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Abstract: We present evidence that one can calculate generically combinatorially 

expensive L
p
 and l

p
 averages, 0 < p < 1, in polynomial time by restricting the data to come 

from a wide class of statistical distributions. Our approach differs from the approaches in 

the previous literature, which are based on a priori sparsity requirements or on accepting a 

local minimum as a replacement for a global minimum. The functionals by which L
p
 

averages are calculated are not convex but are radially monotonic and the functionals by 

which l
p
 averages are calculated are nearly so, which are the keys to solvability in 

polynomial time. Analytical results for symmetric, radially monotonic univariate 

distributions are presented. An algorithm for univariate l
p
 averaging is presented. 

Computational results for a Gaussian distribution, a class of symmetric heavy-tailed 

distributions and a class of asymmetric heavy-tailed distributions are presented. Many 

phenomena in human-based areas are increasingly known to be represented by data that 

have large numbers of outliers and belong to very heavy-tailed distributions. When tails of 

distributions are so heavy that even medians (L
1
 and l

1
 averages) do not exist, one needs to 

consider using l
p
 minimization principles with 0 < p < 1. 

Keywords: average; heavy-tailed distribution; L
p
 average; l

p
 average; median; mode; 

polynomial time; radial monotonicity; statistical structure; univariate 
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1. Introduction 

Minimization principles based on the l
1
 and L

1
 norms have recently rapidly become more common 

due to discovery of their important roles in sparse representation in signal and image processing [1,2], 

compressive sensing [3,4], shape-preserving geometric modeling [5,6] and robust principal component 

analysis [7–9]. In compressive sensing and sparse representation, it is known that, under proper 

sparsity conditions (for example, the restricted isometry property [3,4]), l
1
 solutions are equivalent to 

―l
0
 solutions‖, that is, the sparsest solutions, an important result because it allows one to find the 

solution of a combinatorially expensive l
0
 maximum-sparsity minimization problem by a  

polynomial-time linear programming procedure for minimizing l
1
 functionals. When the data follow 

heavy-tailed statistical distributions and the tails of the distributions are ―not too heavy,‖ various  

l
1
 minimization principles, in the form of calculation of medians and quantiles, are primary choices 

that are efficient and robust against the many outliers [10–12]. Such distributions correspond to the 

uncertainty in many human-based phenomena and activities, including the Internet [13,14],  

finance [15,16] and other human and physical phenomena [16]. l
1
 minimization principles are 

applicable also to data from light-tailed distributions such as the Gaussian, but, for such distributions, 

are less efficient than classical procedures (calculation of standard averages and variances). 

When tails of the distributions are so heavy that even l
1
 minimization principles do not exist, one 

needs to consider using l
p
 minimization principles with 0 < p < 1, a topic on which investigation has 

recently started [2,3,17–20]. l
p
 minimization principles, 0 < p < 1, are of interest because they produce 

solutions that are in general sparser, that is, closer to l
0
 solutions, than l

1
 minimization principles [20]. 

However, when 0 < p < 1, solving l
p
 minimization principles is generically combinatorially expensive 

(NP-hard) [18], because l
p
 minimization principles can have arbitrarily large numbers of local minima. 

(―Generically‖ means ―in the absence of additional information.‖) Investigations about  

polynomial-time l
p
 minimization, 0 < p < 1, have focused on (1) obtaining local rather than global 

solutions [2,18,20] and (2) achieving a global minimum by restricting the class of problems to those 

with sufficient sparsity [3,17,19] (the approach used in compressive sensing). However, local solutions 

often differ strongly from global solutions and sparsity restrictions are often not applicable. The fact 

that the l
0
 solution is, relative to other potential solutions, the sparsest solution does not imply that this 

solution is sparse to any specific degree. The sparsest solution may not be sparse in any absolute sense 

at all; it is just sparser than any other solution. 

The approach that we will investigate in the present paper shares with compressive sensing the 

strategy of restricting the nature of the problem to achieve polynomial-time performance. However, we 

do so not by requiring sparsity to some a priori set level but rather by restricting the data to come from 

a wide class of statistical distributions, an approach not previously considered in the literature. This 

restriction turns out to be mild, often verifiable and often realistic since the problem as posed is often 

meaningful only when the data come from a statistical distribution. The approach in this paper differs 

from the approaches in the previous literature on l
p
 minimization principles also in a second way, 

namely, in that it starts the investigation of l
p
 minimization principles from consideration of their 

continuum analogues, L
p
 minimization principles. 

The classes of L
p
 and l

p
 minimization principles that we will investigate in this paper are those that 

represent univariate continuum L
p
 averaging and discrete l

p
 averaging, defined as follows. Univariate 
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L
p
 and l

p
 averages are the real numbers a at which the following functionals A and B achieve their 

respective global minima: 

                    d 
 

  
      (1) 

where ψ is a probability density function (pdf) that satisfies the conditions given below, and 

                     (2) 

where the xi are data points from the distribution with pdf ψ. The pdf ψ is assumed to have measurable 

second derivative and to satisfy the following two conditions: 

  radially strictly monotonically decreasing outwards from the mode        (3a) 

  ψ and dψ/dx bounded by c|x|
–β

 and c|x|
–β–1

, respectively, for given c and β > p + 1 as            (3b) 

Without loss of generality, we assume that the mode, that is, the x at which ψ achieves its 

maximum, is at the origin. 

In a departure from the traditional use of x as the independent variable of a univariate pdf, we will 

express univariate pdfs in radial form with r being the radius measured outward from the mode of the 

distribution. (This notation is chosen to allow natural generalization to higher dimensions in the 

future.) With the notation g(r) = ψ(–r) and f(r) = ψ(r), r ≥ 0, functional A can be rewritten in the form 

                        
 

 
                

 

 
   (4) 

Since functional (4) is finite only when 

             (5) 

the mean (L
2
 average) does not exist for distributions with β ≤ 3 and even the median (L

1
 average) does 

not exist for distributions with β ≤ 2. For example, the median does not exist for the Student t 

distribution with one degree of freedom because β = 2 for this distribution. To create meaningful 

―averages‖ in these cases, weighted and trimmed sample means have been proposed with success [21]. 

However, weighted and trimmed sample means require a priori knowledge of the specific distribution 

and/or of various parameters, knowledge that is often not available. Minimization of the L
p
 

functional (4) or of the l
p
 functional (2) is, when 0 < p < min{1, β−1}, an alternative for creating an 

―average‖ for a heavy-tailed distribution or of a sample thereof. 

In the present paper, we will investigate whether, by providing only the information that the data 

come from a ―standard‖ statistical distribution that satisfies Conditions (3), the L
p
 and l

p
 averaging 

functionals A and B can be minimized in a way that leads to polynomial-time minimization of general 

L
p
 and l

p
 functionals. Specifically, in the next two sections, we will investigate to what extent the L

p
 

and l
p
 averaging functionals are devoid of local minima other than the global minimum, a key feature 

in this process. For illustration of the theoretical results, we will present computational results for the 

following three types of distributions: 

Distribution 1: Gaussian (light-tailed distribution) distribution with probability density function 
 

          
 

   
    

   

 
       (6) 

 

Distribution 2: Symmetric heavy-tailed distribution with probability density function 
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               (7a) 

          
 

 
                (7b) 

where 

     
 

   
 

 

 
        (7c) 

(For Distribution 2, the β of condition (3b) is α.) 

Distribution 3: Asymmetric heavy-tailed distribution with probability density function 

     
 

 
    

 

 
  

 

 
         

 

 
    

 

 
   

 

 
       

   

 
            (8a) 

     
 

 
           

 

 
                      (8b) 

(right tail heavier than left tail), where 

  
  

  
 

  

 
 

 

   
       (8c) 

(For Distribution 3, the β of condition (3b) is (1 + α)/2.) 

In Distributions 2 and 3, α is a real number > 1. Gaussian Distribution 1 is used to show that the 

results discussed here are applicable not only to heavy-tailed distributions but also to light-tailed 

distributions. These results are applicable a fortiori to compact distributions with no tails at all (tails 

uniformly 0). (Analysis and computations were carried out with the uniform distribution and with a 

pyramidal distribution, two distributions with no tails, but these results will not be discussed here.) 

While L
p
 and l

p
 averages can be calculated for light-tailed and no-tailed distributions, there are more 

meaningful and more efficient ways, for example, arithmetic averaging, to calculate central points of 

light-tailed and no-tailed distributions. L
p
 and l

p
 averages are most meaningful for  

heavy-tailed distributions. 

2. L
p
 Averaging 

We present in Figures 1–3 the functionals A(a) for Distributions 1–3, respectively, for various p. 

These functionals A(a) have one global minimum at or near r = 0, no additional minima, are convex in 

a neighborhood of the global minimum and are concave outside of this neighborhood. The fact that the 

A(a) are not globally convex is not important. Each A(a) is radially monotonically increasing outward 

from its minimum, which is sufficient to guarantee that there is only one global minimum and that 

there are no other local minima. On every finite closed interval in Figures 1–3 that does not include the 

global minimum, the derivative dA/da is bounded away from 0. Hence, in all these cases, standard 

line-search methods converge to the global minimum in polynomial time. The structure of A(a) seen in 

Figures 1–3 is due to the fact that A(a) is based on a probability density function with strictly 

monotonically decreasing density in the radial directions outward from the mode. This structure does 

not generically occur for density functions f(r) and g(r) representing, for example, irregular scattered 

clusters. However, averaging in general and L
p
 averaging in particular make little sense when the data 

are clustered irregularly. The computational results presented in Figures 1–3 suggest the hypothesis 
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that, under ―normal‖ statistical conditions on the data, L
p
 averaging is well posed and computationally 

tractable. In the remainder of this section, we will investigate portions of this hypothesis. 

Figures 1. L
p
 averaging functional A(a) for Gaussian Distribution 1. 

(a) A(a) with p = 0.5. 

 

(b) A(a) with p = 0.02. 

 

Figures 2. L
p
 averaging functional A(a) for symmetric heavy-tailed Distribution 2 with α = 2. 

(a) A(a) with p = 0.5. 

 

(b) A(a) with p = 0.02. 

 

Figures 3. L
p
 averaging functional A(a) for asymmetric heavy-tailed Distribution 3 with α = 2. 

(a) A(a) with p = 0.1. 

 
 

(b) A(a) with p = 0.02. 
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The structure of the L
p
 averaging functional A(a) seen in Figures 1–3 and described in the previous 

paragraph occurs for all symmetric distributions, a situation that can be shown as follows. For 

symmetric distributions (that is, those for which g(r) = f(r)), the L
p
 averaging functional A(a) can be 

written as 

                                  
 

 
     (9) 

A(a) is symmetric around a = 0, so we need consider only the behavior of A(a) for a ≥ 0. For a ≥ 0, 

  

  
                             

  

  
        

 

 
    (10) 

and 

   

   
                                    

  

  
        

 

 

 

  

                               
  

  
         

 

 
    (11) 

One computes expressions (10) and (11) by differentiating the right sides of expressions (9) and 

(10), respectively, with respect to a. One expresses the integral to be differentiated as the sum of an 

integral on (0,a) and an integral on (a,∞) and differentiates these two integrals separately. To simplify 

dA/da to the form given in (10), one integrates by parts and combines the two resulting integrals. From 

these expressions, one obtains first that dA/da(0) = 0 and d
2
A/da

2
(0) > 0, that is, there is a local 

minimum at a = 0 and second that, for all a > 0, dA/da(a) > 0, that is, A is strictly monotonically 

increasing for a > 0. Thus, for symmetric pdfs, A(a) has its global minimum at a = 0, that is, the L
p
 

average exists and is equal to the mode of the distribution. There are no places where dA/da = 0 other 

than at a = 0 and, on every finite closed interval that does not include the mode 0, dA/da is bounded 

away from 0. Standard line-search methods for calculating the minimum of this A(a) are thus  

globally convergent. 

A general analytical structure for asymmetric distributions analogous to that described above for 

symmetric distributions is not yet available because, for asymmetric distributions, the properties of 

A(a) depend on additional properties of the probability density functions f(r) and g(r) that have not yet 

been clarified. Most of the previous statistical research about two-tailed distributions that extend 

infinitely in each direction has been focused on symmetric distributions and it is the symmetric case on 

which we will focus in the remainder of this paper. 

3. l
p
 Averaging 

It is meaningful to calculate an l
p
 average of a discrete set of data, that is, the point at which B(a) 

achieves its global minimum, only for data from a distribution that satisfies Conditions (3) and for 

which the L
p
 average exists, that is, for which 0 < p < β − 1. We propose the following algorithm. 

Algorithm 1: Algorithm for l
p
 Averaging 

STEP 1. Sort the data xi, i = 1, 2, . . . , I, from smallest to largest. (To avoid proliferation of 

notation, use the same notation xi, i = 1, 2, . . . , I, for the data after sorting as before.) 
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STEP 2. Choose an integer q that represents the number of neighbors of a given point in the sorted 

data set in each direction (lower and higher index) that will be included in a local set of indices 

to be used in the ―window‖ in Step 4. (The ―window size‖ is thus 2q + 1) 

STEP 3. Choose a point xj from which to start. (The median of the data, that is, the l
1
 average, is 

generally a good choice for the initial xj.) 

STEP 4. For each k, j − q ≤ k ≤ j + q, calculate B(xk). 

STEP 5. If the xk that yields the minimum of the B(xk) calculated in Step 4 is xj, stop. In this case, 

xj is the computed l
p
 average of the data. Otherwise, let xk be a new xj and return to Step 4. 

STEP 6. If convergence has not occurred within a predetermined number of iterations, stop and 

return an error message. 

Remark 1. Algorithm 1 considers the values of B(a) only at the data points xi and not between data 

points. For a strictly between two consecutive data points xi and xi+1, B(a) is concave and is above the 

line connecting (xi,B(xi)) and (xi+1,B(xi+1)), so a minimum cannot occur there. It is sufficient, therefore, 

to consider only the values of B at the points xi when searching for a minimum. A graph of the points 

(xi,B(xi)), i = 1, 2, . . . , I, approximates the graph of the continuum L
p
 functional A(a), which, for 

symmetric distributions, has only one local minimum, namely, its global minimum. The graph of the 

points (xi,B(xi)) may have some relatively shallow local minima produced by the irregular spacing of 

the xi (cf. Figures 4 below) and/or the asymmetry of the distribution. The window structure of 

Algorithm 1 is designed to allow the algorithm to ―jump over‖ these local minima on its way to the 

global minimum. 

Remark 2. The cost of Algorithm 1 is polynomial, namely, the cost O(I log I) of the sorting 

operation of Step 1 plus the cost of the iterations of Step 4, namely, O(I
2
) (= the number of iterations, 

which cannot exceed O(I), times the cost O(I) of calculating each iteration). Analogous algorithms for 

higher-dimensional averages are expected to retain this polynomial-time nature. 

In computational experiments, we used samples of size I = 2000 from the symmetric heavy-tailed 

Distribution 2 with various α, 1 < α ≤ 3, and window sizes 2q + 1 = 7, 9, 11, . . . , 25. For comparison 

with Figures 2, we present in Figures 4 the graphs of the points (xi, B(xi)) for the sample from 

Distribution 2 with α = 2 and p = 0.5 and 0.02. The starting point for Step 3 of the Algorithm 1 was 

chosen to be xI−2q, a point near the end of the right tail (beyond the limited domains shown in  

Figures 4). As mentioned in Step 3 of Algorithm 1, the median of the data is a much better choice for a 

starting point. However, choosing a point near the right tail makes the iterations of Algorithm 1 

traverse a large distance before converging to an approximation of the l
p
 average and thus provides an 

excellent test for the robustness of Algorithm 1. Computational results for p = 0.5, 0.1 and 0.02 and for 

window sizes 2q + 1 = 7, 13, 19 and 25 are presented in Tables 1–4. For reference, we note that the 

continuum L
p
 averages of Distribution 2, when they exist, that is, when p < α − 1, are all 0. Thus, the 

errors of the l
p
 averages in Tables 1–4 are the same as the l

p
 averages themselves. 

The entries in Tables 1–4 indicate that, for all cases with p < α − 1, the l
p
 average computed by 

Algorithm 1 is an excellent approximant of the L
p
 average 0 given the large number of outliers and the 

huge spread of the data in Distribution 2. (For α = 3 and α = 1.02, the ranges of the data are  

[−16.0, 22.6] and [−6.44 × 10
154

, 5.02 × 10
169

], respectively. For α = 2, 1, 1.5, 1.1, 1.05, 1.04 and 1.03, 

the ranges are between these two ranges.) The entries for p = 0.5 with α = 1.5 and for p = 0.1 with  
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α = 1.1, 1.05, 1.04 and 1.03 in Tables 1 and 2 indicate that, in a few cases when p is equal to or only 

slightly greater than α − 1, the l
p
 average yielded by Algorithm 1 can still be a good approximant of the 

center of the distribution in spite of the fact that the l
p
 average is theoretically meaningful only when p 

< α − 1. The entries for p = 0.5 with α = 1.1, 1.05, 1.04, 1.03 and 1.02 and for p = 0.1 with α = 1.02 

indicate that, in accordance with expectations, when p is significantly greater than α − 1, the l
p
 average 

produced by Algorithm 1 is not a meaningful approximant of the center of the distribution. Since larger 

window size is of assistance when attempting to ―jump over‖ local minima, it is expected that l
p
 

averages should converge to the L
p
 average 0 as the window size 2q + 1 increases (and as the sample 

size increases). The results in Tables 1–4 confirm that, for the samples used in these calculations, 

increasing the window size does indeed increase the accuracy of the l
p
 averages as approximations of 

the L
p
 average 0. In addition, the results in Tables 3 and 4 for p < α − 1 show that, for the samples used 

in these calculations, there is an optimal q, namely, q = 19 that produces l
p
 averages that are just as 

good as the l
p
 averages produced by the larger q = 25 but (due to smaller window size) requires less 

computational effort. 

Figures 4. Points (xi, B(xi)) for 2000-point sample from symmetric heavy-tailed 

Distribution 2 with α = 2. 

(a) Points (xi, B(xi)) for p = 0.5. 

 

(b) Points (xi, B(xi)) for p = 0.02. 
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Algorithm 1 is applicable to heavy-tailed distributions in general but the rule for choosing q will 

certainly be dependent on the specific class of distributions under consideration. While this rule is not  

yet known precisely, we can provide here a description of the principles that will likely be the 

foundations for the rule. The choice of q is related to how wide the local minima in the discrete 

functional B are. The local minima of B occur at places where there are clusters of data points (due to 

expected statistical variation in the sample). Understanding the relationships between (1) the clustering 

properties of samples from the given class of distributions, (2) the widths of the local minima as 

functions of the clustering and (3) the p-dependent analytical properties of functional B will likely 

yield the rule for choosing q. 

Table 1. Sample l
p
 averages calculated by Algorithm 1 with window size 2q + 1 = 7 for 

2000-point data set from Distribution 2. 

α 
      p

  0.5 0.1 0.02 

3 0.028 0.560 0.701 

2 0.038 0.779 0.779 

1.5 0.057 0.575 0.575 

1.1 7.58 0.244 0.244 

1.05 1.49 × 1030 0.281 0.476 

1.04 1.14 × 1045 0.349 0.598 

1.03 2.83 × 1074 0.466 0.466 

1.02 1.52 × 10119 1.38 × 1016 0.516 

Table 2. Sample l
p
 averages calculated by Algorithm 1 with window size 2q + 1 = 13 for 

2000-point data set from Distribution 2. 

α     
p
  0.5 0.1 0.02 

3 0.021 0.094 0.531 

2 0.027 0.126 0.126 

1.5 0.041 0.189 0.189 

1.1 3.76 0.108 0.108 

1.05 2.56 × 1029 0.207 0.207 

1.04 1.14 × 1045 0.257 0.257 

1.03 2.83 × 1074 0.341 0.341 

1.02 1.52 × 10119 3.24 × 1014 0.516 

Table 3. Sample l
p
 averages calculated by Algorithm 1 with window size 2q + 1 = 19 for 

2000-point data set from Distribution 2. 

α 
      p

  0.5 0.1 0.02 

3 0.021 0.015 0.015 

2 0.021 0.020 0.020 

1.5 0.031 0.029 0.029 

1.1 0.902 0.108 0.108 

1.05 2.56 × 1029 0.207 0.207 

1.04 1.14 × 1045 0.257 0.257 

1.03 2.83 × 1074 0.341 0.341 

1.02 1.52 × 10119 1.78 × 107 0.516 



Algorithms 2012, 5              

 

 

430 

Table 4. Sample l
p
 averages calculated by Algorithm 1 with window size 2q + 1 = 25 for 

2000-point data set from Distribution 2. 

α      p  0.5 0.1 0.02 

3 0.021 0.015 0.015 

2 0.021 0.020 0.020 

1.5 0.031 0.029 0.029 

1.1 0.498 0.108 0.108 

1.05 2.56 × 1029 0. 207 0.207 

1.04 1.14 × 1045 0.257 0.257 

1.03 2.83 × 1074 0.341 0.341 

1.02 1.52 × 10119 2.37 × 106 0.516 

4. Conclusions 

The wide-spread impression that minimization of L
p
 and l

p
 functionals, 0 < p < 1, is combinatorially 

expensive is valid for general situations in which no structure of the data is known. However, the 

results in this paper suggest that, when the data come from an appropriate statistical distribution, L
p
 

and l
p
 averages can be calculated in polynomial time. The approach of the paper is applicable without 

precise knowledge of the parameters of the distribution. One does not need precise knowledge of the 

parameters but rather only generalizations of Conditions (3), an upper bound on the exponent −β of the 

tail density and additional conditions for asymmetric distributions and for setting up a rule for 

choosing q in Algorithm 1. 

Topics for future research include 

 Quantitative rules for using information about the underlying continuum distribution to choose 

the q of Algorithm 1 based on a user’s preferred tradeoff between maximum accuracy and 

minimum computational burden 

 Investigation of the advantages and disadvantages of introducing smoothing in the B(xk) 

calculated in Step 4 of Algorithm 1 to increase the robustness against shallow local minima; 

connection of the smoothing with properties of the underlying distributions 

 Description of the class(es) of symmetric and asymmetric univariate and multivariate 

distributions for which radially strictly monotonic L
p
 averaging functionals and radially nearly 

strictly monotonic l
p
 averaging functionals can be created and thus for which L

p
 and l

p
 averages 

can be calculated in polynomial time 

 Investigation of convergence of the l
p
 average to the L

p
 average and of related issues of 

efficiency, optimality, breakdown point, influence function, etc. 

 Investigation of the conditions under which L
p
 and l

p
 averages converge to the mode as p → 0  

 Treatment of more general univariate and multivariate l
p
 minimization problems including but 

not limited to l
p
 regression and matrix-constrained l

p
 minimization, for example, minimization 

of 

     
                  

        (12) 

(cf. [17,18]) (The l
p
 averaging process considered in the present paper can be expressed in 

format (12).) 
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Many phenomena in human-based areas (sociology, cognitive science, psychology, economics, 

human networks, social media, etc.) are increasingly known to be represented by data that have large 

numbers of outliers and belong to very heavy-tailed distributions, which suggests that L
p
 and l

p
 

averaging, L
p
 and l

p
 regression and more general L

p
 and l

p
 minimization tasks, 0 < p < 1, will be 

important in practice. The results of the present paper provide the first indication that one may be able 

to solve, in polynomial time, generically combinatorially expensive L
p
 and l

p
 minimization problems 

for these phenomena by requiring only ―natural‖ statistical structure without having to impose 

restrictions such as sparsity and without having to accept suboptimal local solutions instead of optimal 

global solutions. 
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