 10 (a constant). Then the number of variables
is reduced from 612 to 6nn’, which is 60n when the challenge number n > 10. Due to this reduction,
the number of constraints for this variable is also reduced from n to n’. Table 3 shows computational
results of solving a formulation using C1, C2/, C3 and C4. By comparing it with the results in Tables 1
and 2, we can confirm that the computational time is remarkably reduced. We consider this is due to
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the reduction of the number of variables and constraints, thus in the subsequent formulations, we always
adopt C2' instead of C2.

Table 3. Computational time (s) of solving IP formulations using C1, C2’, C3 and C4 for
challenge numbers 25, 30 and 35.

. C1,C2,C3,C4
constraints
#iterations challenge#
25 30 35
0 0.53 9.67 4.02
1 0.33 — 1,298.86
2 —  — 29.19
3 —_  — 15.18
4 —  — 2.77
) —_  — 44.06
6 —_  — 54.91

total 0.86 9.67 1,448.99

5.2.  Fix Tiles with a 120° Line of the Designated Color

By utilizing the assumption that a board is given as an input, there may be some places on the board
where a tile that has a 120° line of the designated color can be placed. Such a place is where four
of its six adjacent places are not included in the board (Figure 11). Then we set this condition as the

following constraint:

Constraint 6 (C6). Only a tile that has a 120° line of the designated color is placed if a place is
adjacent only to two places in a board.

Figure 11. A place where only a tile that has a 120° line of the designated color can
be placed.

If there exists such a place that satisfies the above condition, this constraint is realized by specifying
the colors of the lines whose corresponding edges are touching to the adjacent places to be the designated

color 3. That is, for such a place j and its two adjacent places j' and j” we add the following formulas:
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yie, =3 (a(j, l1) = 5")

C6: Yjeo = 3 <a<ji£2,) = ]//>
Yjrer =3 (Q(J ) = J)

yjrer =3 (a(3", ") = 7)

Table 4 shows computational results of solving a formulation using C1, C2’, C3, C4 and C6 for
challenge numbers 30, 35 and 40. To verify the effect of C6, we compare the computational time with
those in Table 3 in the case of challenge numbers 30 and 35. Then the overall solution time is reduced

from 9.76 to 1.86 and from 1448.99 to 182.11, respectively, and we can confirm its effectiveness.

Table 4. Computational time (s) of solving IP formulations using C1, C2’, C3, C4 and C6
for challenge numbers 30, 35 and 40; and IP formulations adding C7, C8 and C9 to them as
well for challenge number 40 (rightmost column).

C1,C2,C3,C4,C6 +C7,8,9

constraints
#iterations challenge#
30 35 40
0 1.86  18.09 28.39 9.39
1 — 3.30 35.72 29.69
2 — 17.94  322.17 —
3 —  142.78 3.56 —
4 — — 81.48 —
5 — — 8.23 —
6 — — 121.92 —
7 — — 65.13 —
8 — — 82.80 —
9 — — 145.37 —
10 — — 27.38 —
11 — — 156.00 —
12 — — 6.95 —
13 — — 59.45 —
14 — — 16.88 —

total 1.86 182.11 1,161.43 39.08

On the other hand, we can see that the number of iterations for eliminating subloops seems to
be increasing as the challenge number grows. In fact, in case of challenge number 40, it requires
14 re-solves. We consider this many iterations may be one of the main reasons for increasing

computational time, and we develop a way for reducing it.
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5.3.  Eliminate Short Subloops in Advance

We show in Figure 12 some solutions of the previous experiments for challenge number 40. To
observe these solutions, we can see that subloops consists of 3 or 4 tiles, and these are considered to
cause multiple re-solves. Therefore, we attempt to reduce the number of iterations by eliminating these
types of short subloops. More specifically, we eliminate subloops consists of 3, 4 or 5 tiles (for challenge
number greater than 5):

Constraint 7 (C7). There are no loops consists of 3 tiles.
Constraint 8 (C8). There are no loops consists of 4 tiles.
Constraint 9 (C9). There are no loops consists of 5 tiles.

Figure 12. Solutions obtained by solving IP formulations using C1, C2’, C3, C4 and C6 for

challenge number 40: after (a) 3rd, (b) 7th and (¢) 14th iterations, respectively.

It is easy to see that C7 is equivalent to that none of the arrangements of lines of the designated
color shown in Figure 13(a) appears on any two adjacent places on a board. Therefore, this constraint is
realized by forbidding these types of tiles (having 120° lines of the designated color) to become one of
those arrangements.

Figure 13. Forbidden arrangements of lines of the designated color for challenge number
greater than 5. These will force subloops consist of (a) 3, (b) 4 and (¢) 5 tiles, respectively.

ST TRD
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Suppose now that the designated color is red. We can see that tiles 2 and 3 have 120° red lines
(Figure 1). To forbid these two tiles to be placed in one of those arrangements simultaneously, we
force the sum of z;;;, corresponding to being these arrangements not to be greater than 1. Therefore, in
this concrete case, the formulations become as follows. We can consider similarly in the case that the
designated color is blue or yellow:

;

Toj3 + T35 + Toai)s T T3agy1 <1 (1=1,...,n)
Tojo + X354+ Toa)e T Taagne <1 (j=1,...,n)
Toj1 + T353 + Toa(2)s +T3ag21 <1 (G=1,...,n)
Toj2 + T34+ Toa(2a T T3ag26 <1 (1=1,...,n)
To 1+ 2353+ Toa(3)3 T TaG)s <1 (j=1,...,n)
[ T256 T T352 + Toa(a T T3aG)s <1 (J=1,...,n)

For constraint C8, we can deal with it in a similar way to C7. In fact, C8 is equivalent to that none of
the three arrangements of lines of the designated color in Figure 13(b) appears on any two adjacent places
on a board. Therefore, it is realized by forbidding these types of tiles (having 60° lines of the designated
color) to become one of those arrangements. It is also the case that we can represent this constraint by the
corresponding variables x;;1, and in the case of the designated color is red, for example, it is formulated

as follows (similarly for blue and yellow):

( 142+ a1+ Tej2 + 753+ T84+ 210,53 T L1,a(j,1),5 T Ta,a(j,1),4
+ Z6.0(j,1),6 + T7,0(,1),6 T T8.a(i1)1 T Tr0aG,)6 <1 (G =1,...,n)

141+ Taje + Tej1 + T2 + 2853+ 210,52 T L1,a(j,2),4 T T4,a(,2),3
+ Ta(j,2)4 + T7.0(5,2)5 T T8a(2)6 T T10aG2)5 <1 (GJ=1,...,n)

T1,5,6 t Taj5 T Teg6 T L7510 T T8j5,2 T T10,5,1 T T1,a(5,3),3 T Td,a(j,3),2

L + Z6,a(j,3),3 T T7.a(,3)4 T T80(3)5 T T10aGpa <1 (J=1,...,n)

For C9, it is equivalent to that for lines of the designated color none of the six arrangements in
Figure 13(c) appears on every mutually adjacent tree places on a board. Suppose the designated color
1s red, then tiles 5 and 9 have 0° red lines and tiles 1, 4, 6, 7, 8 and 10 have 60° red lines. Therefore,
we can express by using variables x;;, corresponding to these tiles that they do not form any of the
arrangements. Since they become too messy, we omit here to show the entire formulas to avoid it.

For challenge number 40, we show the results of solving formulations using C1, C2’, C3, C4, C6
together with C7, C8 and C9, also in Table 4 (in the rightmost column). As a result, we can observe
that the number of iterations is drastically reduced and we can obtain a Tantrix solution only after two

iterations. Also as this consequence, its computational time is also reduced substantially.
5.4.  Further Challenge

To summarize all the ideas, observations and experiments presented so far, it gives good experimental
results that a formulation using constraints C1, C2’, C3, C4, C6, C7, C8, C9 is solved by adding C5
until subloops disappear. Hence, under this formulation, we try to solve FIXED_BOARD TANTRIX by
increasing its challenge number as 45, 50, 55 and 60. Table 5 shows these experimental results. As a
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consequence, the current best result (in the challenge number) for FIXED_BOARD TANTRIX is 60 which
is solved in total time 6713.25 s. We also show the solution in Figure 14.

Table 5. Computational time (s) for challenge numbers 45, 50, 55 and 60 under our current

best formulation.

. . challenge#
#iterations

45 50 55 60
0 8,945.70 73.23 23,785.33 1,331.17
1 — 68.94 — 2,030.33
2 — 302.33 — 2,574.87
3 — 359.49 — 270.05
4 — 200.16 — 506.83
5 — 816.75 — —

total 8,945.70 1,820.90 23,785.33 6,713.25

Figure 14. A Tantrix solution of challenge number 60, which is obtained by solving
IP formulations.

6. Conclusions

In this paper, we tried to solve Tantrix by a computer, and to the best of our knowledge, this is the first
research report about solving Tantrix itself. The approach we adopted here is to formulate it as an IP and
to solve it by a mathematical programming solver, and we consider that this approach to solving puzzles
is quite unique and entertaining as well. Although our problem setting is a simplified one, we could
successfully solve it with challenge number up to 60, which is more or less larger than we expected. The
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results in this paper show that an approach using IP to solving puzzles is probable and we believe that it
may be valid for solving other puzzles. One of the important future work, of course, is to develop more
effective formulations to solve Tantrix of larger challenge numbers.

In order to put the problem into our IP framework, we were forced to simplify the problem of solving
Tantrix by restricting the shape and the size of boards. However, this restriction is quite unnatural for
humans. Therefore, one more important future work is to give more natural problem setting like humans
solve, and formulate it as an IP and solve it. We are approaching this in several ways and is now
under progress.

Finally, we mention about the complexity issues about Tantrix. Some results are known with
respect to the complexity of Tantrix; e.g., an artificial variant, called Tantrix rotation, is shown to be
NP-complete [22]. However, the complexity of the original Tantrix has not been studied to the best of
our knowledge, although it is easily conjectured to be intractable. Therefore, we pose here a problem
of the complexity of Tantrix (the original Tantrix discovery) including a natural problem setting of
Tantrix itself.
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