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Abstract: In this paper we present the PHOCS-2 algorithm, which extracts a “Predicted
Hierarchy Of ClassifierS”. The extracted hierarchy helps us to enhance performance of
flat classification. Nodes in the hierarchy contain classifiers. Each intermediate node
corresponds to a set of classes and each leaf node corresponds to a single class. In the
PHOCS-2 we make estimation for each node and achieve more precise computation of false
positives, true positives and false negatives. Stopping criteria are based on the results of the
flat classification. The proposed algorithm is validated against nine datasets.
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1. Introduction

The notion of classification is very general. It can be used in many applications, for example, text
mining, multimedia processing, medical or biological sciences, etc. The goal of text classification is to
assign an electronic document to one or more categories based on its contents.

The traditional single-label classification is concerned with a set of documents associated with a
single label (class) from a set of disjoint labels. For multi-label classification, the problem arises as each
document can have more than one label [1,2].

In some classification problems, labels are associated with a hierarchical structure, in which case the
task belongs to hierarchical classification. If each document may correspond to more than one node of
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the hierarchy, then we deal with multi-label hierarchical classification. In this case, we can use both
hierarchical and flat classification algorithms. In hierarchical classification, a hierarchy of classifiers
can be built using a hierarchy of labels. If labels do not have a hierarchical structure, we can extract a
hierarchy of labels from a dataset. It can help us to enhance classification performance.

However, there are some general issues in the area of hierarchical classification:

• In some cases classification performance cannot be enhanced using a hierarchy of labels. Some
authors [3] showed that flat classification outperforms a hierarchical one in case of a large number
of labels. So one should always compare a hierarchy with the flat case as a base line at each step
of the hierarchy extraction.
• A hierarchy is built using some assumptions and estimations. One needs to make more accurate

estimations in order not to let performance decrease due to rough computations. In hierarchical
classification, a small mistake made by the top level of classifiers greatly affects the performance
of the whole classification.
• Algorithms of extracting hierarchies require some external parameters. One needs to reach balance

between the number of parameters and the effectiveness of an algorithm. Eventually, a smaller
number of parameters leads to more simple usage.

In the previous work [4] we proposed and benchmarked the PHOCS algorithm that extracts a
hierarchy of labels, and we showed that hierarchical classification could be better than a flat one. The
main contribution of this work is enhancing the PHOCS algorithm.

We pursue the goal to increase performance of hierarchical classification using hierarchies built by
the PHOCS algorithm. We want to reach this goal by solving the problems listed above. We make
the estimation function more precise. We make estimation of false positives, true positives and false
negatives and then calculate relative measures. We change stopping criteria as well. In the first version
of the PHOCS, we used an external parameter that made the depth of our predicted hierarchy no more
than five. We removed this parameter, and as stopping criteria, we now use a comparison of our estimated
performance with the flat classification results.

2. State of the Art

In text classification, most of the studies deal with flat classification, when it is assumed that there are
no relationships between the categories. There are two basic hierarchical classification methods, namely,
the big-bang approach and the top-down level-based approach [5].

In the big-bang approach, a document is assigned to a class in one single step, whereas in the top-down
level-based approach, classification is performed with the classifiers built at each level of a hierarchy.

In the top-down level-based approach, a classification problem is decomposed into a set of smaller
problems corresponding to hierarchical splits in a tree. First, classes are distinguished at the top level, and
then the lower level distinctions are determined only within the subclasses at the appropriate top-level
class. Each of these sub-problems can be solved much more accurately as well [6,7]. Moreover, a greater
accuracy is achievable because classifiers can identify and ignore commonalities between the subtopics
of a specific class, and concentrate on those features that distinguish them [8]. This approach is used
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by most hierarchical classification methods due to its simplicity [5,6,9–11]. They utilize the known
hierarchical (taxonomy) structure built by experts.

One of the obvious problems with the top-down approach is that misclassification at a higher level of
a hierarchy may force a document to be wrongly routed before it gets classified at a lower level. Another
problem is that sometimes there is no predefined hierarchy and one has first to build it. It is usually built
from data or from data labels. We address the latter problem, which seems to us not that computationally
complex, since the number of labels is usually less than the number of data attributes.

In our research, we follow the top-down level based approach utilizing a hierarchical topic structure
to break down the problem of classification into a sequence of simpler problems.

There are approaches implying linear discriminant projection of categories to create hierarchies based
on their similarities: [12,13]. They show that classification performance gets better as compared with a
flat case. There is a range of methods aimed to reduce the complexity of training flat classifiers. Usually
they partition data into two parts and create a two-level hierarchy, e.g., [14].

The HOMER method [15] constructs a Hierarchy Of Multi-label classifiERs, each one dealing with a
much smaller set of labels with respect to |L| and with a more balanced example distribution. This leads
to an improved estimated performance along with linear training and logarithmic testing complexities
with respect to |L|. At the first step, the HOMER automatically organizes labels into a tree-shaped
hierarchy. This is accomplished by recursively partitioning a set of labels into a number of nodes
using the balance clustering algorithm. Then it builds one multi-label classifier at each node apart from
the leaves.

In the PHOCS, we use the same concept of hierarchy and meta-labels. Tsoumakas et al. [16] also
introduce the RAkEL classifier (RAndom k labELsets, k is a parameter specifying the size of labelsets)
that outperforms some well-known multi-label classifiers.

In the recent work [17], the authors used datasets with predefined hierarchies and tried to guess
them, but did not construct a hierarchy that could be good for classification. Generally, this is a more
challenging task than a standard hierarchical multi-label classification, when classifiers are based on a
known class hierarchy. In our research, we pursue a similar objective.

In 2011 the second Pascal challenge on large-scale classification was held. Wang et al. [3] got the first
place in two of the three benchmarks. They enhanced the flat kNN method and outperformed hierarchical
classification. They used an interesting method of building a hierarchy as well, which employs only
existing labels without the use of any meta-labels. The performance was lower than in the flat case.
There are two specific issues when building a taxonomy in a such way. For example, Reuters-21578
already has meta-labels that generalize other labels. They are not used in the classification. Some
datasets do not have such meta-labels or any structure of labels. Another issue is that two very similar
labels, associated with two contiguous categories, should be on one layer. However, in such way of
building hierarchy the may be put in a parent-child relation. To solve the mentioned issues, we will build
a hierarchy using meta-labels.
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3. Multi-Label Hierarchical Classification

3.1. General Concept

The main idea is transformation of a multi-label classification task with a large set of labels L into a
tree-shaped hierarchy of simpler multi-label classification tasks, each one dealing with a small number
k of labels: k << |L| (sometimes k < |L|). Below follows the explanation of the general concept of the
multi-label hierarchical classification [4].

Each node n of this tree contains a set of labels Ln ⊆ L. Figure 1 shows 6 leaves and 3 internal nodes.
There are |L| leaves, each containing a singleton (a single element set) {λj} with a different label j of
L. Each internal node n contains a union of labelsets of its children: Ln = ∪Lc, c ∈ children(n). The
root accommodates all the labels: Lroot = L.

Meta-label µn of node n is defined as conjunction of the labels associated with that node:
µn = ∪λj, λj ∈ Ln. Meta-labels have the following semantics: a document is considered annotated
with the meta-label µn if it is annotated with at least one of the labels in Ln. Each internal node n of
a hierarchy also accommodates a multi-label classifier hn. The task of hn is to predict one or more
meta-labels of its children. Therefore, the set of labels for hn is Mn = {µc, c ∈ children(n)}.

Figure 1 shows a sample hierarchy produced for a multi-label classification task with 6 labels.

Figure 1. Hierarchical multi-label classification work flow.
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For multi-label classification of a new document, the classifier starts with hroot and then forwards it
to the multi-label classifier hc of the child node c only if µc is among the predictions of hparent(c). The
main issue in building hierarchies is how to distribute the labels of Ln among the k children. One can
distribute k subsets in such a way that the labels belonging to the same subset remain similar. In [15],
the number k of labels is a set given for each Ln.

3.2. Building One Layer: Example

In this work, we solve the problem of distribution of labels Ln among children nodes by choosing
the best value of k at each node according to the estimation of the hierarchy performance. We use the
divide-and-conquer paradigm for our algorithm design [15]. Our algorithm starts from the whole set
of labels and its goal is to build a hierarchy of labels optimizing classification performance. In each
step, we divide the current set of labels into groups that correspond to the child nodes of that set. Our
algorithm is recursive and proceeds until the current set contains only one label. Such sets will be leaves
of the hierarchy.

Illustration of one step of our algorithm can be found in Figure 2. It will proceed in the following way.

Figure 2. Example: building one layer.

1. We have 6 labels.
2. We cluster labels with different k, which results in 3 different partitions (k = 2, 3, 4).
3. We estimate which partition is the best for the classification using the performance estimation

function (chapter 4). In this example we use partition number 2 (Figure 3).
4. We use the partition selected at the previous step and go to step 2 to process {l4, l5, l6} (Figure 4).

There is no need to make clustering for {l1} and {l2, l3} since their partitioning is obvious.

Figure 3. Example of partitions.
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Figure 4. Different ways of splitting the labels.

3.3. Algorithm For Building Hierarchies

Our algorithm is recursive (Algorithm 1). It takes a training dataset as an input, and the minimum
and maximum numbers of clusters kmin and kmax. It starts from the whole set of labels, makes K-means
clustering of them for a different number of clusters from kmin to kmax (line 4). We cluster labels
using documents as binary features for clustering. If a label is associated with a document, then a
corresponding feature value is 1, otherwise 0. Feature space size equals N, where N is the number of
documents. We compose meta-labels from clusters for each partition (line 5) and measure their efficiency
using a classification task (line 6).

All sets of clusters are candidates for the next layer of the hierarchy. We choose the best partition with
the help of an estimation algorithm (line 8). Using the best-estimated partition, we build meta-labels
(each meta-label consists of classes from one cluster, line 10). After that, we make this process recursive
for the child meta-labels.

3.4. Algorithm Complexity

Let kmin equals 2. Denote N as the number of documents. Denote M as the number of attributes.
Denote |L| as the number of labels. Consider the computational complexity of the first step of the
algorithm. Each clustering has complexity O(M · N · |L|) (line 4 in Algorithm 1). We will also train
O(kmax) binary classifiers for one clustering (line 6 in Algorithm 1), the complexity of training one
classifier isO(f(M,N)). So the complexity of cycle (lines 3–7 in Algorithm 1) has complexityO(kmax ·
M ·N · |L|+k2

max ·f(M,N)). The prediction function has the complexity O(kmax · |L|) for each cluster.
For all the clusters it is O(k3

max · |L|) (line 8 in Algorithm 1). So the running time in the root node can
be defined as the sum of these quantities: O(kmax ·M ·N · |L|+ k2

max · f(M,N) + k3
max · |L|).
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Algorithm 1 The PHOCS algorithm for hierarchy building
1: function HIERARCHY(TrainSet, Labels, RootNode,Kmin,Kmax)
2: Pmin← PerformanceMeasure(TrainSet)

3: for i← Kmin,Kmax do
4: C[i]← doClustering(TrainSet, Labels, i)

5: DataSet← dataMetaLabeling(TrainSet, C)

6: Results[i]← PerformanceMeasure(DataSet)

7: end for
8: PerfEstimation,Kbest← PerfEstimate(Results, C)

9: if PerfEstimation > Pmin then
10: addChildNodes(RootNode, C[Kbest])

11: for i← 0, BestNumber do
12: Hierarchy(TrainSet,

13: C[KBest][i], RootNode.Child(i))

14: end for
15: end if
16: end function
17: function PERFORMANCEMEASURE(DataSet)
18: TrainPart, TestPart← split(DataSet)

19: return Performance(TrainPart, TestPart)
20: end function
21: function PERFESTIMATE(Results, Clusters)
22: //Described in Section 4
23: end function

Let us consider the computational complexity of building one layer. Suppose each node at this
level has N documents, although they are fewer. Since each label of L lies in a single cluster, the
total complexity of all clusterings on the layer is O(kmax · M · N · |L|). Similarly, the complexity
of the prediction function for all clusters in all nodes will not exceed O(k3

max · |L|). Denote the
mean number of labels in the document as A, whereas in fact, the number of documents in all nodes
at the same level does not exceed N · A. If the classifier learning algorithm has linear complexity
with respect to the number of documents, the complexity of building all classifiers will not exceed
O(k2

max · A · f(M,N)). So the running time of building a layer can be defined as the sum of these
quantities: O(kmax · M · N · |L| + k3

max · |L| + k2
max · A · f(M,N)). In most cases it is less than

O(kmax · |L| · f(M,N)) = O(kmax · f(M,N,L)), where f(M,N,L) is complexity of building a
multi-label classifier in binary transformation case.

We showed the complexity of building one layer. The number of layers in a good hierarchy
does not exceed 5. In our paper we used the decision tree algorithm C4.5 [18]. For C4.5

f(M,N) = M ·N · log(N).
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4. Performance Estimation

4.1. General Idea

The goal of the performance estimation function is to estimate classification performance of each
partition. With our estimation function, we want to determine which partition is better. We employ a
training set for this function. At the same time we need a test set in order to decide which partition is
better. We use a part of the training set for this, and the other part remains for training purposes.

We build a classifier for each partition. Each cluster represents one class. We classify the documents
and get the performance measure that shows how good a particular partition is. Various measures can be
used in our algorithm. The goal of our algorithm is to build a hierarchy with an optimum performance
measure. For example, for partition into 2 clusters we get the classification performance measure 0.97

(Figure 5). For partition into 3 clusters the measure is 0.93 and for partition into 4 clusters it is 0.88.

Figure 5. Example: filling in the table.

We believe that on further layers of the hierarchy, the partition into k clusters will be the same as in
the performance table (Figure 5). We also know various features of clusters, such as size, diversity, etc.
Therefore, it is possible to explore all possible partitions as well as final hierarchies and to estimate their
performance. For example, one may want to make estimation for partition into 3 clusters (Figure 3).

Cluster {l1} has only one class and we assume that its performance is 1. Cluster {l2, l3} has 2 classes
and its performance is believed to be similar to the performance from the table, which is 0.97. Cluster
{l4, l5, l6} can be clustered further in 2 different ways (Figure 4). We calculate the number of labels at
different levels for the sake of simplicity. So we do not distinguish which labels are in the cluster of size
2: {l4, l5}, {l4, l6} or {l5, l6}. Finally, we have only two different partitions (Figure 4).

We make performance estimation for the first partition based on the table from Figure 5. It is 0.93.
The performance of the second partition cannot be estimated using the referenced table since it contains
a sub-hierarchy. We propose a certain approach for doing this.

4.2. Approach

In the previous version of our algorithm (we will refer to it as to PHOCS-1) we made estimation in
the following way. We used F1-measure as a performance measure and assumed that the F1-measure
becomes smaller layer by layer (as the hierarchy is growing), that is, the F1-measure on layer k is larger
than on layer k+1. We estimated it at k+1 level as F1∗k+1 =

∏k
i=1 F1i, where i is the layer number. This
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estimation is rather rough and it is possible to make it finer. We propose to use absolute values of errors
and the structure of nodes as well as more information about clusters—their size and performance values.

We will denote:

• C – cluster size;
• NC – the number of documents in the cluster;
• K – the number of child clusters;
• AC – the average number of labels for documents in the cluster;
• S – the number of possible further partitions for the cluster;
• ∗ index is used for estimated numbers and measures;
• ∗max index is used for the best estimation for the cluster (among all possible partitions of

this cluster);
• ∗result index is used for estimation of the whole partition (split);
• q index denotes the number of partitions for a particular cluster;
• T index is used for the values of the performance measure in the table that we fill in (like in

Figure 5). Each record in the table corresponds to a specific number of child clusters K.

Our goal is to estimate the absolute values of true positives (TP ∗), false negatives (FN∗) and
false positives (FP ∗). Then we have to calculate relative performance measures that can be used for
optimizing the hierarchy, such as F1-measure (F1∗), Precision (P ∗) or Recall (R∗).

Figure 6. Estimating performance for cluster {l4, l5, l6}.

The example of estimation process is represented in Figure 6. Assume that we are currently on layer
N . On this layer we have already made clustering (Figure 2, step 2) and filled in the performance table
(Figure 5). Assume, we are estimating classification performance for one of the partitions {l4, l5, l6}
(Figure 3 k = 3 and Figure 6) with two ways of splitting (Figure 4, S = {1, 2}). TP ∗, FN∗, and FP ∗

are computed in the following way:
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• TP ∗. The number of true positives will decrease with each next level of the hierarchy. TP ∗ will
depend on R and we will approximate it with the following function: TP ∗N+2 = TP · RT

K . K
equals 3 for TP 1∗

N+2 and 2 for TP 2∗
N+2 (Figure 6, layer N + 2).

• FN∗. We know TP ∗, NC , AC . So, FN∗N+2 = NC · AC − TP ∗N+2.
• FP ∗. The main problem is to estimate FP . Indeed the result of FP ∗N+1 should be between
TP · (1 − P T

K) and FP + TP · (1 − P T
K). We use a rather pessimistic estimation of it:

FP ∗N+2 = FP ·RT
K + TP · (1− P T

K).

We computed TP ∗, FP ∗, TN∗ on different layers of our cluster. We believe that a hierarchy should
be rather balanced with leaves on the last two layers only. Let us denote the last layer as M . Then
there are two groups of leaves: leaves on the last layer (NL

M ) and leaves on the previous layer (NL
M−1).

NL
M + NL

M−1 = C. For example, Figure 6 represents a cluster of size 3. All leaves are on layer N + 2

for the first split. One leaf is on layer N + 2 and two leaves are on layer N + 3 for the second split.

TP q∗ =
NL

M

C
· TP ∗M +

NL
M−1

C
· TP ∗M−1

FN q∗ =
NL

M

C
· FN∗M +

NL
M−1

C
· FN∗M−1

FP q∗ =
NL

M

C
· FP ∗M +

NL
M−1

C
· FP ∗M−1

Then we are able to compute relative measures for our cluster:

P q∗ = TP q∗

TP q∗+FP q∗

Rq∗ = TP q∗

TP q∗+FNq∗

F1q∗ = 2·P q∗·Rq∗

P q∗+Rq∗

Therefore, we are able to find the best further partitioning of the cluster. If we maximize F1, then the
best partitioning of the cluster will be partitioning with the maximal F1. We will use ∗max with absolute
estimations for the best estimated partitioning of our cluster. F1∗max = max

i∈S
F1i∗.

We take into account the size of clusters in order to compute estimation for the whole partition (split).
The more documents there are in a cluster the higher influence they have on the estimation. Estimation
is made for each cluster separately. First, we find the best further partitioning of the cluster. Second, we
summarize the absolute numbers:

TP ∗result =
∑

i∈K TP ∗max
i

FN∗result =
∑

i∈K FN∗max
i

FP ∗result =
∑

i∈K FP ∗max
i

Now we are able to compute the relative measures P ∗result,R∗result, and F1∗result.
The general idea is to minimize the number of external parameters in our algorithm. kmin should

always equal 2, and kmax is the only external parameter and it should not be greater than the square
root of |L|. We have changed the stopping criteria of our algorithm. We make comparison with the flat
classification result as stopping criteria. If our prediction is worse than the flat case, then we stop further
building of the hierarchy (in the previous version we stopped building a hierarchy after several layers).
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4.3. Performance Estimation Function

Let us summarize the proposed approach for performance estimation in a sequence of steps. We had
completed the following steps before the call of the performance estimation function:

1. A certain number of labels is given.
2. The labels are clustered. As a result, we have different partitions.
3. Classification is done using the clusters for different partitions.
4. A table with the performance measures of classification for all clusters is filled in (P T , RT and
F1T ). TP , FP , FN for all clusters are saved.

The input for the performance estimation function is the following:

• Partitions configuration (the number of different partitions, their sizes).
• Clusters configuration (TP , FP , FN as the result of classification, C, NC , AC).
• A table with the measures (P T , RT and F1T ).

Finally, we are able to list all steps of the performance estimation function (denoted as function
PERFESTIMATE in the Algorithm 1):

1. For each possible further partitioning of each cluster in each partition:

(a) count the number of leaves on different layers of the predicted taxonomy (nLN+i, nLN+i−1)
(b) estimate the number of positives and negatives TP ∗cluster, FP ∗cluster, FN∗cluster.
(c) estimate relative measures P ∗cluster, R∗cluster, F1∗cluster.

2. For each cluster, estimate the best further partitioning (F1∗max = max
i∈S

F1i∗).
3. For each partition (for each k), estimate the absolute and relative parameters on the current layer:
TP ∗result

k , FN∗result
k , FP ∗result

k , P ∗result
k , R∗result

k , F1∗result
k .

4. Choose the best partition based on max
kmin≤k≤kmax

F1∗result
k .

The estimation function returns the best partition and the estimated performance for it.

5. Experiments

All the experiments are performed on multi-label datasets available at [19]. Table 1 exhibits basic
statistics, such as the number of examples and labels, along with the statistics that are relevant to the
label sets [16].

Multi-Label classification problem can be solved in different ways [2]. Problem transformation
methods allow converting a multi-label problem to a single-label one. Below is the list of the most
frequently used approaches:

• Binary Relevance. One builds a classifier for each label, which will make a decision about
this label.
• Label Power-set transformation. One builds a multiclass classifier, where each class corresponds

to a set of labels associated with a document.
• One vs. one. One trains a classifier for each pair of labels. The decision is made by voting.
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Table 1. Multi-Label Datasets and Their Statistics.

Name Docs Labels Bound of labelsets Actual labelsets

Mediamill 43907 101 43907 6555
Bibtex 7395 159 7395 2856
Medical 978 45 978 94
Enron 1702 53 1702 753
Yeast 2417 14 2417 198
Genbase 662 27 662 32
Corel5k 5000 374 5000 3175
CAL500 502 174 502 502
Scene 2407 6 64 15

We use Binary Relevance transformation because of the nature of the data (Table 1). The last column
shows the number of classes in case of Label Power-set transformation. This transformation can work on
Scene, Genbase and Medical. In other datasets, the number of classes will be rather large so the number
of training examples for each class will be low and classification performance will be poor as well.

It is also rather hard to build one versus one flat classifier. There will be 100, 000 classifiers for
Corel5k. It is much easier to use it in a hierarchy, and we plan to do it in our future work.

Each dataset is divided into the training and test parts in the proportion 2 to 1, respectively. There are
no any other transformations of the datasets. In particular, there is no attribute selection. The first four
datasets are used in all experiments and the last five are used only with the PHOCS-2.

The decision tree algorithm C4.5 [18] is chosen as the basic multi-label classifier. The K-means
algorithm is used for clustering and building hierarchies. The micro and macro measures of classification
accuracy (precision (P), recall (R) and F1-measure) are used [20].

The parameter values for the PHOCS are chosen as kmin = 2 and kmax = 10. Such kmax is chosen
since the number of labels in our experiments has the order of 100, so the hierarchy contains at least
2 layers.

The experiment results are represented in Table 2.
We removed the external parameter, so the PHOCS-2 has only two parameters: kmin, which should

always equal 2, and kmax, which can be the only external parameter in the ideal case. We got a better
F1-measure in comparison with the results from [4] for all four datasets that we used there. In all cases
the current version of the algorithm demonstrated the best performance (F1-measure).

The experimental study of the PHOCS-2 performance on nine multi-label datasets justifies its
effectiveness. We got significantly better results in five of them compared with the flat case. It was
difficult to improve the result of the Genbase, because its performance is already 0.97, and we have
not improved the performance in the Mediamill and the Yeast. HOMER [15] was tested only on two
datasets. One of them is Mediamill and we can compare results. There is no baseline in [15]. PHOCSv2
outperforms HOMER by 10% in F1-measure on Mediamill dataset.
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Table 2. PHOCS experiment results.

Dataset name Classifier topology
MICRO MACRO

F1 P R F1 P R

Mediamill
Flat

PHOCS v1
PHOCS v2

0.54
0.53
0.53

0.66
0.58
0.55

0.45
0.52
0.52

0.10
0.13
0.11

0.24
0.24
0.22

0.08
0.14
0.10

Bibtex
Flat

PHOCS v1
PHOCS v2

0.31
0.37
0.39

0.81
0.61
0.65

0.19
0.21
0.28

0.14
0.22
0.22

0.40
0.38
0.44

0.11
0.18
0.18

Medical
Flat

PHOCS v1
PHOCS v2

0.80
0.82
0.83

0.85
0.84
0.86

0.75
0.81
0.79

0.26
0.30
0.30

0.32
0.34
0.34

0.25
0.30
0.30

Enron
Flat

PHOCS v1
PHOCS v2

0.46
0.50
0.50

0.66
0.62
0.55

0.35
0.42
0.46

0.09
0.10
0.11

0.13
0.15
0.15

0.08
0.09
0.11

Yeast
Flat

PHOCS v2
0.59
0.59

0.61
0.59

0.58
0.60

0.38
0.39

0.41
0.39

0.38
0.39

Genbase
Flat

PHOCS v2
0.97
0.98

1.00
1.00

0.95
0.96

0.67
0.68

0.70
0.70

0.65
0.67

Corel5k
Flat

PHOCS v2
0.04
0.09

0.24
0.18

0.02
0.06

0.00
0.01

0.01
0.01

0.00
0.00

CAL500
Flat

PHOCS v2
0.37
0.40

0.50
0.37

0.30
0.43

0.10
0.16

0.13
0.16

0.10
0.20

Scene
Flat

PHOCS v2
0.61
0.63

0.67
0.66

0.57
0.59

0.52
0.54

0.61
0.61

0.50
0.54

In most cases, our algorithm provides better F1 due to better Recall. We are able to optimize other
measures as well. It is useful when one has specific requirements to a classifiers performance.

6. Results and Conclusion

We proposed several enhancements for the PHOCS algorithm that builds hierarchies from flat
clusterings in order to enhance classification accuracy. To build a better hierarchy we used absolute
values of errors, employed the number and structure of nodes, cluster sizes and individual performance
values for each cluster. We changed the stopping criteria as well to compare our hierarchy with a flat one.

The experimental study shows effectiveness of the enhancements. We have removed one of the
parameters as well. As a result, it has become easier to use the PHOCS.

Our future work will be related to improving the performance estimation function and adding a
possibility to return to a previous layer in case of false prediction. We would like to use or create a
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classifier that can take advantage of a hierarchy. Another goal is to compare our algorithm with EkNN [3]
that has won the second Pascal challenge.
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