
Algorithms 2012, 5, 289-303; doi:10.3390/a5020289
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Modeling and Performance Analysis to Predict the Behavior of a
Divisible Load Application in a Cloud Computing Environment
Leila Ismail * and Liren Zhang

Faculty of Information Technology, UAE University, 17551 Al-Maqam, Al-Ain, UAE; E-Mail:
lzhang@uaeu.ac.ae

* Author to whom correspondence should be addressed; E-Mail: leila@uaeu.ac.ae;
Tel.: +971-508311059; Fax: +971-37672018.

Received: 10 April 2012; in revised form: 1 May 2012 / Accepted: 2 May 2012 /
Published: 11 May 2012

Abstract: Cloud computing is an emerging technology where IT resources are virtualized
to users as a set of a unified computing resources on a pay per use basis. The resources
are dynamically chosen to satisfy a user Service Level Agreement and a required level
of performance. Divisible load applications occur in many scientific and engineering
applications and can easily be mapped to a Cloud using a master-worker pattern. However,
those applications pose challenges to obtain the required performance. We model divisible
load applications tasks processing on a set of cloud resources. We derive a novel model and
formulas for computing the blocking probability in the system. The formulas are useful to
analyze and predict the behavior of a divisible load application on a chosen set of resources
to satisfy a Service Level Agreement before the implementation phase, thus saving time and
platform energy. They are also useful as a dynamic feedback to a cloud scheduler for optimal
scheduling. We evaluate the model in a set of illustrative scenarios.

Keywords: distributed systems; divisible load application; scheduling; performance
analysis; cloud computing

1. Introduction

The capacity of today’s infrastructures and data centers, the ubiquity of network resources, and the
low storage cost has led to the emergence of a new field which is the Cloud Computing [1–3]. This new

Algorithms 2012, 5 290

field has emerged with the directions, in which computation philosophy has shifted from the use of a
personal computer or an individual server to a cloud of distributed resources. The main objective is to
draw benefits from the underlying infrastructure services to satisfy a Service Level Agreement [4] and a
required performance to users [5].

Many scientific and engineering applications present a high complexity; i.e., the number of operations
generated is very high, which limits the benefits from the performance of a Cloud infrastructure if such
an application runs sequentially on one node of the Cloud. If an application is divisible into a number of
tasks, then parallelizing it on a number of workers within the Cloud would decrease the execution time or
makespan of the application. The producer-consumer pattern [6], also called master-worker, represents
a parallelization strategy that is suitable for many of the scientific and engineering applications.
For instance, it is used in Google map-reduce programming model [7]; i.e., the rationale of why
we have chosen the master-worker model as a base model. The master-worker model arises in
divisible-load applications, where there is no communication between the workers, such as search for
a pattern, compression, join, graph coloring and generic search applications [8], convolution-based
applications [9], and image processing applications [10]. Furthermore, as stated in [5], a Cloud is
considered as a candidate platform to run heavy-load applications to satisfy performance requirements.
Consequently, there is a great interest to run master-worker applications in the Cloud. However, running
a divisible load application using a master-worker strategy in a Cloud of nodes face challenges to obtain
an optimal performance and analyze the performance of the application for an optimal scheduling of
the application’s partitions. In the master-worker model, every computing worker processes the load
received and transmits the results back to the master worker, which in turn, in a next iteration, performs
some data preparations and sends news loads until the application is completed. In this case, the network
capacity, the Cloud topology, and the computing performance of individual computing workers must
be taken into account to model the system and the tasks’ processing. In this work, we use those
system parameters and we derive formulas to calculate the blocking probability and the processing time
of computing workers, thus providing a dynamic feedback to a scheduler which dynamically alters
its resource allocation strategy for optimal performance and better system utilization. By blocking
probability, we mean the probability of a task being in a waiting state and blocking all other tasks behind.
Our model can also be used as a performance analysis tool to software engineers and Cloud providers to
predict the behavior of a divisible load application on a set of Cloud nodes and consequently the system
utilization. Although our model and derived formulas can be used for any distributed environment, our
model is more useful in a cloud structure where resources are shared in space and time and thus blocking
probability is higher as we believe, and an adjustment of scheduling is needed more often. In this paper,
we model a Star Cloud topology. However, the mechanisms developed in this paper can be applied
to other topologies as well. For instance, the master-worker model can be used in a ring topology;
transmissions and computing processing capacities of computing workers should be considered.

Several works studied the problem of finding an optimal scheduling algorithm based on system
parameters. However, to the best of our knowledge, there is no work which uses the behavior of the
tasks processing to provide a dynamic feedback to a scheduler for an optimal scheduling algorithm.
The multi-installment algorithm, studied in [11], proposed a model of scheduling communication and
computation, in which communication time and computation time are assumed to be proportional

Algorithms 2012, 5 291

and an application’s tasks are allocated in a sequence to a list of computing workers. A multiround
algorithm [12] was built based on [11] by adding communication and computation latencies to the
model. However, it assumed no memory limit in computing workers. The effect of memory limitation
was studied in [13] under an assumption that the time of returning the results of computations from a
computing worker is negligible, and that computations are suspended by communications. By contrast,
in this work, we develop a novel model of the system and we derive formulas to compute the blocking
probability of computing workers following tasks allocations as a feedback mechanism to a dynamic
scheduling algorithm for an optimal performance and load balanced distribution of system utilization.
Those probabilities help a dynamic scheduler to dynamically modify the load, in terms of the sizes of
the tasks that should be allocated to computing workers, to increase the performance of an application.

The rest of the paper is structured as follows. Section 2 provides the background and the motivations
for this work. Section 3 describes the computing platform model we consider and the assumptions we
set in this work. The model and its analysis are described in Section 4. In Section 5, we evaluate the
proposed model and discuss the obtained results. Section 6 concludes the work.

2. Background and Motivations

Cloud Computing [1–3] is an emerging technology to provide users with services, which are
accessible through networks including local area network (LAN), wide area network (WAN) or even
Internet. More precisely, a Cloud computing platform houses 2 types of software: users’ applications
and system software. The users’ applications are delivered as services to users, known by software as
a service (SaaS) and the system software is a middleware in support of those services with a quality of
service according to a Service Level Agreement [4]. Complicated applications often require a huge
amount of available computing processing and network capacity, provided as an infrastructure as a
service (IaaS), in support of large-scale experiments. Examples of such applications are in the domain
of seismic imaging [14], aerospace [15], meteorology [16], and convolution-based applications [9]. In
this work, we focus on divisible load applications, where an application load can be divided into a
number of tasks that can be processed independently in parallel ([17–19]). Divisible Load Theory [17]
provides a framework for mapping divisible loads to a platform of heterogeneous machines using
master-worker model. The master is a processor which divides an application load into tasks and assigns
each task to a separate worker. Many scientific and engineering applications can be divided using the
master-worker model, such as search for a pattern, compression, join and graph coloring and generic
search applications [8], multimedia and video processing ([20,21]), and image processing [22].

Divisible load applications based on the master-worker model can be easily implemented and
deployed on a computational Cloud [1]. A Cloud is defined as a type of parallel and distributed system
consisting of a collection of interconnected and virtualized computers that are dynamically provisioned
and presented as one or more computing resources based on a Service Level Agreement. Hardware
resources and software are presented to users as services. Therefore, one of the main goals of a Cloud is
to deliver resources on pay-as-you-use basis. By means of virtualization and the ability of users to scale
up and down their use of hardware, Cloud offers a flexible and an efficient platform for scientists and
engineers [5] to run heavy-load applications.

Algorithms 2012, 5 292

The issue of finding an optimal scheduling algorithm to schedule a divisible load application to
heterogeneous distributed computing platforms have been studied thoroughly [11–13,23]. Reference
[18] describes the research in this area over the past decades, which involves the linear and continuous
modeling of partitionable communication and computation loads for parallel processing. The main issue
to solve was to find the optimal sizes of load partitions (tasks) that have to be distributed to a distributed
computing system for application optimal execution, and the ideal number of rounds needed for optimal
performance [11–13,23]. Reference [24] discusses a scheduler efficiency based on different strategies
of overlapping communication and computation on target systems. However, to our knowledge, there
is no work which has studied the behavior of those applications and their blocking probabilities as a set
of resources virtualized to users. The blocking probabilities are dynamically computed and provided as
a feedback to a dynamic scheduler which alters resources allocations accordingly to obtain an optimal
scheduling algorithm.

In this work, we propose a novel model to analyze the behavior of a divisible load application
implemented in a cloud system. In particular, we compute the blocking probability of running an
application’s tasks on a computing worker located in a Cloud computing platform. The proposed model
is based on Markov chain process model. This is because a task mapped to a computing worker is usually
undertaking 3 stages of manipulations that are linked to each others: (1) the transmission of the task
from the master processor to a worker processor; (2) the processing of the task by the computing worker
processor; and (3) the transmission of the results from the computing worker processor to the master
processor. We then, based on this model, analyze the blocking probabilities of a computing worker as
tasks are assigned to it. We believe that this novel model helps software engineers to predict the behavior
of a distributed application, considering a set of computing resources, offered by a Cloud. In addition
this model provides feedback to a dynamic scheduler which allocate adequate resources to provide users
with a quality of service when running their scientific and engineering applications in the Cloud.

3. System Modeling

As shown in Figure 1, a Cloud consists of multiple Computing Workers and one Master Worker,
where these computing workers are independently connected to the master worker in a star topology.
Note that the data speed of the link connecting these computing workers and the master worker dictates
the speed of communication processing when a task is transmitted. The computing workers could be
located at remote distance, and they are operating in an independent heterogeneous mode since each
individual computer worker may consist of one or multiple processors, which depend on the built-in
capacity in terms of computing power, memory limitation and communication protocols.

Upon receiving of an application or a user’s request, the master worker divides the whole application
into a sequence of tasks, which are defined as the minimum data unit to be processed at a computing
worker. Since each task contains certain amount of overheads for transmission and computing purposes.
To minimize the overheads as well as to achieve an optimum performance efficiency, the master worker
includes a scheduler which must take into account of the capacity of the selected computing workers in
terms of the capacity of the communication link between the master worker and the selected computing
worker, the available memory capacity and the existing computing power in the process of task
segmentation, schedule and distribution. On the other hand, the efficiency of scheduling and distributing

Algorithms 2012, 5 293

process at the master is certainly affected by the status of operating process at the workers. This paper
focuses on the statistics of computing process at the workers under various conditions, including the
capacity of receiving computing tasks from the master, the capacity of computing processing at the
worker and the capacity of transmitting tasks back to the master. From the best practice point of view,
such statistics are able to provide valuable information for the master to dynamically control the process
of scheduling the task, selecting the suitable workers and distributing the tasks to the selected workers
using a scheduling algorithm [23,25]. Note that the master worker can assign tasks to itself; i.e., the
master itself can be a computing worker. The master worker collects partial results from the computing
workers and combines them to constitute the final application’s result.

Figure 1. A Star-Topology Computing Platform Model.

In the following analysis, a Cloud is considered to have R heterogeneous computing workers. A
computing worker r, r ∈ {1, . . . , R}, in the Cloud is modeled by a tandem processing system consisting
of 3 components in series. The first component represents the task receiving processing capacity of µ1,r

tasks per second, r is the index of computing worker. The second component represents the computing
capacity of µ2,r tasks per second, and the third component represents the task transmission capacity of
µ3,r. It is assumed that all the computing workers can run in parallel, but our model does not impose this
and computing workers may run at different stages during application execution.

An application can be either dynamically submitted to the Cloud to run or it is statically there but a
dynamic request of execution is submitted by the user. Applications’ or execution requests’ arrival is
assumed to be a Poisson process with a mean rate λ. Poisson is often an assumption made for the arrival
of tasks to a master scheduler ([12,26]). When an application arrives at the Cloud, the master worker
segments the application into R tasks to be assigned for each individual computing worker. The task
assigned to a computing worker r is αrλ, which is also a Poisson process. Note that αr is the weight of
a task load assigned to a computing worker r and αr =

∑r=R
r=1 αr = 1 is the whole application load.

Algorithms 2012, 5 294

4. Analysis of a Divisible Load Application in a Star Network Cloud

4.1. Modeling of Tasks Processing

As discussed previously, each computing worker consists of three process components, including
task receiving process denoted as Station 1, a computing process denoted as Station 2 and a transmission
process denoted as Station 3. The Station 1 depicts the time delay needed for receiving a task from the
master worker before starting the computing process. The Station 2 defines the time needed to execute
the received task. The Station 3 depicts the time needed to transfer the result obtained at the Station 2
back to the master worker.

These three stations, associated with a computing worker r ∈ {1, 2, ..., R}, are connected in a tandem
model without any queuing spaces between them. In the process of receiving tasks at the Station 1,
the task flow arriving at the receiver is a Poisson process and the entire process of receiving tasks from
master worker is exponential distribution with a mean value of µ1,r tasks per second since each task
is accumulated by a bulk of data packets in sequence order with Poisson distribution. Likewise, the
processing at the Station 2 is an exponential distribution with a mean value of of µ2,r tasks per second.
The transmission of the results back to master worker at the Station 3 is performed in a manner that
the results are packetized into data packets with exponential distribution, so that the transmission time
of each packet is also exponentially distributed. Hence, the transmission of tasks at the Station 3 is
exponentially distributed with a mean value of µ3,r tasks per second.

A computing worker r is operating based on the following procedures:

• The computing worker r is a tandem connected sequential processing chain.
• The master worker does not assign a new task to the computing worker r if an application task is

in process at Station 1, even if Station 2 and/or Station 3 are empty.
• An application task is blocked when it completes the process at any Station and finds that the next

Station is busy.

4.2. Computing Tasks Steady States Diagram

As shown in Table 1, a 3-digit symbol is used to represent the operation status of a computing worker,
where digit “0“ represents the processor in an “idle” status and “1“ represents the processor in a “busy”
status. For example, symbol “101“ represents that the process of receiving a task from the master worker
is on-going, the computing processor is “free” and that the transmitting processor is “busy“ on sending
the results back to master worker. Furthermore, the status “b” represents an application task that is
blocked due to one application task’s arrival into a processor in “busy“ status. For example, symbol
“b11” represents that when a completely received application task is sent to a computing processor, this
application task is blocked due to the computing processor being in a “busy“ status, meanwhile, the
transmitting processor is also in a “busy” on sending results back to master worker. It is clear that a
particular scheduling algorithm ([17,18]) has also an impact on the steady states of a computing worker.

Algorithms 2012, 5 295

Table 1. Steady State Status during Tasks Processing.

n1n2n3 Description

000 System is empty.
100 Application task is in process at Station 1 only.
110 Application tasks are in process at Station 1 and 2 only.
111 Application tasks are in process at Station 1, 2 and 3.
101 Application tasks are in process at Station 1 and 3 only.
001 Application task is in process at Station 3 only.
011 Application tasks are in process at Station 2 and 3 only.
010 Application task is in process at Station 2 only.
b10 Application task is blocked at the output of Station 1 because Station 2 is occupied.
b11 Application task is blocked at the output of Station 1 because both Station 2 and 3 are occupied.
0b1 Application task is blocked at the output of Station 2 because Station 3 is occupied.
1b1 Application task is blocked at the output of Station 2 because both Station 1 and 3 are occupied.

Figure 2. Steady State Transitions on a Computing Worker.

While a master worker is assigning tasks to a computing worker,
different states transitions may happen. Figure 2 shows a Markov model for the operating process

in the computing worker, where all possible operating states and transitions between these states
are presented. When the computing worker is operating in steady-state, its steady state equations
(Equations (1)–(12)) can be obtained by the following procedures:

Considering the state “000“, which is directly related to the two states “100” and “001“. When the
computing worker in state “000” is starting to receive a new task from the master worker, it transits to
state “100“ at the rate of λ, which is an outbound flow from the state “000”. On the other hand, when

Algorithms 2012, 5 296

the computing worker is in state “001“ completes the process of transmitting data back to the master
worker, it transits to state “000” at the rate of µ3,r, which is an inbound flow into the state “000“. When
the operation is stable, the outbound flows from the state “000” is equal to the inbound flows to the state
“000“. Consequently, we obtain Equation (1) as:

αrλp000 = µ3rp001

in which the left side represents the outbound flow and right side represents the inbound flow.
Similarly, applying the same strategy to the rest of the states, we can obtain the steady-state

Equations (2)–(12) for all the corresponding states.
The steady-state equations for this multidimensional Markov processing chain are then as follows:

αrλp000 = µ3rp001 (1)

µ1,rp100 = αrλp000 + µ3rp101 (2)

(αrλ + µ2,r)p010 = µ1,rp100 + µ3,r(p011 + p0b1) (3)

(αrλ + µ3,r)p001 = µ2,rp010 (4)

(µ1,r + µ3,r)p101 = αrλp001 + µ2,r(p110 + pb10) (5)

(αrλ + µ2,r + µ3,r)p011 = µ1,rp101 (6)

(µ1,r + µ2,r + µ3,r)p111 = αrλ(p011 + p0b1) (7)

(µ1,r + µ2,r)p110 = αrλp010 + µ3,r(p111 + pb11 + p1b1) (8)

(αrλ + µ3,r)p0b1 = µ2,rp011 (9)

(µ1,r + µ3,r)p1b1 = µ2,r(p111 + pb11) (10)

(µ2,r + µ3,r)pb11 = µ1,r(p111 + p1b1) (11)

µ2,rpb10 = µ1,rp111 (12)

From above twelve steady-state equations, we are able to solve for the steady-state probabilities
p001, p010, p011, p100, p101, p110, p111, pb10, pb11, p0b1, p1b1 in terms of p000 and using boundary equation∑ ∑ ∑

pn1,n2,n3 = 1 to find p000 as follows:
Based on Equation (1), we obtain:

p001 =
αrλ

µ3,r

p000 (13)

From Equations (4) and (13), we obtain the following formula:

p010 =
αrλ(αrλ + µ3,r)

µ3,rµ2,r

p000 (14)

From Equations (2), (3), (6), and (9) we obtain by substitutions the following equation:

p101 =
αrλµ3,r(αrλ + µ2,r)p010 − α2

rλ
2µ3,rp000

αrλµ2
3,r + µ1,rµ3,r

(15)

Consequently, p011 is obtained from Equation (6) as follows:

p011 =
µ1,r

αrλ + µ2, rµ3, r
p101 (16)

Algorithms 2012, 5 297

p0b1 is obtained based on Equations (9), and (16):

p0b1 =
µ2,r

αrλ + µ3,r

p011 (17)

Based on Equation (7), p111 is obtained as follows, and then can be computed thanks to Equations (16)
and (17):

p111 =
αrλ

µ1,r + µ2,r + µ3,r

(p011 + p0b1) (18)

From Equation (12), we obtain:

pb10 =
µ1,r

µ2,r

p111 (19)

Based on Equation (5), we obtain:

p110 =
1

µ2,r

[(µ1,r + µ3,r)p101 − αrλp001 − µ2,rpb10] (20)

Based on Equations (10) and (11), pb11 is obtained using the following formula:

pb11 =
µ2

1,r + µ1,rµ3,r + µ1,rµ2,r

µ1,rµ3,r + µ2,rµ3,r + µ2
3,r

p111 (21)

From Equation (10), we obtain:

p1b1 =
µ2,r

µ1,r + µ3,r

(p111 + pb11) (22)

The total task blocking probability in computing worker r is given by the following formula, which
denotes as well the computing worker efficiency:

Pb = pb11 + p1b1 + pb10 + p0b1 (23)

The total effective utilization of a computing worker r is given by:

PE = p010 + p011 + p111 + p110 (24)

4.3. Processing Time at Computing worker

The calculation of the processing time at each computing worker allows a cloud provider to predict
the usage pay on each computing worker.

The processing time for a task to be successfully completed in computing worker r is the sum of the
processing times taken for that task to be successfully completed in Stations 1, 2 and 3. The average
processing time on a computing worker is equivalent to the ratio of the time spent for all the tasks to be
successfully completed by the computing worker r over the average of the sizes of all the tasks assigned
to the computing worker r.

τ̃r =
Ũr

α̃rλ

=

∑
(

1∑
n1=0

1∑
n2=0

1∑
n3=0

(n1 + n2 + n3)pn1n2n3)

α̃rλ

Algorithms 2012, 5 298

5. Performance Evaluation

In this section, we evaluate the efficiency of a Cloud system considering the system and application
parameters. In particular we analyze the impact of the system parameters (µ1,r, µ2,r, µ3,r, αr, and λ) on
the system state using the model.

5.1. Evaluation Method

We evaluate the proposed model and analyze the behavior of a divisible application in a Cloud system
for a range of parameters presented in Table 2.

Table 2. Illustrative Parameter Values.

Parameter Values

Workload (αr) 0.01, 0.05, 0.1, 0.2

Computing rate at a computing worker (unit/s) µ2,r = 1

Receiving rate at computing worker µ1,r = 1, 0.8, 1.2

Transmitting rate at a computing worker µ3,r = 1

Applications’ arrival rate at master worker (applications/min) λ = 1, 2, 3, 4, 5

Those parameters are based on those described in [12] and [26]. The latter were based on real
world scenarios. We take different values of a workload αr, assigned to a computing worker r. By
incrementing the load assigned to each computing worker, we assess the impact of a bigger load on the
system performance. We also assess the impact of the variation of the receiving rate at a computing
worker r, by considering different receiving rates, as presented in Table 2. As different applications may
arrive or run at different rates on a master worker, then different arrival rate are considered to assess the
impact of the arrival rate on the system performance.

5.2. Illustrative Scenarios

In order to analyze the impact of the relationship among the data receiving, the computing and the
data transmission processing powers of a computing worker, we illustrate the model by using 3 scenarios:
(1) in the first scenario, the 3 processing powers are equal (µ1,r = µ2,r = µ3,r); (2) in the second scenario,
the receiving processing power is less than the computing processing power (µ1,r < µ2,r = µ3,r); and
(3) in the third scenario, the receiving processing power is greater than the computing processing power
(µ1,r > µ2,r = µ3,r). In our experiments a load will be divided equally on the available computing
workers. We consider a range of chunk sizes to analyze the system. In our experiments we vary the
chunk sizes arriving at computing workers to explore several scenarios of data distribution and their
impact on the system efficiency. To analyze the impact of an arrival rate to the system efficiency, we
vary the Poisson rates, representing real world scenarios [26].

Algorithms 2012, 5 299

5.3. Numerical Results and Evaluation

In this section, we explore the numerical data obtained to evaluate our model. For simplicity, αr is
represented by α on the figures, and µ1,r, µ2,r, and µ3,r are represented by µ1, µ2, and µ3 respectively.

Figure 3 shows that, for equal capacities of receiving, computing and transmitting stations, the
efficiency of the system is at its optimal for small chunks of data sizes or for small arrival rate. It
also shows that the system blocks increase with bigger arrival rate and bigger data chunk. When the data
chunk is relatively big (αr = 0.2), the system probability to block is exponential versus an increase in
arrival rate.

Figure 3. Computing Worker Efficiency when µ1,r = µ2,r = µ3,r.

Figure 4. Comparison of Computing Worker Efficiency in 3 scenarios: µ1,r = µ2,r = µ3,r,
µ1,r < µ2,r = µ3,r, and µ1,r > µ2,r = µ3,r.

Algorithms 2012, 5 300

When the transmission capability of the system is smaller than its computing capability, then the
efficiency of the system increases. Figure 4 shows that the blocking probability can reach 5.2% (when
αr = 0.2) in case the transmitting power is smaller than the computing processing power vis-a-vis 7%
when the computing power of the receiving, processing and transmitting are all equal. It also shows that if
the transmission capability is higher than the computing capability, then the system efficiency decreases
considerably, as the computing capability will not be able to cope with the transmission power. The
system blocking probability can reach 8.9%.

Figure 5. Computing Worker CPU Usage when µ1,r = µ2,r = µ3,r.

Figure 6. Comparison of Computing Worker CPU Usage in 3 scenarios: (1) µ1,r = µ2,r =

µ3,r; (2) µ1,r < µ2,r = µ3,r; and (3) µ1,r > µ2,r = µ3,r.

Algorithms 2012, 5 301

A Computing Worker CPU usage is affected by 3 factors: (1) the system efficiency, which is
determined from the rate of blocking situations; (2) the chunk size; and (3) the chunks’ arrival rates.
Figures 5 and 6 show the CPU usage in 2 scenarios: (1) CPU usage during blocking and non-blocking
situations (p010 + p011 + p0b1 + p111 + pb10 + p110 + pb11 + p1b1) versus an increase in arrival rate and
chunk size; and (2) CPU usage for non-blocking situations only (p010 + p011 + p111 + p110). These
figures show that CPU utilization is higher with higher arrivals’ rates and larger chunks sizes. The CPU
usage percentage can reach up to 18% when the receiving, computing and transmitting capabilities of
the system are equal (Figure 5). This usage increases when the receiving capability is higher than the
computing and the transmitting capabilities (35%), as the computing power will not be able to cope
with the receiving rate. When the receiving capability is less than the computing and the transmitting
capabilities of the system, then the usage is 25%.

6. Conclusions

In this paper, we presented a model to predict the behavior of a divisible load application using a
producer-consumer pattern, also called master-computing worker pattern in a Star network Cloud. A
Cloud computing platform offers to users a virtualized distributed system, where computing resources
are dynamically allocated to satisfy a user’s Service Level Agreement. In this work, we proposed a novel
model to predict the behavior of an application allocated to a set of computing resources; i.e., computing
workers, within the Cloud. The model computes the blocking probability of a computing worker
considering computing and networking capacities of the Cloud presented to users. In particular, we
set out to answer two open questions: (1) how can the resources efficiency and system utilization be
measured in terms of blocking probability? and (2) what is the average processing time of application’s
tasks on a computing worker to estimate resources usage payment? First, we developed a modeling
of a star network cloud using Markov chain process model. A computing worker was represented by
3 components or queues: (1) the data receiving queue, which is used to transmit a task assigned by a
master processor from the master processor to the computing worker processor; (2) the task computing
queue, which is used to compute the task assigned by the master processor to the computing worker
processor; and (3) the data transmitting queue, which is used to transmit results from the computing
worker processor to the master processor. Then, we used that model to derive formulas which are used
to calculate the blocking probabilities of tasks processing within the system. We believe that the model
provides software engineers and Cloud providers with a tool to predict the behavior of divisible load
applications on a set of chosen distributed resources from within a Cloud. The model allows software
engineers to analyze the behavior of their applications before implementation phase. It allows Cloud
providers to analyze the performance of the applications considering a set of resources for the purpose of
satisfying a user’s Service Level Agreement and providing a quality of service for users upon application
execution. The proposed model can also be used to dynamically provide feedback to a dynamic scheduler
which can alter its scheduling strategy dynamically to enhance system utilization and therefore decrease
the overall makespan of the divisible load application. We have evaluated the model in a set of scenarios
and analyzes corresponding performance behavior of a computing worker. Our work continues and we
aim to implement a scheduler tool which uses the proposed model in this work to adapt its scheduling
strategy for an optimal scheduling performance. Performance evaluations will then be conducted similar

Algorithms 2012, 5 302

to the one performed for our work in IEEE Transactions on Parallel and Distributed Systems [?] and in
Software: Practice and Experience by Wiley [27].

Acknowledgements

The authors would like thank the anonymous reviewers whose feedbacks have contributed to
the paper.

References

1. Buyya, R.; Yeo, C.S.; Venugopal, S. Market-Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities, Keynote Paper. In Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications (HPCC 2008),
Dalian, China, 25–27 September 2008.

2. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Bric, I. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener.
Comput. Syst. 2009, 25, doi:10.1016/j.future.2008.12.001.

3. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.;
Rabkin, A.; Stoica, I.; Zaharia, M. Above the Clouds: A Berkeley View of Cloud Computing;
Technical Report No. UCB/EECS-2009-28; University of California: Berkley, CA, USA, 10
February 2009.

4. Service Level Agreement Zone. The Service Level Agreement. 2007. Available online:
http://www.sla-zone.co.uk/index.htm (accessed on 4 May 2012).

5. Vecchiola1, C.; Pey1, S.; Buyya, R. High-Performance Cloud Computing: A View of Scientific
Applications. In Proceedings of the 10th International Symposium on Pervasive Systems,
Algorithms and Networks (I-SPAN 2009), Kaohsiung, Taiwan, 14–16 December 2009.

6. Foster, I. Designing and Building Parallel Programs; Addison-Wesley: Boston, MA, USA, 1995.
7. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings

of the 6th Symposium on Operating Systems Design and Implementation (OSDI-04), San Francisco,
CA, 06–08 December 2004, pp. 137–150.

8. Drozdowski, M.; Wolniewicz, P. Experiments with Scheduling Divisible Tasks in Cluster of
Workstations. In Proceedings of the 6th International Euro-Par Conference on Parallel Processing
(Euro-Par 2000), Munich, Germnay, 29-8–01-09, 2000; pp. 311–319.

9. Ismail, L.; Guerchi, D. Performance evaluation of convolution on the IBM cell processor. IEEE
Trans. Parallel Distrib. Syst. 2011, 22, 337–351.

10. Bharadwaj, V.; Ranganath, S. Theoretical and experimental study on large size image processing
applications using divisible load paradigms on distributed bus networks. Image Vis. Comput. 2002,
20, 917–1034.

11. Bharadwaj, V.; Ghose, D.; Mani, V. Multi-installment load distribution in tree networks with delays.
IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 555–567.

12. Yang, Y.; van der Raadt, K.; Casanova, H. Multiround algorithms for scheduling divisible loads.
IEEE Trans. Parallel Distrib. Syst. 2005, 16, 1092–1102.

Algorithms 2012, 5 303

13. Drozdowski, M.; Lawenda, M. Multi-installment divisible load processing in heterogeneous
systems with limited memory. Parallel Process. Appl. Math. 2006, 3911/2006, 847–854.

14. Rowe, C.A.; Aster, R.C.; Borchers, B.; Young, C.J. An automatic, adaptive algorithm for refining
phase picks in large seismic data sets. Bull. Seismol. Soc. Am. 2002, 92, 1660–1674.

15. Manke, J.W. Parallel computing in aerospace. Parallel Comput. 2001, 27, 329–336
16. Global Modeling, US Naval Research Laboratory, Monterrey, Ca., August 2003. Available online:

http://www.nrlmry.navy.mil/sec7532.htm (accessed on 4 May 2012).
17. Ghose, D.; Robertazzi, T. Special issue on divisible load scheduling. Cluster Computing, 2003, 6,

1.
18. Bharadwaj, V.; Ghose, D.; Robertazzi, T. Divisible load theory: A new paradigm for load

scheduling in distributed systems. Clust. Comput. 2003, 6, 7–17.
19. Shokripour, A.; Othman, M. Categorizing DLT researches and its applications. Eur. J. Sci. Res.

2009, 37, 496–515,
20. Altilar, D.; Paker, Y. An Optimal Scheduling Algorithm for Parallel Video Processing. In

Proceedings of the IEEE International Conference on Multimedia Computing and Systems, Austin,
Tx, 28 June–1 July, 1998.

21. Altilar, D.; Paker, Y. Optimal Scheduling Algorithms for Communication Constrained Parallel
Processing. In Proceedings of the 8th International Euro-Par Conference on Parallel Processing
(Euro-Par 2002), Paderborn, Germany, August 27–30, 2002; Springer Verlag: London, UK, 2002;
LNCS 2400, pp. 197–206.

22. Lee, C.; Hamdi, M. Parallel image processing applications on a network of workstations. Parallel
Comput. 1995, 21, 137–160.

23. Beaumount, O.; Casanova, H.; Legr, A.; Robert, Y.; Yang, Y. Scheduling divisible loads on star
and tree networks: Results and open problems. IEEE Trans. Parallel Distrib. Syst. 2005, 16,
doi:10.1109/TPDS.2005.35.

24. Yu, C.; Marinescu, D.C. Algorithms for divisible load scheduling of data-intensive applications.
J. Grid Comput. 2010, 8, 133–155.

25. Ismail, L.; Mills, B.; Hennebelle, A. A Formal Model of Dynamic Resource Allocation in
Grid Computing Environment. In Proceedings of the IEEE 9th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD 2008), Phuket, Thailand, August 06–08, 2008; pp. 685–693;

26. Medernach, E. Workload Analysis of a Cluster in a Grid Environment. In Proceedings of the 11th
international conference on Job Scheduling Strategies for Parallel Processing, Cambridge, USA,
18–21 June, 2005; Volume 3834/2005, pp. 36–61.

27. Ismail, L.; Barua, R. Implementation and performance evaluation of a distributed conjugate
gradient method in a cloud computing environment. Softw. Pract. Exp. 2012, doi:10.1002/
spe.2112.

c⃝ 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

