
Algorithms 2012, 5, 379-397; doi:10.3390/a5030379
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Monitoring Threshold Functions over Distributed Data Streams
with Node Dependent Constraints
Yaakov Malinovsky * and Jacob Kogan

Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore,
MD 21250, USA; E-Mail: kogan@umbc.edu

⋆ Author to whom correspondence should be addressed; E-Mail: yaakovm@umbc.edu;
Tel.: +1-410-455-2968; Fax: +1-410-455-1066.

Received: 19 June 2012; in revised form: 8 September 2012 / Accepted: 11 September 2012 /
Published: 18 September 2012

Abstract: Monitoring data streams in a distributed system has attracted considerable interest
in recent years. The task of feature selection (e.g., by monitoring the information gain
of various features) requires a very high communication overhead when addressed using
straightforward centralized algorithms. While most of the existing algorithms deal with
monitoring simple aggregated values such as frequency of occurrence of stream items,
motivated by recent contributions based on geometric ideas we present an alternative
approach. The proposed approach enables monitoring values of an arbitrary threshold
function over distributed data streams through stream dependent constraints applied
separately on each stream. We report numerical experiments on a real-world data that detect
instances where communication between nodes is required, and compare the approach and
the results to those recently reported in the literature.

Keywords: data streams; distributed system; convex optimization; feedback;
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1. Introduction

In many emerging applications one needs to process a continuous stream of data in real time. Sensor
networks [1], network monitoring [2], and real-time analysis of financial data [3,4] are examples of such
applications. Monitoring queries is a particular class of queries in the context of data streams. Previous
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work in this area deals with monitoring simple aggregates [2], or term frequency occurrence in a set of
distributed streams [5].

A general framework for efficient local algorithms monitoring l2 norm of the data average of large
networks of computers, wireless sensors, or mobile devices was introduced in [6], and further developed
in [7]. The current contribution is motivated by results recently reported in [8,9] with focus on a special
case of the general model considered in [7]. This special case can be briefly described as follows:

Let S = {s1, . . . , sn} be a set of data streams collected at n nodes. Let v1(t), . . . ,vn(t) be d

dimensional real time varying vectors derived from the streams. For a function f : Rd → R we
would like to confirm the inequality

f

(
v1(t) + . . . + vn(t)

n

)
> 0 (1)

while minimizing communication between the nodes. Monitoring inequality (1), or monitoring
geometric location of the mean is a problem that can be addressed using a variety of different
mathematical tools. A specific choice of a monitoring tool is up to the user. We note that the problem as
stated above does not specify any particular tool, l2, or any other norm that is required to address it.

The problem was recently addressed in [10], where the approach proposed imposes equal constraints
on each node. In addition to previously used l2 norm (see, e.g., [6–9,11]) the paper provides theoretical
framework for using a wide variety of convex functions, and, as an illustration, runs numerical
experiments using l2, l1 and l∞ norms. In all numerical experiments reported in [10] an application of the
same algorithm with l1 norm generates superior results. This paper extends results in [10] in a machine
learning direction—a constraint imposed on each node depends on the stream history at the node.

As a simple illustration of the problem considered in the paper we focus on two scalar functions v1(t)

and v2(t), and the identity function f (i.e., f(x) = x).We would like to guarantee the inequality

v(t) =
v1(t) + v2(t)

2
> 0

while keeping the nodes silent as much as possible. A possible strategy is to verify the initial inequality

v(t0) =
v1(t0) + v2(t0)

2
> 0 and to keep both nodes silent while

|vi(t) − vi(t0)| < δ = v(t0), t ≥ t0, i = 1, 2

The first time t1 when one of the functions, say v1(t), crosses the boundary of the local constraint, i.e.,
|v1(t1) − v1(t0)| ≥ δ the nodes communicate, the mean v(t1) is computed, the local constraint δ is
updated and made available to the nodes, and nodes are kept silent as long as the inequalities hold.

|vi(t) − vi(t1)| < δ, t ≥ t1, i = 1, 2

The main contributions of this paper are listed next. We demonstrate that:

1. This approach works for a non-linear monitoring function f .
2. The results depend on the choice of a norm, and the numerical results reported show that l2 is

probably not the best norm when one aims to minimize communication between nodes. In addition
to the numerical results presented we also provide a simple illustrative example that highlights this
point (see Remark 4.2).
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3. Selection of node dependent local constraints may decrease communication between the nodes.
4. The approach suggested in [10] and adopted in this paper paves the way to achieve further

communication savings by clustering nodes, and monitoring cluster coordinators. Although this
research direction is beyond the scope of this paper we address it briefly in Section 6.

In the next section we provide a text mining related example that leads to a non-linear threshold
function f .

2. Text Mining Application

Let T be a finite text collection (for example a collection of mail or news items). We denote the size
of the set T by |T|. We will be concerned with two subsets of T:

1. R–the set of “relevant” texts (text not labeled as spam),
2. F–the set of texts that contain a “feature” (word or term for example).

We denote complements of the sets by R, F respectably (i.e., R ∪ R = F ∪ F = T), and consider
the relative size of the four sets F ∩ R, F ∩ R, F ∩ R, and F ∩ R as follows:

x11(T) =
|F ∩ R|
|T|

, x12(T) =
|F ∩ R|
|T|

x21(T) =
|F ∩ R|
|T|

, x22(T) =
|F ∩ R|
|T|

(2)

Note that
0 ≤ xij ≤ 1, and x11 + x12 + x21 + x22 = 1

The function f is defined on the simplex (i.e., xij ≥ 0,
∑

xij = 1), and given by

f(x11, x12, x21, x22) =
∑
i,j

xij log

(
xij

(xi1 + xi2)(x1j + x2j)

)
(3)

where log x = log2 x throughout the paper. We next relate empirical version of information gain
Equation (3) and the information gain (see e.g., [12]).

Let Y and X be random variable with know distributions

P (Y = yi), i = 1, . . . , n, and P (X = xj), j = 1, . . . , m

Entropy of Y is defined by

H(Y ) = −
n∑

i=1

P (Y = yi) log P (Y = yi) (4)

Entropy of Y conditional on X = x denoted by H(Y |X = x) is defined by

−
n∑

i=1

P (Y = yi, X = x)

P (X = x)
log

P (Y = yi, X = x)

P (X = x)
(5)
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Conditional entropy H(Y |X) and information gain IG(Y |X) are given by

H(Y |X) =
m∑

j=1

P (X = xj)H(Y |X = xj)

and
IG(Y |X) = H(Y ) − H(Y |X)

(6)

Information gain is symmetric, indeed

IG(Y |X) =∑
i,j

P (Y = yi, X = xj) log
P (Y = yi, X = xj)

P (X = xj)

−
∑

i

P (Y = yi) log P (Y = yi) =

∑
i,j

P (Y = yi, X = xj) log
P (Y = yi, X = xj)

P (Y = yi)P (X = xj)

= IG(X|Y )

Due to convexity of g(x) = − log x, information gain is non-negative

IG(Y |X) =
∑
i,j

P (Y = yi, X = xj)g

(
P (Y = yi)P (X = xj)

P (Y = yi, X = xj)

)

≥ g

∑
i,j

P (Y = yi, X = xj)
P (Y = yi)P (X = xj)

P (Y = yi, X = xj)


= g

∑
i,j

P (Y = yi)P (X = xj)

 = − log 1 = 0

It is easy to see that Equation (3) provides information gain for the “feature”.
As an example, we consider n agents installed on n different servers and a stream of texts arriving at

the servers. Let Th = {th1, . . . , thw} be the last w texts received at the hth server, with T =
n∪

h=1

Th.

Note that

xij(T) =
n∑

h=1

|Th|
|T|

xij(Th)

i.e., entries of the global contingency table {xij(T)} are the average of the local contingency tables
{xij(Th)}, h = 1, . . . , n.

For the given “feature” and a predefined positive threshold r we would like to verify the inequality

f (x11(T), x12(T), x21(T), x22(T)) − r > 0

while minimizing communication between the servers. Note that Equation (3) is a nonlinear function.
The case of a nonlinear monitoring function is different from that of linear one (in fact [8] calls the
nonlinear monitoring function case “fundamentally different”). In the next section we demonstrate the
difference, and describe an efficient way to handle the nonlinear case.
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3. Non-Linear Threshold Function: An Example

We start with a slight modification of a simple one dimensional example presented in [8].

Example 3.1 Let f(x) = x2 − 9, and vi, i = 1, 2 are scalar values stored at two distinct nodes. Note
that if v1 = −4, and v2 = 4, then

f(v1) = f(v2) = 7 > 0 and

f
(

v1 + v2

2

)
= −9 < 0

If v1 = −2, and v2 = 6, then

f(v1) = −5 < 0, f(v2) = 27 > 0 and

f
(

v1 + v2

2

)
= −5 < 0

Finally, when v1 = 2, and v2 = 6 one has

f(v1) = −5 < 0, f(v2) = 27 > 0

and

f
(

v1 + v2

2

)
= 7 > 0

(7)

The simple illustrative example leads the authors of [8] to conclude that it is impossible to determine
from the values of f at the nodes whether its value at the average is above the threshold or not. The
remedy proposed is to consider the vectors uj(t) = v(ti) + [vj(t) − vj(ti)], j = 1, . . . , n, t ≥ ti

and to monitor the values of f on the convex hull conv {u1(t), . . . ,un(t)} instead of the value of f

at the average Equation (1). This strategy leads to sufficient conditions for Equation (1), and may be
conservative.

The monitoring techniques for values of f on conv {u1(t), . . . ,un(t)} without communication
between the nodes are based on the following two observations:

1. Convexity property. The mean v(t) is given by
v1(t) + . . . + vn(t)

n
=

u1(t) + . . . + un(t)

n
, i.e.,

the mean v(t) is in the convex hull of {u1(t), . . . ,un(t)}, and uj(t) is available to node j without
much communication with other nodes.

2. If B2(x,y) is an l2 ball of radius
1

2
∥x − y∥2 centered at

x + y

2
, then

conv {v,u1, . . . ,un} ⊆
n∪

j=1

B2(v,uj) (8)

(see Figure 1). Since each ball

B2(v(ti),uj(t)), t ≥ ti, j = 1, . . . , n (9)

can be monitored by node j with no communication with other nodes, Equation (8) allows to split
monitoring of conv {v(ti),u1(t), . . . ,un(t)}, t ≥ ti into n independent tasks executed by the n nodes
separately and without communication.



Algorithms 2012, 5 384

Figure 1. ball cover.
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While the inclusion Equation (8) holds when B2 is substituted by Bp with p ≥ 2 as we show later
(see Remark 4.3) the inclusion fails when, for example, p = 1 (for experimental results obtained with
different norms see Section 5).

In this paper we propose an alternative strategy that will be briefly explained next using Example 3.1,
f(x) = x2 − 9, and assignment provided by Equation (7). Let δ be a positive number. Consider two
intervals of radius δ centered at v1 = 2 and v2 = 6, i.e., we are interested in the intervals

[2 − δ, 2 + δ], and [6 − δ, 6 + δ]

If v1(t) ∈ [2 − δ, 2 + δ], v2(t) ∈ [6 − δ, 6 + δ], and δ is small, then the average
v1(t) + v2(t)

2
is not far

from
2 + 6

2
, and f

(
v1(t) + v2(t)

2

)
is not far from 7 (hence positive). In fact the sum of the intervals is

the interval [8 − 2δ, 8 + 2δ], and

4 − δ ≤ v1(t) + v2(t)

2
≤ 4 + δ

The “zero” points Zf of f are −3 and 3, and as soon as δ is large enough so that the interval
[4 − δ, 4 + δ] “hits” a point where f vanishes, communication between the nodes is required in order to
verify Equation (1). In this particular example as long as δ ≤ 1, and, therefore,

max{|v1(t) − v1|, |v2(t) − v2|} < δ (10)

no communication is required between the nodes.
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The condition presented above is a sufficient condition that guarantees Equation (1). As any sufficient
condition is, this condition can be conservative. In fact when the distance is provided by the l2 norm,
this sufficient condition is more conservative than the one provided by “ball monitoring” Equation (9)

suggested in [8]. On the other hand, since only a scalar δ should be communicated to each node, the
value of the updated mean v(ti) should not be transmitted (hence communication savings are possible),
and there is no need to compute the distance from the center of each ball B2(v(ti),uj(t)), j = 1, . . . , n,
t > ti to the zero set Zf . For detailed comparison of results we refer the reader to [10].

We conclude the section by remarking that when inequality Equation (1) is reversed the same
technique can be used to monitor the reversed inequality while minimizing communication between the
nodes. We provide additional details in Section 5. In the next section we extend the above “monitoring
with no communication” argument to the general vector setting. The approach suggested in the next
section is motivated by an earlier research on robust stability of control systems (see e.g., [13]).

4. Convex Minimization Problem

In this section we state the monitoring problem as a convex minimization problem. For an appropriate
analysis background we refer the interested reader to the classical monograph [14]. For the relevant
convex analysis material see [15].

Consider the following optimization problem:

Problem 4.1 For a function K : Rd+nd → R concave with respect to the first d variables λ1, . . . , λd

and convex with respect to the last nd variables x1, . . . , xnd, solve

inf
x

sup
λ

K(λ,x) (11)

A solution for Problem 4.1 with appropriately selected K(λ,x) concludes the section.
The connection between Problem 4.1, and the monitoring problem is explained next. Let B be a

d × nd matrix made of n blocks, where each block is the d × d identity matrix multiplied by
1

n
, so that

for a set of n vectors {v1, . . . ,vn} in Rd one has

Bw =
v1 + . . . + vn

n
where wT =

(
vT

1 , . . . ,vT
n

)
(12)

Assume that inequality Equation (1) holds for the vector w, i.e., f (Bw) > 0. We are looking for a
vector x “nearest” to w so that f (Bx) = 0, i.e., Bx = z for some z ∈ Zf (where Zf is the zero set
of f , i.e., Zf = {z : f(z) = 0}). We now fix z ∈ Zf and denote the distance from w to the set
{x : Bx = z} by r(z). Note that for each y inside the ball of radius r(z) centered at w, one has
By ̸= z. If y belongs to a ball of radius r = inf

z∈Zf

r(z) centered at w, then the inequality f (By) > 0

holds true.
Let F (x) be a “norm” on Rnd (specific functions F we run the numerical experiments with will be

described later). The nearest “bad” vector problem described above is the following.

Problem 4.2 For z ∈ Zf identify

r(z) = inf
x

F (x − w) subject to Bx = z (13)
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We note that Equation (13) is equivalent to inf
x

[
sup

λ

{
F (x − w) − λT (Bx − z)

}]
. The function

K(λ,x) = F (x − w) − λT (Bx − z)

is concave (actually linear) in λ, and convex in x. Hence (see e.g., [15])

inf
x

[
sup

λ

{
F (x − w) − λT (Bx − z)

}]
= sup

λ

[
inf
x

{
F (x − w) − λT (Bx − z)

}]
The right hand side of the above equality can be conveniently written as follows

sup
λ

[
inf
x

{
F (x − w) − λT (Bx − z)

}]
=

sup
λ

[
λT (z − Bw) − sup

x

{(
BT λ

)T
(x − w) − F (x − w)

}]

The conjugate g∗(y) of a function g(x) is defined by g∗(y) = sup
x

{
yTx − g(x)

}
(see e.g., [15]). We

note that
sup
x

{(
BT λ

)T
(x − w) − F (x − w)

}
= F ∗

(
BT λ

)
hence to compute

sup
λ

[
inf
x

{
F (x − w) − λT (Bx − z)

}]
one has to deal with

sup
λ

[
λT (z − Bw) − F ∗

(
BT λ

)]
For many functions g the conjugate g∗ can be easily computed. Next we list conjugate functions for the
most popular norms

1. ∥u∥∞ = max
i

|ui|

2. ∥u∥2 =

(
d∑

i=1

u2
i

) 1
2

3. ∥u∥1 =
d∑

i=1

|ui|

g(u) conjugate g∗(y)

∥u∥∞
+∞ if ∥y∥1 > 1

0 if ∥y∥1 ≤ 1

∥u∥2
+∞ if ∥y∥2 > 1

0 if ∥y∥2 ≤ 1

∥u∥1
+∞ if ∥y∥∞ > 1

0 if ∥y∥∞ ≤ 1

We note that some of the functions F we consider in this paper are different from lp norms (see Table 1
for the list of the functions). We first select F (x) = ∥x∥∞, and show below that in this case

r(z) = sup
λ

[
λT (z − Bw) − F ∗

(
BT λ

)]
= ||z − Bw||∞
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Note that with the choice F (x) = ∥x∥∞ the problem sup
λ

[
λT (z − Bw) − F ∗

(
BT λ

)]
becomes

sup
λ

λT (z − Bw) subject to
∣∣∣∣∣∣BT λ

∣∣∣∣∣∣
1
≤ 1

Since
∣∣∣∣∣∣BT λ

∣∣∣∣∣∣
1

= ||λ||1 the problem reduces to

sup
λ

λT (z − Bw) subject to ||λ||1 ≤ 1

The solution to this maximization problem is ||z − Bw||∞. Analogously, when

xT =
(
xT

1 , . . . ,xT
n

)
, yT =

(
yT

1 , . . . ,yT
n

)
∈ Rnd, and F (x) = max

i
{∥xi∥2}

one has F ∗(y) = sup
x

(
n∑

i=1

yT
i xi − max

i
{∥xi∥2}

)
Assuming max

i
{∥xi∥2} = 1 one has to look at

sup
{x : ∥xi∥2≤1}

n∑
i=1

yT
i xi − 1 =

n∑
i=1

∥yi∥2 − 1

Hence

F ∗(y) =



+∞ if
n∑

i=1

∥yi∥2 > 1

0 if
n∑

i=1

∥yi∥2 ≤ 1

and
∣∣∣∣∣∣BT λ

∣∣∣∣∣∣
2

=
1

n
n∥λ∥2 = ∥λ∥2. Finally the value for r(z) is given by ||z − Bw||2. When

F (x) = max
i

{∥xi∥1} one has r(z) = ||z − Bw||∞. For clarity sake we collect the above results in
Table 1.

Table 1. norm–ball radius correspondence for three different norms and fixed w ∈ Rnd.

F (x) r(z)

max
i

{∥xi∥1} ||z − Bw||1
max

i
{∥xi∥2} ||z − Bw||2

∥x∥∞ = max
i

{∥xi∥∞} ||z − Bw||∞

In the algorithm described below the norm is denoted just by ∥ · ∥ (numerical experiments presented
in Section 5 are conducted with all three norms). The monitoring algorithm we propose is the following.

Algorithm 4.1 Threshold monitoring algorithm.
1. Set i = 0.
2. Until end of stream.
3. Set vj = vj(ti), j = 1, . . . , n (i.e., remember “initial” values for the vectors).
4. Set δ = inf

z∈Zf

||z − Bw(ti)|| (for definition of w see Equation (12)).



Algorithms 2012, 5 388

5. Set i = i + 1.
6. If ∥vj − vj(ti)∥ < δ for each j = 1, . . . , n

go to step 5
else

go to step 3

In what follows, we assume that transmission of a double precision real number amounts to broadcasting
one message. The message computation is based on the assumption that all nodes are updated by a new
text simultaneously. When mean update is required, a coordinator (root) requests and receives messages
from the nodes.

We next count a number of messages that should be broadcast per one iteration if the local constraint
δ is violated at least at one node. We shall denote the set of all nodes by N, the set of nodes complying
with the constraint by NC , and the set of nodes violating the constraint by NV (so that N = NC

∪
NV ).

The cardinality of the sets is denoted by |N|,
∣∣∣NC

∣∣∣, and
∣∣∣NV

∣∣∣ respectively, so that |N| =
∣∣∣NC

∣∣∣ + ∣∣∣NV
∣∣∣.

Assuming
∣∣∣NV

∣∣∣ > 0 one has the following:

1.
∣∣∣NV

∣∣∣ nodes violators transmit their scalar ID and new coordinates to the root ((d + 1) ×
∣∣∣NV

∣∣∣
messages).

2. the root sends scalar requests for new coordinates to the complying NC nodes (
∣∣∣NC

∣∣∣ messages).

3. the
∣∣∣NC

∣∣∣ complying nodes transmit new coordinates to the root (d ×
∣∣∣NC

∣∣∣ messages).
4. root updates itself, computes new distance δ to the surface, and sends δ to each node (|N|

messages).

This leads to total of
(d + 2)|N| messages per mean update. (14)

We conclude the section with three remarks. The first one compares conservatism of Algorithm 4.1
and the one suggested in [8]. The second one again compares the ball cover suggested in [8] and
application of Algorithm 4.1 with l1 norm. The last one shows by an example that Equation (8) fails
when B2 is substituted by B1. Significance of this negative result becomes clear in Section 5.

Remark 4.1 Let v =
1

n

n∑
j=1

vj , and uj = v + [vj(ti) − vj]. If the Step 6 inequality holds for each

node, then each point of the ball centered at
v + uj

2
with radius

∣∣∣∣∣∣∣∣v − uj

2

∣∣∣∣∣∣∣∣
2

is contained in the l2 ball

of radius δ centered at v (see Figure 2). Hence the sufficient condition offered by Algorithm 4.1 is more
conservative than the one suggested in [8].



Algorithms 2012, 5 389

Figure 2. conservative cover by a single l2 ball.
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Algorithm 4.1 can be executed with a variety of different norms, and, as we show next, l2 might not
be the best one when communication between the nodes should be minimized.

Remark 4.2 Let n = d = 2,

f(x) = |x1 − 1| + |x2 − 1| = ∥x − e∥1

the distance is given by the l1 norm, and the aim is to monitor the inequality f(v) − 1 > 0. Let

v1(t0) =

 1

0

 , v2(t0) =

 −1

0



v1(t1) =

 1.9

0

 , v2(t1) =

 −1

0


We first consider the “ball cover” construction suggested in [8]. With this data v(t0) = 0 with

f(v(t0)) = 2, and v(t1) =

 0.45

0

 with f(v(t1)) = 1.55. At the same time u1(t1) = v(t0) +

[v1(t1) − v1(t0)] =

 0.9

0

. It is easy to see that the l2 ball of radius

∣∣∣∣∣
∣∣∣∣∣v(t0) − u1(t1)

2

∣∣∣∣∣
∣∣∣∣∣
2

centered at

v(t0) + u1(t1)

2
intersects the l1 ball of radius 1 centered at

 1

1

 (see Figure 3). Hence the algorithm

suggested in [8] requires nodes to communicate at time t1.
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On the other hand the l1 distance from v(t0) to the set {x : ∥x − e∥1 = 1} is 1, and since

∥v1(t1) − v1(t0)∥1 < 1, and ∥v2(t1) − v2(t0)∥1 < 1

Algorithm 4.1 requires no communication between nodes at time t1. In this particular case the sufficient
condition offered by Algorithm 4.1 is less conservative than the one suggested in [8].

Figure 3. l2 ball cover requires communication.
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Remark 4.3 It is easy to see that inclusion Equation (8) fails when B1(x,y) is an l1 ball of radius
1

2
∥x − y∥1 centered at

x + y

2
. Indeed, when, for example,

v =

 0

0.5

 , u1 =

 −1

0

 , u2 =

 1

0


(see Figure 4) one has

conv {v,u1,u2} ̸⊂ B1(v,u1) ∪ B1(v,u2)

In the next section we apply Algorithm 4.1 to a real life data and report number of required
mean computations.
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Figure 4. failed cover by l1 balls.
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5. Experimental Results

We apply Algorithm 4.1 to data streams generated from the Reuters Corpus RCV1–V2. The data is
available from [16] and consists of 781, 265 tokenized documents with DID (document ID) ranging from
2651 to 810596.

The methodology described below attempts to follow that presented in [8]. We simulate n streams by
arranging the feature vectors in ascending order with respect to DID, and selecting feature vectors for
the stream in the round robin fashion.

In the Reuters Corpus RCV1–V2 each document is labeled as belonging to one or more categories.
We label a vector as “relevant” if it belongs to the “CORPORATE/INDUSTRIAL” (“CCAT”) category,
and “spam” otherwise. Following [9] we focus on three features: “bosnia”, “ipo”, and “febru”. Each
experiment was performed with 10 nodes, where each node holds a sliding window containing the last
6700 documents it received.

First we use 67, 000 documents to generate initial sliding windows. The remaining 714, 265

documents are used to generate data streams, hence the selected feature information gain is computed
714, 265 times. Based on all the documents contained in the sliding window at each one of the 714, 266

time instances, we compute and graph 714, 266 information gain values for the feature “bosnia” (see
Figure 5).

For the experiments described below the threshold value r is predefined, and the goal is to monitor
the inequality f(v)−r > 0 while minimizing communication between the nodes. From now on we shall
assume simultaneous arrival of a new text at each node.
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Figure 5. information gain values for the feature “bosnia”.
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As new texts arrive, the local constraint (i.e., inequalities ∥vj − vj(ti)∥ < δ, j = 1, . . . , n) at each
node is verified. If at least one node violates the local constraint, the average v(ti) is updated. Our
numerical experiment with the feature “bosnia”, the l2 norm, and the threshold r = 0.0025 (reported in
[8] as the threshold for feature “bosnia” incurring the highest communication cost) shows overall 4006

computation of the mean vector. An application of Equation (14) yields 240, 360 messages. We repeat
this experiment with l∞, and l1 norms. The results obtained and collected in Table 2 show that the
smallest number of the mean updates is required for the l1 norm.

Table 2. number of mean computations, messages, and crossings per norm for feature
“bosnia” with threshold r = 0.0025.

Distance Mean Comps Messages LL LG GL GG

l2 4006 240,360 959 2 2 3043
l∞ 3801 228,060 913 2 2 2884
l1 3053 183,180 805 2 2 2244

Throughout the iterations the mean v(ti) goes through a sequence of updates, and the values f(v(ti))

may be larger than, equal to, or less than the threshold r. We monitor the case f(v) ≤ r the same way
as that of f(v) > r. In addition to the number of mean computations, we collect statistics concerning
“crossings” (or lack of thereof), i.e., number of instances when the location of the mean v and its update
v′ relative to the surface

{
x : x ∈ Rd, f(x) = r

}
are either identical or different. Specifically over the

monitoring period we denote by:
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1. “LL” the number of instances when f(v) < r and f(v′) < r,
2. “LG” the number of instances when f(v) < r and f(v′) > r,
3. “GL” the number of instances when f(v) > r and f(v′) < r,
4. “GG” the number of instances when f(v) > r and f(v′) > r.

The number of “crossings” is reported in the last four columns of Table 2.
Note that variation of vectors vi(t) does not have to be uniform. Taking on account distribution of

signals at each node may lead to additional communication savings. We illustrate this statement by a
simple example involving just two nodes. If, for example, there is a reason to believe that

2∥v1 − v1(ti)∥ ≤ ∥v2 − v2(ti)∥ (15)

then the number of node violations may be reduced by imposing node dependent constraints

∥v1 − v1(ti)∥ < δ1 =
2

3
δ, and ∥v2 − v2(ti)∥ < δ2 =

4

3
δ

so that the faster varying signal at the second node enjoys larger “freedom” of change, while
the inequality ∣∣∣∣∣

∣∣∣∣∣v1 + v2

2
− v1(ti) + v2(ti)

2

∣∣∣∣∣
∣∣∣∣∣ < δ1 + δ2

2
= δ

holds true. Assignments of “weighted” local constraints requires information provided by Equation (15).
With no additional assumptions about signal distribution, this information is not available. Unlike [11]
we refrain from making assumptions regarding possible underlying data distributions, instead we
estimate the weights as follows:

1. Start with the initial set of weights

w1 = . . . = wn = 1 (so that
n∑

j=1

wj = n) (16)

2. As texts arrive at the next time instance ti+1 each node computes

Wj(ti+1) = Wj(ti) + ∥vj(ti+1) − vj(ti)∥, with Wj(t0) = 1, j = 1, . . . , n

If at time ti a local constraint is violated, then, in addition to (d + 2)|N| messages (see

Equation (14)), each node j broadcasts Wj(ti) to the root, the root computes W =
n∑

j=1

Wj(ti),

and transmits the updated weights

wj = n × Wj(ti)

W
(so that

n∑
j=1

wj = n)

back to node j.

Broadcasts of weights cause increase of total number of messages per iteration to

(d + 4)|N| (17)
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With inequalities in Step 6 of Algorithm 4.1 substituted by ∥vj − vj(ti)∥ < δj = wjδ the number of
mean computations is reported in Table 3.

It is of interest to compare results presented in Table 3 with those reported, for example, in [9]. The
comparison, however, is not an easy task. While [9] reports the threshold r = 0.0025 as the threshold
value that incurred the highest communication cost, the paper leaves the concept of “communication
cost” undefined (we define transmission of a double precision real number as a single “message”). In
addition [9] provides a graph of “Messages vs. Threshold” only. It appears that the maximal value of
“bosnia Messages vs. Threshold” graph is somewhere between 100, 000 and 200, 000.

Table 3. number of mean computations, messages, and crossings per norm for feature
“bosnia” with threshold r = 0.0025, and stream dependent local constraint δj .

Distance Mean Comps Messages LL LG GL GG

l2 2388 191,040 726 2 2 1658
l∞ 2217 177,360 658 2 2 1555
l1 1846 147,680 611 2 2 1231

We repeat the experiments with “ipo” and “febru” and report the results in Tables 4 and 5 respectively.
The results obtained with stream dependent local constraints is a significant improvement over those
presented in [10]. Consistent with the results in [10] l1 norm comes up as the norm that requires smallest
number of mean updates in all reported experiments.

Table 4. number of mean computations, messages, and crossings per norm for feature
“febru” with threshold r = 0.0025, and stream dependent local constraint δj .

Distance Mean Comps Messages

l2 1491 119,280
l∞ 1388 111,040
l1 1304 104,320

Table 5. number of mean computations, messages, and crossings per norm for feature “ipo”
with threshold r = 0.0025, and stream dependent local constraint δj .

Distance Mean Comps Messages

l2 7656 612,480
l∞ 7377 590,160
l1 6309 504,720

6. Future Research Directions

In what follows we briefly outline a number of immediate research directions we plan to pursue.
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The local constraints introduced in this paper depend on history of a data stream at each node, and
variations ∥vj(ti+1)−vj(ti)∥ over time contribute uniformly to local constraints. Attaching more weight
to recent changes than to older ones may contribute to further improvement of monitoring process.

Table 6 (borrowed from [10]) shows that in about 75% of instances (3034 out of 4006) the mean v(t)

is updated because of a single node violation. This observation naturally leads to the idea of clustering
nodes, and independent monitoring of the node clusters equipped with a coordinator. The monitoring
will become a two step procedure. At the first step node violations are checked in each node separately.
If a node violates its local constraint, the corresponding cluster computes updated cluster coordinator. At
the second step, violations of local constraints by coordinators are checked, and if at least one violation
is detected the root is updated. Table 6 indicates that in most of the instances only one coordinator will be
effected, and, since communication within cluster requires less messages, the two step procedure briefly
described above has a potential to bring additional savings.

Table 6. number of nodes simultaneously violating local constraints. for feature “bosnia”
with threshold r = 0.0025, and l2 norm

nodes violations

1 3034
2 620
3 162
4 70
5 38
6 26
7 34
8 17
9 5
10 0

We note that a standard clustering problem is often described as “. . . finding and describing cohesive
or homogeneous chunks in data, the clusters” (see e.g., [17]). The monitoring data streams problem

requires to assign to the same cluster i nodes Ni so that the total change within cluster

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

v∈Ni

v − v(tj)

∣∣∣∣∣∣
∣∣∣∣∣∣

is minimized, i.e., nodes with different variations v − v(tj) that cancel out each other as much as
possible should be assigned to the same cluster. Hence, unlike classical clustering procedures, one needs
to combine “dissimilar” nodes together. This is a challenging new type of a difficult clustering problem.

Realistically, verification of inequality f(x) − r > 0 should be conducted with an error margin (i.e.,
the inequality f(x) − r − ϵ > 0 should be investigated, see [9]). A possible effect of an error margin on
the required communication load is another direction of future research.
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7. Conclusions

Monitoring streams over distributed systems is an important and challenging problem with a wide
range of applications. In this paper we build on the approach for monitoring an arbitrary threshold
functions suggested in [10], and introduce stream dependent local constraints that serve as a feedback
monitoring mechanism. The obtained preliminary results indicate substantial improvement over those
reported in [10], and demonstrate that monitoring with l1 norm requires fewer updates than that with l∞

or l2 norm.
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