
Algorithms 2012, 5, 236-260; doi:10.3390/a5020236
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Article

Content Sharing Graphs for Deduplication-Enabled
Storage Systems
Maohua Lu, Cornel Constantinescu * and Prasenjit Sarkar

IBM Research at Almaden, 650 Harry Road, San Jose, CA 95120, USA;
E-Mails: lum@us.ibm.com (M.L.); psarkar@almaden.ibm.com (P.S.)

? Author to whom correspondence should be addressed; E-Mail: cornel@almaden.ibm.com;
Tel.: +1-408-927-2943; Fax: +1-408-927-3497.

Received: 30 December 2011; in revised form: 28 March 2012 / Accepted: 29 March 2012 /
Published: 10 April 2012

Abstract: Deduplication in storage systems has gained momentum recently for its capability
in reducing data footprint. However, deduplication introduces challenges to storage
management as storage objects (e.g., files) are no longer independent from each other due
to content sharing between these storage objects. In this paper, we present a graph-based
framework to address the challenges of storage management due to deduplication.
Specifically, we model content sharing among storage objects by content sharing graphs
(CSG), and apply graph-based algorithms to two real-world storage management use cases
for deduplication-enabled storage systems. First, a quasi-linear algorithm was developed
to partition deduplication domains with a minimal amount of deduplication loss (i.e., data
replicated across partitioned domains) in commercial deduplication-enabled storage systems,
whereas in general the partitioning problem is NP-complete. For a real-world trace of 3 TB
data with 978 GB of removable duplicates, the proposed algorithm can partition the data into
15 balanced partitions with only 54 GB of deduplication loss, that is, a 5% deduplication
loss. Second, a quick and accurate method to query the deduplicated size for a subset of
objects in deduplicated storage systems was developed. For the same trace of 3 TB data, the
optimized graph-based algorithm can complete the query in 2.6 s, which is less than 1% of
that of the traditional algorithm based on the deduplication metadata.

Keywords: deduplication; storage systems; graph models; graph partitioning; k-core;
subset query

Algorithms 2012, 5 237

1. Introduction

Motivated by the current data explosion, data reduction methods like deduplication and compression
have become popular features increasingly supported in primary storage systems. The two techniques
have interesting but contrasting properties—compression has a “local” scope (file, block, object) while
deduplication has a global one. Although data reduction methods can save storage space for storage
systems, they introduce new technical challenges to storage management, which is especially true
for deduplication. Compression does not present great challenges to storage management as storage
objects are not correlated with each other after data compression. However, for deduplication, storage
objects (e.g., files) share data content among them in deduplication-enabled storage systems. Storage
management tasks can no longer consider storage objects as independent. Traditionally, storage
management systems assume there is no data sharing between storage objects, and therefore individual
storage objects can be managed independently without affecting others. However, when storage objects
share content with each other, they cannot be managed independently because management decisions on
one file may affect another file. For example, in a traditional tiering storage system, individual old files
can be migrated to a “colder” tier (e.g., from disks to tapes) without affecting other files. However, in a
deduplicated tiering storage system, old files may share content with other files that are not necessarily
old, so the migration of a candidate file needs to consider other files that share content with the candidate
file, which can complicate the storage management tasks.

State-of-the-art deduplication-enabled storage systems [1–6] have not exploited the sharing among
deduplicated set of files for the file management tasks. The file-to-chunk mappings are either kept
internally as part of the per-file metadata [1–4] or externally as database tables [5,6]. To the best
of our knowledge, this paper is the first in the open literature to leverage the deduplication metadata
(the file-to-chunk mappings), to adapt them to graphs, and to explore graph-based algorithms to solve
real-world file management problems on deduplication-enabled storage systems.

The key contribution of this paper is the introduction and showcase of the concept of a content sharing
graph as a primitive to solve problems of storage management in deduplicated storage systems. Our
graph structures illustrate the sharing of content between storage objects (e.g., files). The power of
content sharing graphs lies in the fact that they reveal the hidden connectivity of individual storage
objects, and enable graph-based algorithms to exploit the content sharing among storage objects. For
example, in deduplicated storage systems, it is interesting to find out how many files share content with
others; or what is the storage footprint of a set of deduplicated files.

Thus, by modeling content sharing as graphs, we can leverage existing graph research results to
efficiently solve practical problems in the management of deduplicated storage systems. Among other
management problems, in this paper, we solve two storage management problems using graph-based
algorithms: (1) to partition a deduplication domain into sub-domains with minimal deduplication loss;
and (2) to quickly find out the deduplicated size of a user-defined subset of files.

The rest of the paper is organized as follows. Section 2 defines content sharing graphs (referred to as
CSGs) and presents two graph models to represent the same set of files in deduplicated storage systems.
Section 3 provides two real-world problems that can be efficiently solved with graph-based algorithms,
and a trace-driven analysis of these graph-based algorithms. Section 4 discusses the two proposed graph

Algorithms 2012, 5 238

models. Section 5 presents related work in the field of storage management on deduplicated storage
systems. Finally, Section 6 presents a summary of our results and concludes the paper.

2. Content Sharing Graphs

This section introduces content sharing graphs and defines key concepts associated with these
structures with the aid of an example wherever necessary. In particular, we propose two graph models
to represent the content sharing for the same set of storage objects in a deduplicated storage system.

2.1. Sparse Content Sharing Graph (SCSG)

SCSG graphs are graph structures where vertices represent storage objects (files, blocks, volumes, etc.)
and edges represent content shared between the connected vertices. To have a sparse and scalable graph,
we require to use a minimum number of edges to represent sharing of the same content between files,
that is, if the same chunk or group of chunks is shared by n files (vertices) we use n − 1 edges. We
illustrate below the construction of such graphs. Our primary use of these graphs was in analysis and
visualization of deduplication content distribution in storage systems.

Figure 1 shows such an SCSG graph representing the files (vertices) and the shared content (edges),
for a folder on a Windows XP laptop.

Figure 1. Content sharing graph for a directory on Windows XP.

Identical files (full file duplicates) are represented only once and singleton files (files that do not share
any chunks with other files) are not represented in the graph. From a total of 8940 files in the folder,
removing the singletons and file duplicates we were left with only 432 files (vertices shown in Figure 1)
that share some content so are connected by edges. A component in the graph is a maximal subset of the
vertices such that there is a path from every vertex in the subset to every other. The graph in Figure 1 has
103 components, most of them being small (two or three vertices), but there is a large component where
the vertices are densely connected. The total number of edges connecting a vertex with its neighbors is
the degree of the vertex.

Algorithms 2012, 5 239

To illustrate the construction of content sharing graphs we use a smaller folder (directory) on Windows
XP consisting of 19 files (file IDs 1 to 19) with the content shown in Table 1. The file sizes vary between
20 and 60 bytes and they were created purposely to share content between themselves. To determine the
content sharing between the files in a folder (or an entire file system) we first collect a “trace” by running
a “file scanner” program that traverses each file of the folder (file system). The trace contains for each
file a sequence of SHA1 content hashes, one hash for each chunk of the file. We use fixed chunk sizes,
and for this example the chunk size is 4 bytes (for example, file #1 in Table 1 has 15 chunks and file #11
has 6 chunks, the last chunk in these files has the same content: “L111”). Note that in real applications
the chunk sizes are much larger: 4 KB, 8 KB or larger.

Table 1. Table summarizing the content of the 19 files in the small folder; each file consists
of a sequence of four byte blocks (chunks). Chunk 1 is different for each file, but many
chunks are common between files. Last column shows the size of each file in bytes, the total
size of the 19 files in the directory is 756 bytes.

Files ID chunk1 chunk2 chunk3 chunk4 chunk5 chunk6 chunk7 chunk8 chunk9 chunk10chunk11 chunk12 chunk13chunk14 chunk15 File Size
1 ZZ11 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 L111 60
2 ZZ22 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
3 ZZ33 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
4 ZZ44 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
5 ZZ55 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 L555 60
6 ZZ66 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
7 ZZ77 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
8 ZZ88 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
9 ZZ99 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
10 ZZ00 AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 7777 8888 9999 56
11 YY11 EEEE FFFF GGGG HHHH L111 24
12 YY22 EEEE FFFF GGGG HHHH 20
13 YY33 EEEE FFFF GGGG HHHH 20
14 YY44 EEEE FFFF GGGG HHHH 20
15 YY55 EEEE FFFF GGGG HHHH L555 24
16 YY66 EEEE FFFF GGGG HHHH 20
17 YY77 EEEE FFFF GGGG HHHH 20
18 YY88 EEEE FFFF GGGG HHHH 20
19 YY99 EEEE FFFF GGGG HHHH 20

Given the 19 files with the content shown in Table 1 we can build an SCSG graph as follows: each
file is represented by a vertex, so we have {v1, v2, v3, . . . , v19} vertices in our graph. Edges represent
sharing of content between vertices and to have a minimum number of edges in the graph, we represent
the shared content only once. Each edge has a weight representing the number of bytes shared by
connected vertices. Representing the shared content only once provides another important property of
the SCSG graphs: the deduplicated size of the folder (file system) is simply the sum of vertex (raw file)
sizes minus the sum of connecting edge weights. In Table 1 we see that file #1 to file #10 share chunks
2 to 14 (that is 13 chunks × 4 bytes = 52 bytes), and file #11 to file #19 share chunks 2 to 5 (20 bytes).
One way to build an SCSG graph with vertices {v1, v2, v3, . . . , v19} is to connect v1 with each vertex v2

to v10 by edges of weight 52 bytes, then to connect v11 with each vertex v12 to v19 by edges of weight
20 bytes and finally to make explicit the sharing of the “brown” (last chunks in files #1 and #11) and
“yellow” chunks (last chunks in files #5 and #15) by edges of weight 4 bytes. We get the SCSG graph
shown in Figure 2. We name this connection topology a STAR because from the n vertices sharing the
same content we selected one (center of the star) to be connected with each other. The SCSG graph for
a folder on a Windows XP laptop shown in Figure 1 uses the STAR connection topology.

Algorithms 2012, 5 240

Figure 2. SCSG graph with STAR connectivity for the small folder with 19 files described
in Table 1.

An alternative connection topology of an SCSG graph for the set of 19 files in Table 1 is shown in
Figure 3, where the n nodes sharing the same content are connected in a linked list fashion. We name
this a CHAIN topology.

Figure 3. SCSG graph with CHAIN connectivity for the 19 files described in Table 1.

These connection topologies are just two somewhat extreme examples of SCSG graphs. Any
combination of them satisfies our definition of a SCSG graph. The deduplicated size of the 19 files
in Table 1 is the sum of the file sizes minus the sum of edge weights (in either one of the SCSG graphs
above), that is 756− 604 = 152 bytes.

2.2. Detailed Content Sharing Graph (DCSG)

Some applications need more detailed, chunk-level content sharing information for a set of
deduplicated files. An example of such applications is the size computation for a subset of files in a
deduplicated storage system (described in Section 3.3). For this reason, we introduce the DCSG graph
where there are two types of vertices: file vertices and sub-file vertices. File vertices represent files
sharing content with each other (as in SCSG graphs). A sub-file vertex represents a sharing unit among
files, it can be a chunk or a range of adjacent chunks. In the following discussions, if not otherwise

Algorithms 2012, 5 241

specified, we take individual chunks as default sub-file vertices for its simplicity, and we name these
vertices chunk vertices. All edges in a DCSG are between file vertices and sub-file vertices. For this
reason, DCSG graphs are bi-partite graphs.

To build up a DCSG graph one first needs to assign identifiers for unique chunks, where the identifer
can be the hash value of the chunk or part of the hash. Next, one can get all edges associated with
each file vertex or sub-file vertex by scanning the “deduplication metadata” that for each file has its
attributes and the sequence of chunk hashes. Note that the edges do not have any associated properties
(e.g., weights). All file-level attributes (e.g., file size, file modification time) are stored in the file vertices,
and all chunk-level attributes (e.g., chunk size) are stored in the chunk vertices.

Figure 4 shows the DCSG graph created from the small example, whose data is shown in Table 1.
The rectangle vertices represent files, and ellipse vertices represent chunks. File identifers (f01 − f19)
are marked in the graph, but the chunk vertices are not marked. Each chunk vertex represents a chunk in
the storage system, and its degree reflects how many times it has been referred to in the storage system.
For example, chunk vertices with degree 1 belong exclusively to 1 file, while chunk vertices with degree
more than one are shared by some files. The degree of a file vertex represents how many chunks belong
to the particular file. Note that multiple edges between the same pair of file vertices and chunk vertices
reflect the intra-file duplicates.

Figure 4. The DCSG graph for the 19 files described in Table 1.

Because DCSG graphs model the detailed sharing between files, they have a wide range of
applications. While deduplication is about a set of files, individual files do not have a complete view
regarding the deduplication information. When the set of files needs to be decomposed into smaller
pieces or needs to be extended, individual files in the new set need to re-compute the deduplication
information based on their chunks. For this reason, DCSG graphs are important for these applications.

3. Use Cases of Graphs

3.1. Data Sets

We evaluate our algorithms using two real workload traces taken from a commercial archival/backup
solution. Deduplication in the traces is based on variable size chunking that used SHA1 to produce
chunk fingerprints. Table 2 shows the characteristics of the workloads, where WL1 and WL2 represent

Algorithms 2012, 5 242

workload trace 1 and 2, respectively; we sometimes refer to them as “deduplication metadata”. In row 3,
“Removable Duplicates” indicates the amount of duplicate chunks that are matches of unique chunks.
In other words, a chunk with multiple appearances will be retained only once, other occurrences are
removable duplicates. In row 4, “Deduplication Ratio” means the ratio of the amount of unique chunks
over the amount of raw data.

Table 2. Workload Summary.

Workload WL1 WL2

Total Size 3,052 GB 1,532 GB
Removable Duplicates 978 GB 460 GB
Deduplication Ratio 68% 70%
Number of Files 289,295 201,406
Average File Size 10 MB 7.79 MB
Median File Size 82 KB 18 KB
Number of Chunks 17,509,025 12,021,126
Average Chunk Size 182 KB 102 KB
Median Chunk Size 71 KB 52 KB

3.2. Deduplication Domain Partitioning

Motivation

In deduplication-enabled storage servers, there are cases when some subsets of the entire deduplicated
set of files need to be transferred to different servers or storage tiers, in deduplicated form, to provide
scalability and load balance. One concrete case is in commercial backup/archival servers that deduplicate
data on disk to save space and at some intervals (weekly, monthly) the deduplicated data need to be
transferred to tapes for off line (or even off site) storage. There are a couple of constraints to be satisfied
when storing deduplicated files on tapes. The first is to store all the (unique) chunks needed to reconstruct
a file on the same tape (i.e., chunks of one file are not spread across many tapes). This will minimize
the number of tape mounts needed when reading files from tape, and simplify the bookkeeping and
transportation, especially when tapes are kept off-site. The second is to maintain the deduplication
ratio close to that on disk (the original deduplication domain) when we place subsets of files on tapes.
For this, each subset of files that are placed on the same tape should share most (all) of the chunks
between themselves; any chunk shared with other subset going on a different tape needs to be replicated
on both tapes. In this concrete case, the disk represents the original deduplication domain and tapes
represent partitions of the disk domain into smaller, independent deduplication domains. These two
constraints apply to many situations of deduplication domain partitioning. Thirdly, the sizes of the
resulting partitions are roughly equal as default. But we usually relax this constraint in favor of first
minimizing the deduplication loss due to partitioning. In another word, this constraint is optional.

Algorithms 2012, 5 243

Partitioning Algorithm

To solve the deduplication domain partitioning problem we employ an SCSG graph model, introduced
in Section 2.1, to represent the deduplication domain (original set of files in deduplicated form), and to
partition this graph into subgraphs that represent subsets of files in deduplicated form, with minimal
loss in overall deduplication ratio and without splitting files across partitions (each file, all its chunks,
should fit in only one partition). Minimizing the deduplication loss for our SCSG graph model means
minimizing the total edge “cuts” (sum of edge weights between subgraphs). Remember that in SCSG
graphs, edge weights represent the number of bytes (sum of chunk sizes) shared by the two vertices
(files) connected by the edge, so if these end vertices are in different partitions, the shared chunks
have to be replicated (stored in each partition). As it is well known, the graph partitioning is an
NP-complete problem [7]. We want to find a fast algorithm that exploits the characteristics of the content
sharing SCSG graphs for real workloads, and provide a good approximate solution to our deduplication
domain partitioning.

Figure 1 shows the type of content sharing graphs we usually get. Indeed, representing our workloads
(described in Section 3.1) by SCSG graphs, we obtain a large number of small components (containing
only few files each), and one or a few large components. Therefore, the first step of the partitioning
algorithm is finding the components in the graph, which can be done in linear time with the size of
the graph (number of edges) by a Breadth First Search (BFS) graph traversal. Generally, we obtain
many small components, as in Figure 1, where the SCSG graph consists of 103 distinct components,
all relatively small with one exception. If each component size (sum of vertex sizes minus connecting
edge weights) can fit in a partition (tape in the concrete case), then a greedy heuristic for the bin packing
problem (like sorting the components in decreasing order of size and storing the components in this order
in each partition) solves our partitioning.

However, if some component size is larger than the available space in any partition, then further
partitioning of that component is needed. For this we are going to use an important concept, that of
a k-core, introduced by social networks researchers [8,9]. A k-core of a graph is a maximal subgraph
in which each vertex is adjacent to at least k other vertices (within the subgraph); therefore all the
vertices within the k-core have a degree ≥k. We use an extension of the k-core concept where each
edge contributes its weight (an integer number of bytes≥1) to the computation of “degree”. The k-cores
are nested (like the Russian dolls) one in the other, the highest into the lowest, each vertex having a
“coreness” number that is the highest k in the k-cores it belongs to (note that all vertices in a connected
component belong to the 1-core, just by being connected). The coreness for all vertices can be computed
very fast, in almost linear time in the number of vertices, in one graph traversal with local computation of
vertex degrees. In addition to the coreness numbers, in another BFS traversal, we compute the estimated
deduplicated size of each k-core, that is, the sum of vertex sizes minus the sum of edge sizes inside
each k-core. We use this estimated deduplication size to decide what k-core to extract in an optimal
partitioning plan.

To illustrate the k-core decomposition and k-core size computation let us take as example the 19 files
described in Table 1 and say that we want to partition them into two partitions (subsets) in such a way
that (1) we have a minimal loss in deduplication (due to replication of chunks shared across partitions),

Algorithms 2012, 5 244

(2) each file (all its chunks) belongs to only one partition and (3) the partitions have sizes relatively close
to each other. We represent the files by an SCSG graph, as in Figure 3 or Figure 2 and compute the
k-cores decomposition for each representation. The k-core values represent the minimum bytes shared
between any vertices belonging to the core. Figure 5 shows the three core decomposition for the CHAIN
topology and Figure 6 shows the cores for the STAR connection topology of the SCSG graph. Table 3
shows the vertices contained in each of the three cores for the set of 19 files in Table 1. Note the “nesting”
of the cores—the top core with 10 vertices (with a minimum sharing 52 bytes) is included in middle core
(with a minimum sharing 20 bytes) that in turn is included in the lower core (with a minimum sharing
16 bytes) that contains all the vertices (19 files).

Figure 5. The k-core decomposition of the SCSG graph representing the 19 files in Table 1
using CHAIN topology. There are three k-cores: the coreness of ten “red” vertices is
52 bytes, of the five “white” vertices is 20 bytes and of the four “blue” vertices is 16 bytes.

Figure 6. The k-core decomposition of the SCSG graph representing the 19 files in Table 1
using STAR topology. There are three k-cores: the coreness of ten “red” vertices is 52 bytes,
of the two “white” vertices is 20 bytes and of the seven “blue” vertices is 16 bytes.

Algorithms 2012, 5 245

Table 3. The three k-core values and the vertices composing them for each connection
topology, CHAIN and STAR, for the 19 files from Table 1. The k-core values represent the
minimum bytes shared between any vertices belonging to the core.

K-Core Value CHAIN STAR

“52” V1 to V10 V1 to V11
“20” “52” and V1 to V15 “52” and V1, V15
“16” All Vertics All Vertics

To help decide what k-core to extract, i.e., where to cut, we also estimate the k-core (deduplicated)
sizes. In Figure 7 we show the deduplicated sizes for each core for both connection topologies.

Figure 7. The k-cores and their (deduplicated) size for the set of 19 files in Table 1 using
CHAIN and STAR topology. There are three k-cores for each connection topology: the top
core (value “52”) with (deduplicated) size of 100 bytes, the middle core (value “20”) with
size of 124 bytes for CHAIN connectivity and 136 bytes for STAR, and the lower core (value
“16”) with size 152 for both connection topologies.

Small Folder with 19 files

80

90

100

110

120

130

140

150

160

0 10 20 30 40 50 60

Core Value(bytes)

C
or

e
S

iz
e

(b
yt

es
)

STAR
CHAIN

The best place to partition the SCSG graph for this small example is by extracting the k-core “52”
with deduplicated size of 100 bytes as one partition and the remaining part of the graph (the “periphery”)
as the second partition of 60 bytes as the deduplicated size. The “cut” size (partitioning cost) is 8 bytes
due to cutting the 2 edges (i.e., storing the shared bytes in both partitions) between core “52” and “20”
with weights (sharing) 4 bytes each. This is true for both connection topologies CHAIN and STAR.

In realistic cases, as shown in the next section, there are thousands of k-cores in the graph, all nested
into each others from top, the densest connected, to the sparsest connected toward the periphery. As this
small graph example shows, it is a good heuristic to “cut” outside the densest k-cores if possible. The
edge weights are high inside the densest k-cores, so cutting in the middle of top k-cores is expensive.
The densest k-cores for the real workloads are usually small in size, as will be shown next, so they do
not need to be cut.

Algorithms 2012, 5 246

Results for the Real Workloads WL1 and WL2

Table 4 shows the characteristics of the SCSG graphs generated from the traces WL1 and WL2.
Figure 8 shows the deduplicated (estimated from the graph) core size for each core, for both connection
topologies, for workload WL1 (this is similar to Figure 7 for the small set of 19 files). Only the largest
component of (deduplicated) size 746 GB (as shown in Table 4) is partitioned with k-cores. As all the
vertices are contained in k-core 0, the size of k-core 0 is 746 GB. As can be seen in Figure 8 the sizes of
the top k-cores (with minimum sharing between any pair of vertices over 3 GB) are very small.

Table 4. Graph Characteristics for workloads WL1 and WL2.

Workload WL1 WL2

Number of vertices 289, 295 201, 406

Number of edges 327, 472 246, 244

Number of Components 166, 089 149, 083

Size of Biggest Component 746 GB 1, 060 GB

Figure 8. The k-cores and their (deduplicated) size for WL1 workload using CHAIN and
STAR topology.

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Core Value (GB)

C
or

e
S

iz
e

(G
B

)

STAR CHAIN

Figure 9 shows how the deduplication loss varies with the number of equal partitions we want to split
the WL1 SCSG graph into. To quantify the deduplication loss we define partitioning cost as the amount
of replicated data across partitions (due to the edge cuts in the partitioning process) divided by the total
amount of removable duplicate data (before partitioning). As can be seen, the smaller the partition sizes
are (the more partitions are), the higher the partition cost is. This is because for smaller partitions the
cuts are in the denser k-cores. However, even when we partition into 13 partitions, the partitioning
cost is still less than 5%. Note that there is not much difference if the SCSG graph uses the CHAIN
connection topology or STAR. Figure 10 shows the (deduplicated) core size for each core, for both
connection topologies, for workload WL2. Only the largest component of (deduplicated) size 1060 GB

Algorithms 2012, 5 247

(as shown in Table 4) is partitioned with k-cores. This is somewhat different than the corresponding
plot for WL1 in Figure 8. Digging deeper to see why there is such a rapid increase in the core sizes
for small core values (close to 0), we found that for core value less than 1.4 MB (close to 0 in terms of
GB), there are 25,822 files, their total raw size of 660,581,983,796 bytes, and their deduplicated size is
654,366,144,648 bytes. In other words, these files share very little (less than 1%) between themselves
(the deduplicated size is almost equal with raw size), so they are almost singleton (share nothing) files.
On the other hand, the horizontal part of the graph (the plateau) at about 220 GB is due to almost full file
duplicates (files that share significant amount, say 99% of content between themselves). So this workload
WL2 is composed either from files that share almost nothing or files that share almost everything with
others. There is no gradual (smooth) distribution of sharing. Figure 11 shows how the deduplication loss
varies with the number of equal partitions we want to split the WL2 SCSG graph into. Even when we
divide into 15 partitions, the partitioning cost is still less than 2%. There is a slightly better partitioning
cost if the SCSG graph uses the CHAIN connection topology than STAR.

Figure 9. Partitioning cost as function of the number of equal sizes partitions, for WL1
workload using CHAIN and STAR topology.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Partitions

P
ar

tit
io

n
C

os
t (

%
)

STAR CHAIN

Figure 10. The k-cores and their (deduplicated) size for WL2 workload using CHAIN and
STAR topology.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

CoreValue (GB)

C
or

eS
iz

e
(G

B
)

STAR CHAIN

Algorithms 2012, 5 248

Figure 11. Partitioning cost as function of the number of equal sizes partitions, for WL2
workload using CHAIN and STAR topology.

0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Partitions

P
ar

tit
io

n
C

os
t (

%
)

STAR CHAIN

3.3. Size Calculation for Deduplicated File Sets

Motivation

Administrators of modern large-scale storage systems are interested to know the space consumption
of a subset of files, where the subset of interest is defined by administrators. For example, “what
applications and users use the most of space”, “how much space do pdf files consume”, etc. Since
the subset of files are defined at the query time, the size of the user-defined subset has to be computed on
the fly from the metadata. We denote such queries as on-demand size queries. The on-demand nature of
such queries poses a significant challenge to traditional metadata management systems and methods. As
proposed by Leung et al. [10] and Hua et al. [11], a new set of metadata structures and related methods
are required to efficiently answer on-demand queries (including on-demand size queries) for a large-scale
storage system. The output of such queries is a subset of files that meet the query criteria.

Deduplication in storage systems further complicates the problem because the size of a subset of files
is not simply the sum of the sizes of all files in the subset, i.e., even after we get the list of files that
meet the query criteria, we cannot have a sum of the selected file sizes as these files may share content
with each other. In this paper, we focus our discussion on how to calculate the accurate size of such a
deduplicated set of files after we get the list of files from file subset queries.

The state-of-the-art practice is to query the deduplication metadata containing the signatures of either
file of sub-file chunks, which is not scalable with the storage system size. To compute the size of a
deduplicated subset of files, it is inevitable to deduplicate the subset of files by scanning all related file
chunks and querying the deduplication metadata accordingly. We propose a relatively small metadata
layer that is extracted from the raw deduplication metadata, to help efficiently answer on-demand size
queries in a deduplicated storage system.

The DCSG graph is a good candidate for such an efficient metadata layer for two reasons. First, the
DCSG graph accurately models the sharing between files for either a full set of files or for a subset of

Algorithms 2012, 5 249

files. Second, the DCSG graph has the potential to reduce its memory footprint by aggregating adjacent
shared chunks. Experimental results show that aggregating adjacent shared chunks can effectively reduce
the memory footprint of the DCSG graph.

In the following discussion, we first describe how the state-of-the-art practice answers on-demand
size queries using only the raw deduplication metadata in a database. We name this approach the “naive”
algorithm. We then describe a straightforward algorithm based on DCSG graphs, which we name the
“graph” algorithm, and a refined, scalable algorithm by aggregating adjacent shared chunks, which we
name the “optimized graph” algorithm or GraphOpt. Finally we present the experimental results of
comparing these three algorithms with the data sets described in Section 3.1.

The Naive Algorithm

Without graphs, the naive algorithm answers on-demand size queries by running SQL queries against
the database containing deduplication metadata. In a deduplicated storage system, there is one table that
comprises the deduplication metadata: the chunk information table (denoted as ChunkTable). Among
other fields, the query-related fields in ChunkTable are 〈FileID,ChunkLength, ChunkHash〉,
where FileID is the unique file identifier, ChunkLength is the length of the chunk, and ChunkHash

is the hash value of the chunk for deduplication (e.g., 20-byte MD5 hash value).
The naive algorithm, denoted as Naive, takes 4 steps to answer on-demand size queries. In the first

step, Naive initializes the list of files that meet the filtering criteria as a file table called SelectedF iles.
In the second step, it does an SQL JOIN operation on SelectedF iles and ChunkTable to select all
〈FileID,ChunkLength, ChunkHash〉 tuples for files in SelectedF iles, which results in a table
SelectedChunks. In the third step, unique chunks in SelectedChunks are found by an SQL GROUP
BY operation. In the final step, the total size of unique chunks are computed by an SQL SUM operation.
All queries in these 4 steps are optimized properly. For example, in step 2, the SelectedF iles table has
a cluster index on the FileID field so that the SQL JOIN operation is efficient. The SQL query for these
4 steps are shown in Figure 12.

Figure 12. The SQL query of Naive for on-demand size queries.

Version December 19, 2011 submitted to Entropy 7 of 9

Without bi-partite graphs, a naive algorithm answers on-demand size queries by running SQL queries195

against the database containing deduplication metadata. As described in ??, in a TSM-like envi-196

ronement, there is 1 single table that comprises the deduplication metadata: the chunk information197

table (denoted as ChunkTable). Among other fields, the query-related fields in ChunkTable are198

〈FileID, ChunkLength, ChunkHash〉, where FileID is the unique file identifier, ChunkLength is199

the length of the chunk, and ChunkHash is the hash value of the chunk for deduplication (e.g., 20-byte200

MD5 hash value).201

The naive algoirithm, denoted as Naive, takes 4 steps to answer on-demand size queries. In the first202

step, Naive initializes the list of files that meet the filtering criteria as a file table called SelectedF iles.203

In the second step, it does an SQL JOIN operation on SelectedF iles and ChunkTable to select all204

〈FileID, ChunkLength, ChunkHash〉 tuples for files in SelectedF iles, which results in a table SelectedChunks.205

In the third step, unique chunks in SelectedChunks are found by an SQL GROUP BY operation. In the206

final step, the total size of unique chunks are computed by an SQL SUM operation. All queries in these207

4 steps are optimized properly. For example, in step 2, the SelectedF iles table has a cluster index on208

the FileID field so that the SQL JOIN operation is efficient. The SQL query for these 4 steps are shown209

in Figure 3.5.210

SELECT sum(length)211

FROM212

(213

SELECT max(ChunkLength) as length214

FROM215

(216

SELECT a.ChunkLength, a.ChunkHash217

FROM218

ChunkTable a, SelectedFiles b219

WHERE220

a.fileID = b.fileID221

)222

GROUP BY223

ChunkHash224

)225

Algorithm based on bi-partite graph226

Bi-partite graph focuses on shared chunks, not singleton chunks.227

Optimizations228

Results229

Talk about the RAM configuration, make sure that all alternatives have the same amount of RAM.230

4. Related Work231

Social networks [4,5] is one of the major areas of application of the graph theory to real problems, and232

many new concepts in graph theory were contributed by this area of sociology. More recently, signifi-233

cant research and publications in network area came from physicists (an interesting collection of papers234

Algorithms 2012, 5 250

If we assume the number of 〈FileID,ChunkLength, ChunkHash〉 tuples is N , the number of
selected files is S, the number of chunks in these selected files is C, and the number of unique chunks
is U , then the complexity of the Naive algorithm in asymptotic notation is O(S + N + C + U) given
that all involved SQL queries are optimized properly. In particular, step 1 has the complexity of O(S),
step 2 has the complexity of O(N), step 3 has the complexity of O(C), and step 4 has the complexity
of O(U). Because the Naive algorithm has to scan all chunk tuples in step 2, it is not scalable to
the number of chunks. One has to use alternative methods to avoid scanning all chunk tuples. The
proposed graph-based algorithm is such an alternative method, and we will describe the details of the
algorithm below.

The Graph Algorithm

As described in Section 2.2, a DCSG graph is created from the deduplication metadata. We use
adjacency list to represent edges in the DCSG graph. Each file vertex is assigned a file identifier FID,
and each unique chunk vertex is assigned a chunk identifier CID. Note that after deduplication, multiple
duplicate chunks map to the same chunk identifier, and we can use the unique chunk identifer to replace
the chunk hash value in the algorithm. The DCSG graph consists of 2 parts: the first part is an indexed
and ordered list of 〈FID, F ileSize〉 pairs, and the second part is a per-vertex adjacency list consisting
of 〈CID,ChunkSize〉 pairs, where FileSize and ChunkSize represents file size and chunk size,
respectively. We modify the original DCSG graph in two aspects: first, we remove the vertex list of
CIDs; second, we add ChunkSize as one attribute of each edge. On one hand, by removing the CID

list, we do not need to query the per-CID size from the potentially large CID list, which can become
the performance bottleneck for large number of CIDs. On the other hand, by adding chunk size to each
edge, the size of the adjacency lists can double from their original form with only CIDs. Given that we
can sequentially load the per-file adjacency list into RAM and the average size of per-file adjacency list
is considerably small (i.e., <1 MB), the IO overhead in terms of elapsed time is reasonable (<10 ms for
hard drives).

Based on the graph representation, the Graph algorithm proceeds with two steps. In the first step,
all S selected FIDs and their adjacency lists are fetched from the FID list to form a DCSG graph,
denoted as B-Graph. The total size of all FIDs are computed, denoted as Tfiles. The FID vertex list is
implemented as a list, while the CID vertex list is implemented as a hash table to speed up the lookup
performance. In the second step, a breadth-first search (BFS) finds out all CIDs whose degrees are larger
than 1, where per-CID degrees are also recorded. We denote the set of these CIDs as SCID. Each CID

in SCID has their redundant duplicate size as RedundantDupSize = (degree− 1) ∗ ChunkSize, and
the sum of all redundant duplicate sizes are recorded as Tdup. The accurate deduplicated size of S files
is Tdedup = Tfiles − Tdup.

Figure 13 show an example of the Graph algorithm. Initially, each file has a mapping to all its chunks.
Each file has its own file size. Each chunk size is 1 so that the edge weight is 1. Chunk identifiers are
the result of deduplication so that 2 files can map to the same chunk identifier. For example, C2 appears
in file F1, F2 and F6. If F2, F5 and F6 are chosen as the subset of files, in Step 1, these 3 files and
its chunks form a B-Graph, F2, F5 and F6 have their file sizes as 5, 4 and 8, respectively. In Step 2,

Algorithms 2012, 5 251

all chunks are traversed to find out those chunks with more than 1 edge, C2 and C6 are chosen. The
accurate deduplicated size of the subset is Tfiles − Tdup = (5 + 4 + 8)− (1 + 2) = 14.

Figure 13. An example of the Graph algorithm. “Initial State” shows the initial state of the
metadata, “Step 1” shows the resulting B-Graph of step 1, “Step 2” shows the computation
result. (a) Initial State; (b) Step 1; (c) Step 2.

C2 C6C9 C8

C7

C5

C6

C6 C2

C1 C2 C3 C4

F7

F6

F5

F4

F3

F2

F1

5
F2

F5

F6

C2

C5

C6

C7

C8

C9

8

4

5
F2

F5

F6

C2

C5

C6

C7
8

4

C9

C8

Dedup Size:
 (5+4+8)-(1+2) = 14

(a)

C2 C6C9 C8

C7

C5

C6

C6 C2

C1 C2 C3 C4

F7

F6

F5

F4

F3

F2

F1

5
F2

F5

F6

C2

C5

C6

C7

C8

C9

8

4

5
F2

F5

F6

C2

C5

C6

C7
8

4

C9

C8

Dedup Size:
 (5+4+8)-(1+2) = 14

(b)

C2 C6C9 C8

C7

C5

C6

C6 C2

C1 C2 C3 C4

F7

F6

F5

F4

F3

F2

F1

5
F2

F5

F6

C2

C5

C6

C7

C8

C9

8

4

5
F2

F5

F6

C2

C5

C6

C7
8

4

C9

C8

Dedup Size:
 (5+4+8)-(1+2) = 14

(c)

The asymptotic complexity of the Graph algorithm is O(S + C) since step 1 needs to choose S files
and step 2 needs to scan C chunks.

The Optimized Graph Algorithm

The Graph algorithm is not scalable with the number of files (and the number of chunks for these
files), we propose three optimizations to mitigate the scalability concern. We denote the algorithm with
these three optimizations as GraphOpt. The first optimization (OPT-1) is to reduce the number of files
and chunks represented in the graph. Note that not all chunks are shared among files, and some files
do not share any chunks with other files. These chunks and files do not lead to the inaccuracy of the
size computation. We can safely remove them from the graph representation. As shown in Table 5, for
WL1, this optimization can reduce the number of FIDs to 56% (162,779

289,295
of the original, and the number

of CIDs to 8.4% (1,475,780
17,509,025

) of the original. For WL2, with this optimization, the number of FIDs drops
to 27% (55,455

201,406
) of the original, and the number of CIDs drops to 2% (237,235

12,021,126
) of the original.

The second optimization (OPT-2) is to aggregate adjacent shared chunks into 1 shared segment to
further reduce the number of vertices. The idea behind this optimization is that sharing chunks between
two files consists of sequences typically larger than 1 chunk in deduplicated storage systems [12,13]. We
define a segment as a range of inter-file shared chunks that appear adjacently and in the same order in all
files sharing them. GraphOpt has 2 steps to identify segments. In the first step, each file deduplicates with
itself to remove intra-file duplicates, where only the first occurrences of intra-file duplicate chunks are
kept. In the second step, GraphOpt employs a straightforward linear algorithm to identify segments.
Although more advanced algorithms can be used, such as those based on suffix array [12,14], we

Algorithms 2012, 5 252

developed a straightforward algorithm since the identification of segments occurs only once from the
original deduplication metadata. The basic idea behind the straightforward linear algorithm is that
segments are identified by two factors, repetition and adjacency. The repetition counter increases when
there is a hash value match from inter-file duplicate. The adjacency means that a sequence of chunks
with the same repetition are adjacent in all files sharing them. Therefore, any neighboring chunks that
do not have the same repetition or are not adjacent in files are not in the same segment, and one can
mark the boundary of segments accordingly. For this reason, there are two scans. In the first scan, the
boundaries of segments are marked in the array of unique chunks by scanning all chunks from all files.
We need an auxiliary data structure to remember the unique chunks and to query the scanned chunks,
and we choose a hash table as the auxiliary data structure. With the help of the hash table, we can have
an array of unique chunks, upon which we can mark the boundaries of segments. In the second scan,
segments are identified by following the marks determined in the first scan.

As shown in Table 5, after applying the first two optimizations, the number of edges drops to 6%–7%
of the original number of edges (1,034,923

17,509,025
= 6% for WL1 and 810,264

12,021,126
= 7% for WL2), the number of

sub-file vertices drops to less than 1% of the original (174,823
17,509,025

= 0.99% for WL1 and 76,772
12,021,126

= 0.66%

for WL2). The reduction of both edges and sub-file vertices greatly improves the scalability of the DCSG
graph. For example, for a 1 PB deduplicated storage system, if the characteristics of files (e.g., file
sizes, chunk sizes) and their sharing are similar, there will be 1000TB

3TB
· 1034923 = 333M edges and

1000TB
3TB

· 174823 = 58.3M sub-file vertices, which are reasonable numbers to work with.

Table 5. Graph characteristics after applying optimization 1 and 2 in GraphOpt for
two workloads.

Workload WL1 WL2

Num. of File Vertices 289, 295 201, 406

Num. of Sub-File Vertices 17, 509, 025 12, 021, 126

Num. of Edges 17, 509, 025 12, 021, 126

Num. of File Vertices with OPT-1 162, 779 55, 455

Num. of Sub-File Vertices with OPT-1 1, 475, 780 237, 235

Num. of Edges with OPT-1 8, 160, 786 3, 961, 316

Num. of File Vertices with OPT-1,2 162, 779 55, 455

Num. of Sub-File Vertices with OPT-1,2 174, 823 76, 772

Num. of Edges with OPT-1,2 1, 034, 923 810, 264

The third optimization is to make the calculation more stream-friendly. Instead of loading the whole
graph into RAM, one can scan shared chunks from selected files one by one. For each new file, the file
size after intra-file deduplication is added to Tfiles. For each chunk that is already in the CID hash table,
Tfiles ← Tfiles − TCID, where TCID is the size of the chunk. If the chunk is not in the CID hash table,
it is inserted into the CID hash table. With this optimization, we do not need to keep the whole graph
in RAM. Instead, we only needs to keep the hash table keyed by CIDs in RAM.

Algorithms 2012, 5 253

Results

In this section, we show the effectiveness of GraphOpt by comparing it with Naive and Graph
algorithms. For all three algorithms, the database or graph is assumed to be not cached in RAM
initially, and they are stored on external hard drives. At the computation time, the graph or database
needs to be loaded into RAM, where RAM is configured to be 1 GB for both graph-based algorithms
(i.e., Graph and GraphOpt) and the database-based algorithm (i.e., Naive). For Naive algorithms, we
used a commercial database implementation [15] to run the SQL queries. We configured 1 GB for the
buffer cache of the database, and we made a fair comparison by tuning the database properly to have a
reasonable performance.

For all three algorithms, we varied the percentage of randomly-selected files among all files (denoted
as file percentage) and compared their average end-to-end elapsed time of 10 runs to answer on-demand
size queries. For each file percentage, the same set of files are selected to run on-demand size queries
for 10 times for each algorithm, and we computed the average elapsed time of these 10 runs for each
algorithm. For example, for WL1 and the percentage of 1%, we randomly selected 2893 files out of
the total 289,295 files, and use these 2893 files as input to answer on-demand size queries for all three
algorithms for 10 times.

Figure 14(a) and Figure 14(b) show the results of all three algorithms. We can draw two conclusions
from the results. First, graph-based algorithms are at least one order of magnitude better than the Naive
algorithm with respect to elapsed time. In particular, GraphOpt can achieve the elapsed time less than
1% of what can be achieved from the Naive algorithm. For example, for WL1, when the file percentage
is 50%, the elapsed time of Naive is 744 s, the elapsed time of Graph is 21 s, and that of GraphOpt is
2.6 s. Second, GraphOpt is more scalable than Graph. For example, when the file percentage is 10%,
both algorithms have an elapsed time less than 5 s. But when the percentage of files is 50%, the Graph
algorithm has an elapsed time of 21 s, while the GraphOpt has an elapsed time of 2.6 s.

Figure 14. Elapsed times of Naive, Graph, and GraphOpt algorithms for WL1 and WL2,
respectively. Y axis is in log scale. (a) WL1; (b) WL2.

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

File Percentage (%)

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Naive Graph GraphOpt

(a)

Algorithms 2012, 5 254

Figure 14. Cont.

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

File Percentage (%)

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Naive Graph GraphOpt

(b)

In Figure 14(a) and Figure 14(b), for both WL1 and WL2, the elapsed time does not increase
monotonically with the file percentage for the Naive algorithm because we have no direct control
over how the database software scheduled its foreground queries and background activities, which can
significantly change the elapsed time. For example, when the file percentage is 30%, the elapsed time is
870 s, but when the file percentage is 40%, the elapsed time is 576 s. But for the other two algorithms,
the elapsed time generally increase with the file percentage because larger file percentage reflects larger
number of edges, which is a dominant factor of the elapsed time.

4. Discussions of Two Graph Models

Although SCSG and DCSG graphs both represent the sharing between files, they are different in many
aspects. In this section, we describe the two primary differences of these two graph models.

First, compared with DCSG , SCSG graphs have less vertices and edges, so SCSG graphs consume
less RAM and storage space than DCSG graphs. For example, for the small sample shown in Table 1,
the SCSG graphs shown in Figure 2 and Figure 3 both have 19 vertices and 19 edges. In comparison,
the DCSG graph shown in Figure 4 has in total 57 vertices (19 File vertices and 38 Chunk vertices),
and 184 edges. Even if optimizations such as merging adjacent shared chunks can attenuate the space
consumption of DCSG graphs (see Section 3.3 for details), DCSG graphs in general consume more RAM
or storage space than SCSG graphs. According to Table 5, with both optimizations, for WL1, the DCSG
graph has 337,602 vertices (162,779 file vertices and 174,823 sub-file vertices) and 1,034,923 edges.
Conversely, the SCSG graph can be 162,779 file vertices and up to 162,778 edges, which are far less than
the DCSG graph. For this reason, SCSG graphs are more scalable than DCSG graphs to represent the
same set of deduplicated files.

Second, DCSG graphs are more accurate to some manipulation operations than SCSG graphs. Such
operations included the selection of a sub-graph (including both vertices and edges) from a whole graph,
as well as the dynamic modifications of shared content that may end up changing the graph itself. After

Algorithms 2012, 5 255

these manipulation operations, SCSG graphs may not reflect the accurate sharing, while DCSG graphs
reflect the sharing properly. One example of this inaccuracy is the size computation. For SCSG graphs,
recall the size of a graph is computed by summarizing all vertex weights and then subtracting all edge
weights in the graph (due to deduplication), but after partitioning, the size computed in this way is an
upper bound of the actual deduplicated size. Take the sample shown in Table 1 for example, if we
partition the SCSG graph with a STAR connection topology in Figure 2 into two sub-graphs G1 and
G2, we have G1 = {v1, v15, . . . , v19} and G2 = {v2, . . . , v14}. Based on graphs of G1 and G2, the
deduplicated size of G1 is 164 bytes, and the deduplicated size of G2 is 592 bytes. However, in reality,
the deduplicated size of G1 is 100 bytes, and the deduplicated size of G2 is 128 bytes. Therefore, after
partitioning, the deduplicated size of the sub-graph is not accurate, but an estimate. Note that the estimate
is always an upper bound of the actual deduplicated size because in SCSG graphs, edges are sparse and
the sub-graph may miss some edges after manipulation. In this example, for G2, v13 and v14 share
16 bytes, but there is no edge connecting v13 and v14 due to the sparseness of edges. Using the same
subgraphs G1 and G2 in the SCSG graph using the CHAIN connection topology in Figure 3 however,
the size estimation is perfect, the deduplicated size of G1 is 100 bytes, and the deduplicated size of G2
is 128 bytes. We could conclude from this made-up experiment that CHAIN connection topology gives
much better subgraph size estimate than the STAR connection topology for SCSG graphs. This is not the
case on large scale realistic workloads as we have shown, one reason being that k-cores are not made up
of randomly selected vertices. For DCSG graph as shown in Figure 4, for the same two subgraphs, the
deduplicated size of G1/G2 can be computed by adding the sizes of all unique chunks in the sub-graph,
so the deduplicated size of G1 or G2 is accurate. Indeed, for DCSG graphs even for random subgraphs
the deduplicated size computation is still accurate (and not an upper bound as for SCSG graphs).

5. Related Work

We are not aware of any refereed papers using graph representations to optimize or help manage
deduplicated storage systems. Also, the concepts of sparse content sharing graphs (SCSG), with their
STAR and CHAIN topologies are new. There is a large number of papers related to the deduplication as
a data reduction method used in storage systems.

5.1. Storage Deduplication

Deduplication has been maturing as a data reduction technique in both backup storage
systems [1,2,4,13,16–18] and primary storage systems [19,20]. Kai et al. [18] proposed a method to
organize the content hashes in a locality-preserving fashion so as to amortize the cost of loading content
hashes when the content hash table cannot fit into the main memory. Lillibridge et al. [13] further reduce
the size of the content hash tables by sampling the first hash out of a content hash locality group to
fit the content hash table into the main memory. Dong et al. [16] improved the deduplication scope and
efficiency by distributing the hash table updates and lookups to multiple nodes. Guo et al. [17] addressed
the deduplication scalability issue due to garbage collection by exploiting the incremental nature of the
garbage collection in deduplication. Debnath et al. [19] proposed to increase the capacity of the main

Algorithms 2012, 5 256

memory by using the Flash storage. Srinivasan et al. [20] focused on trading-off the deduplication
effectiveness with the deduplication latency in primary storage.

These research efforts focus on the optimization of hash updates and lookups because hash updates
and lookups are the primary performance and scalability pain points. However, these research efforts
in general do not address the problem of the management of deduplicated files. In contrast, our work
discusses the challenges and solutions to manage deduplicated files in storage systems.

5.2. Management of Files on Deduplication-Enabled Storage

Management of files have traditionally been the task of the file systems. The management of files is
oblivious of their internal sub-file structures, and files are the basic units of file management tasks.

There is a large number of papers in the area of approximate algorithms for graph partitioning, a
known NP-complete problem [7]. However, our algorithm based on graph cores is the only linear time
approximate algorithm we are aware of. The concept of graph core was introduced by Seidman [8]
in studying social networks where it is used to find clusters of densely connected vertices. A linear
time algorithm to find cores in a graph is described in Batagelj [21] and our algorithm is an extension
considering integer weights for edges rather than just edge degree.

For scalable file subset queries, Leung et al. [10] proposes a scalable metadata search scheme
called SpyGlass for large-scale storage systems by exploiting the locality in metadata search queries.
Hua et al. [11] took one step further to propose a metadata organization scheme called SmartStore to
replace the traditional tree-hierarchy file metadata for large-scale distributed file systems. Similar to
SpyGlass, SmartStore adapted the organization of file metadata based on the locality in the metadata
search queries. These current research work [10,11] focuses on optimizing the methods to localize the
metadata queries, but not about how to get the properties of the resulted subset of files because it is
straightforward for non-deduplicated storage. For example, to get the total size of the resulted subset
of files, one can simply take the sum of all files in the subset. However, when files are deduplicated,
the file management tasks need the help of deduplication metadata because files are related with each
other through data sharing. For example, to get the accurate size of a subset of files, one needs to
deduplicate the subset of files with the help of the deduplication metadata. A quick method to estimate
the deduplicated size of a file system before performing deduplication, thus without knowing the full
deduplication metadata, is described by Constantinescu et al. [22].

Unfortunately, there is no standard deduplication metadata format that tracks file sharing among
files in deduplication-enabled storage systems. Oracle’s Unified Storage [1], NetApp [2], Windows
Server 8 [3] and Celerra of EMC [4] all support deduplication features in storage systems, but these
systems keep their deduplication metadata in an ad-hoc fashion internally and do not expose these
deduplication metadata externally. Oracle’s Unified Storage [1] and Windows Server 8 [3] keep the
deduplication metadata, the mapping from file to sub-file chunks, in the per-file metadata of ZFS and
NTFS, respectively. NetApp deduplication for FAS and V-Series [2] stores the deduplication metadata of
data volumes in an hidden aggregate volume. Celerra of EMC [4] keeps the deduplication metadata in the
per-file metadata. There are other deduplication-enabled storage systems that expose the deduplication
metadata. TSM of IBM [23] supports and manages the deduplication in backup storage system. The

Algorithms 2012, 5 257

deduplication metadata in TSM is kept in database tables [5]. Backup Exec of Symantec also stores the
deduplication metadata in database tables [6].

To the best of our knowledge, we are not aware of publications that leverage deduplication-based
graph models to solve file management tasks in deduplication-enable storage systems. We are the first in
the open literature to leverage the deduplication database tables, to adapt them to graphs, and to explore
graph-based algorithms to solve real-world file management problems.

6. Conclusions and Future Work

In this paper, we have presented two graph models to represent sharing among files in a deduplicated
storage system, and have illustrated and evaluated these two graph models with two real-world
applications. One application solved the problem of partitioning a deduplicated set of files into multiple
deduplicated subsets with minimal deduplication loss (chunk replication between subsets). The other
application measures the actual size of a subset of all files in a deduplicated storage system. Our
contributions can be summarized as follows:

• We introduced two novel graph model to represent deduplicated data in a deduplicated storage
system. The first graph model represents files as vertices, and sharing between files as edges. This
model produces sparse, low memory footprint graphs, a key enabler for efficient graph processing.
The second graph model represents files and shared chunks as vertices, and chunk ownership as
edges between files and shared chunks. This model produces dense graphs which are resilient to
various data manipulation operations in deduplicated storage systems.
• Based on the first graph model, we have designed and evaluated a novel algorithm to partition a

deduplication domain based on graph partitioning. This algorithm places the chunks of the same
file in the same deduplication domain. For real-world traces, the partition cost (defined as the
amount of replicated data over the total amount of removable duplicate data) is less than 6% even
when the data is partitioned into 15 domains.
• For the second graph model, we developed optimization methods to mitigate the problem of high

memory footprint with various techniques, which proved to be efficient for two real-world traces.
In particular, after applying these optimization techniques, the memory footprint can drop to below
10% of the original memory used by DCSG graphs with no optimization.
• Based on the second graph model, we developed an efficient method to calculate the accurate size

of a subset of files from a deduplicated storage system. For the same subset of files, our optimized
graph-based algorithm (GraphOpt) has an elapsed time less than 1% of what can be achieved with
current methods that access deduplication metadata in a database.

In addition to the partitioning and size-calculation use cases, the graph models and related graph-based
algorithms can be applied to other use-cases such as (1) to prevent failure propagation with a minimal
deduplication loss and (2) migration of deduplicated files in a tiered-storage environment [24]. We are
currently working on these practical problems with the help of expressive graph models and related
graph-based algorithms.

Algorithms 2012, 5 258

Acknowledgment

We would like to thank our summer intern, Abdullah Gharaibeh of UBC, for fruitful discussions, his
enthusiasm and help with the data preparation and pre-processing. We are also grateful to our colleague
Ramani R. Routray of IBM Research for his insights in IBM’s commercial deduplicated storage systems,
and Colin S. Dawson of IBM Software Group, Tucson for his major contributions in collecting the
data used in this paper. We want also to acknowledge the enthusiasm and support of our colleagues
David Pease and Anurag Sharma for teaching us everything we wanted to know about the revival of tape
storage technology.

References

1. Oracle Corporation. Bringing Storage Efficiency to a New Level with Oracle’s Unified Storage:
Data Deduplication, 2010. Available online: http://www.oracle.com/us/products/servers-storage/
sun-storage-7000-efficiency-bwp-065183.pdf (accessed on 30 March 2012).

2. NetApp Corporation. NetApp Deduplication for FAS and V-Series Deployment and Implemen-
tation Guide: 3.3 Deduplication Storage Savings, 2009. Available online: http://contourds.com/
uploads/file/tr-3505.pdf (accessed on 30 March 2012).

3. Microsoft Corporation. Data Deduplication in Windows 8 Explained from A to Z, 2010.
Available online: http://jeffwouters.nl/index.php/2012/01/disk-deduplication-in-windows-8-
explained-from-a-to-z/ (accessed on 30 March 2012).

4. EMC Corporation. Achieving Storage Efficiency through EMC Celerra Data Deduplication:
Celerra Data Deduplication Overview, 2010. Available online: http://www.emc.com/collateral/
hardware/white-papers/h6065-achieve-storage-effficiency-celerra-dedup-wp.pdf (accessed on 30
March 2012).

5. IBM Corporation. Implementing IBM Storage Data Deduplication Solutions: 5.7.1 Metadata,
2011. Available online: http://www.redbooks.ibm.com/abstracts/sg247888.html (accessed on 30
March 2012).

6. Symantec Corporation. Backup Exec 2012: Deduplication Option: Deduplication Database Sizing,
2010. Available online: http://www.symantec.com/business/support/resources/sites/BUSINESS/
content/live/TECHNICAL SOLUTION/129000/TECH129694/en US/351982.pdf (accessed on 30
March 2012).

7. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of
NP-Completeness; W.H. Freeman and Co.: San Francisco, CA, USA, 1979.

8. Seidman, S.B. Network Structure and Minimum Degree. In Social Networks; Volume 5, Issue 3,
pp. 269–287, Elsevier: New York, USA, 1983.

9. Scott, J.P. Social Network Analysis: A Handbook; Sage Publications: Los Angeles, CA, USA,
2000.

10. Leung, A.W.; Shao, M.; Bisson, T.; Pasupathy, S.; Miller, E.L. Spyglass: Fast, Scalable Metadata
Search for Large-Scale Storage Systems. In Proceedings of the 7th Conference on File and Storage
Technologies, San Jose, CA, USA, 24-27 February, 2009; USENIX Association: Berkeley, CA,
USA, 2009; pp. 153–166.

http://www.oracle.com/us/products/servers-storage/sun-storage-7000-efficiency-bwp-065183.pdf
http://www.oracle.com/us/products/servers-storage/sun-storage-7000-efficiency-bwp-065183.pdf
http://contourds.com/uploads/file/tr-3505.pdf
http://contourds.com/uploads/file/tr-3505.pdf
http://jeffwouters.nl/index.php/2012/01/disk-deduplication-in-windows-8-
explained-from-a-to-z/
http://www.emc.com/collateral/hardware/white-papers/h6065-achieve-storage-effficiency-celerra-dedup-wp.pdf
http://www.emc.com/collateral/hardware/white-papers/h6065-achieve-storage-effficiency-celerra-dedup-wp.pdf
http://www.redbooks.ibm.com/abstracts/sg247888.html
http://www.symantec.com/business/support/resources/sites/BUSINESS/content/live/TECHNICAL_SOLUTION/129000/TECH129694/en_US/351982.pdf
http://www.symantec.com/business/support/resources/sites/BUSINESS/content/live/TECHNICAL_SOLUTION/129000/TECH129694/en_US/351982.pdf

Algorithms 2012, 5 259

11. Hua, Y.; Jiang, H.; Zhu, Y.; Feng, D.; Tian, L. Semantic-aware metadata organization paradigm in
next-generation file systems. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 337–344.

12. Constantinescu, C. Compression for data archiving and backup revisited. Proc. SPIE 2009, 7444,
1–12.

13. Lillibridge, M.; Eshghi, K.; Bhagwat, D.; Deolalikar, V.; Trezise, G.; Camble, P. Sparse Indexing:
Large Scale, Inline Deduplication Using Sampling and Locality. In Proceedings of the 7th
Conference on File and Storage Technologies, San Francisco, CA, USA, 24–27 February 2009;
USENIX Association: Berkeley, CA, USA, 2009; pp. 111–123.

14. Simon J.; Puglisi, S.J.; Turpin, A.H.; Smyth, W.F. A taxonomy of suffix array construction
algorithms. ACM Comput. Surv. 2007, 39, 1–31.

15. IBM Tivoli, 2011. Available online: http://www.ibm.com/software/tivoli/ (accessed on 30 March
2012).

16. Dong, W.; Douglis, F.; Li, K.; Patterson, H.; Reddy, S.; Shilane, P. Tradeoffs in Scalable Data
Routing for Deduplication Clusters. In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies (FAST ’11), San Jose, CA, USA, 15–17 February 2011; USENIX
Association: Berkeley, CA, USA, 2011; p. 2.

17. Guo, F.; Efstathopoulos, P. Building a High-Performance Deduplication System. In Proceedings
of the 2011 USENIX Conference on USENIX Annual Technical Conference (USENIXATC ’11),
Portland, OR, USA, 14–17 June, 2011; USENIX Association: Berkeley, CA, USA, 2011; pp. 25–
25.

18. Zhu, B.; Li, K.; Patterson, H. Avoiding the Disk Bottleneck in the Data Domain Deduplication
File System. In Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST ’08), San Jose, CA, USA, 26–29 February, 2008; USENIX Association: Berkeley, CA,
USA, 2008; pp. 18:1–18:14.

19. Debnath, B.; Sengupta, S.; Li, J. ChunkStash: Speeding up Inline Storage Deduplication Using
Flash Memory. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIXATC ’10), Boston, MA, USA, 22–25 June, 2010; USENIX Association:
Berkeley, CA, USA, 2010; p. 16.

20. Srinivasan, K.; Bison, T.; Goodson, G.; Voruganti, K. iDedup: Latency-Aware, Inline Data
Deduplication for Primary Storage. In Proceedings of the 9th Conference on File and Storage
Technologies (FAST ’12), San Jose, CA, USA, 14–17 February, 2012.

21. Batagelj, V.; Zaversnik, M. An O(m) Algorithm for Cores Decomposition of Networks; Technical
Report 798; Institute of Mathematics, Physics and Mechanics (IMFM), Ljubliana, Slovenia, 2002.

22. Constantinescu, C.; Lu, M. Quick Estimation of Data Compression and De-Duplication for Large
Storage Systems. In Proceedings of the 1st International Conference on Data Compression,
Communication and Processing (CCP ’11), Palinuro, Italy, 21–24 June, 2011; pp. 89–93.

23. IBM Corporation. IBM Tivoli Storage Manager Implementation Guide: Managing Tivoli Storage
Manager, 2007. Available online: http://www.redbooks.ibm.com/redbooks/pdfs/sg245416.pdf
(accessed on 30 March 2012).

http://www.ibm.com/software/tivoli/
http://www.redbooks.ibm.com/redbooks/pdfs/sg245416.pdf

Algorithms 2012, 5 260

24. Guerra, J.; Pucha, H.; Glider, J.; Belluomini, W.; Rangaswami, R. Cost Effective Storage Using
Extent Based Dynamic Tiering. In Proceedings of the 9th USENIX Conference on File and Stroage
Technologies (FAST ’11), San Jose, CA, USA, 15–17 February, 2011.

c© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

	Introduction
	Content Sharing Graphs
	Sparse Content Sharing Graph (SCSG)
	Detailed Content Sharing Graph (DCSG)

	Use Cases of Graphs
	Data Sets
	Deduplication Domain Partitioning
	Motivation
	Partitioning Algorithm
	Results for the Real Workloads WL1 and WL2

	Size Calculation for Deduplicated File Sets
	Motivation
	The Naive Algorithm
	The Graph Algorithm
	The Optimized Graph Algorithm
	Results

	Discussions of Two Graph Models
	Related Work
	Storage Deduplication
	Management of Files on Deduplication-Enabled Storage

	Conclusions and Future Work

