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Abstract: A zero-suppressed binary decision diagram (ZDD) is a graph representation
suitable for handling sparse set families. Given a ZDD representing a set family, we present
an efficient algorithm to discover a hidden structure, called a co-occurrence relation, on
the ground set. This computation can be done in time complexity that is related not to
the number of sets, but to some feature values of the ZDD. We furthermore introduce a
conditional co-occurrence relation and present an extraction algorithm, which enables us to
discover further structural information.
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1. Introduction

Enumerating a large number of sets and finding useful information from them have recently
attracted the attention of many researchers. The data structure called a zero-suppressed binary decision
diagram [1], ZDD for short, is known to be useful for compactly representing collections of sets and
for efficiently manipulating them. ZDDs have been applied to various problems. In the analysis of
transaction databases, Minato and Arimura [2,3] invented ZDD-based techniques for frequent itemset
mining. Coudert [4] introduced a ZDD-based approach to solve many graph and set optimization
problems. Sekine and Imai [5] developed a new paradigm of the exact computation for network reliability
by means of binary decision diagrams (see [6,7]), BDDs for short. Recently, for multi-terminal binary
decision diagrams, which are a well accepted technique for the state graph based quantitative analysis of
large and complex systems, a zero-suppressed version has been studied by Lampka et al. [8]. Roughly
speaking, an idea common to these is to compress a large number of sets into a ZDD (BDD) and
manipulate them without decompression.
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In this paper, we study the following basic problem of ZDDs: Given a ZDD representing a set family,
extract a hidden structure, called a co-occurrence relation, over the ground set. This computation can be
done in time complexity that is related not to the number of sets, but to some feature values of the ZDD
representing the sets. Thus it is effective especially when a large number of sets are compressed into a
small ZDD. Since we do not put any domain-specific assumption on the sets represented by a ZDD, our
algorithm is widely applicable to ZDDs obtained from real-life data.

The co-occurrence relation is defined as follows: given a set S and a collection C of subsets of
S, two elements a, b ∈ S co-occur with each other for C if it holds that for all T ∈ C, a ∈ T if
and only if b ∈ T . In a series of work for finding various useful information from databases [9–11],
the co-occurrence relation was introduced, although an efficient extraction algorithm is not known.
Clearly the co-occurrence relation is an equivalence relation and it induces the partition consisting
of equivalence classes, called a co-occurrence partition. Since ZDDs represent collections of sets,
co-occurrence relations and partitions are similarly defined for ZDDs. Since elements in the same block
of a co-occurrence partition have the same behavior, when we want to find useful information from a
ZDD, we need not distinguish between them and the ZDD can be compressed further.

This paper is organized as follows. In Section 2 we introduce some basic notions on ZDDs. We
present algorithms in Section 3 and provide examples in Section 4. Concluding remarks are given
in Section 5.

2. Basic Notions on ZDDs

Since we do not treat BDDs, we only introduce ZDDs. ZDDs are graph representations for set
families. Figure 1(b) illustrates the ZDD representing the set family {∅, {e1}, {e2}, {e3}}. Whenever
a ZDD is given, we always assume that a ground set S and the order of the elements are fixed. For
simplicity, let S := {e1, . . . , en}, where the elements are numbered from 1 to n (= |S|) and ordered in
this order. The node at the top is called the root. Each internal node has the three fields V, LO and HI.
The field V holds the index of an element in S. The fields LO and HI point to other nodes, which are
called LO and HI children, respectively. The arc to a LO child is called a LO arc and illustrated by a
dashed arrow, while the arc to a HI child is called a HI arc and illustrated by a solid arrow. There are
only two non-internal nodes, denoted by ⊥ and ⊤.

Figure 1. The two graph representations for the same set family {∅, {e1}, {e2}, {e3}}.
(a) Binary Decision Tree; (b) ZDD.
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The following two conditions for ZDDs enable a unique and efficient representation. First, whenever
an arc goes from an internal node f to an internal node g, a ZDD must satisfy V (f) < V (g). Thus no
nodes having the same index occur twice in a path. Second, a ZDD must be irreducible in the sense that
the following reduction operations cannot be applied anymore.

1. For each internal node f whose HI child is ⊥, redirect all the incoming arcs of f to the LO child
of f , and then eliminate f (Figure 2(a)).

2. Share all equivalent subgraphs (Figure 2(b)).

Figure 2. The two reduction rules for ZDDs. (a) Node Elimination; (b) Node Sharing.
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Now, let us see the correspondence between ZDDs and set families. Given a ZDD, for each path P

from the root to⊤, define a subset TP of S such that ei ∈ TP if the HI arc of an internal node f is selected
(where i = V (f)); otherwise, ei ̸∈ TP . Note that if P contains no nodes of index i, then we can know
that ei ̸∈ TP due to the node elimination rule. We obtain the set family {TP : P is a path in the ZDD}.
Conversely, given a set family, construct the corresponding binary decision tree as is illustrated in
Figure 1(a) and make it irreducible by applying the two reduction rules. Observe for example that
Figure 1(b) is obtained from Figure 1(a). It is known (see [1,12] (§7.1.4), for details) that every set
family has one and only one representation as a ZDD if the size of a ground set and the order of the
elements are fixed.

For any node f in a ZDD, the graph consisting of all nodes accessible from f forms a ZDD whose
root is f . The size of a ZDD is the total number of nodes in the ZDD, including non-internal nodes. The
cardinality of a node is the total number of paths from the node to⊤. Since in ZDDs we are interested in
paths leading to⊤, we mean by a branch node an internal node whose two children have paths leading to
⊤; in other words, the LO child is not ⊥. Note that a branch node is not a synonym of an internal node.

3. Algorithms

We present an algorithm to extract a hidden structure, called a co-occurrence relation, from a ZDD.
Our algorithm constructs a co-occurrence partition while traversing a ZDD. We first explain how to
traverse a ZDD and then how to manipulate a partition efficiently in the traversal. We furthermore
introduce the notion of a conditional co-occurrence relation and present an extraction algorithm.
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3.1. Traversal Part

Let us first consider a naive method to compute a co-occurrence partition. Suppose that a ZDD
represents a collection C of subsets of a set S. The co-occurrence partition is incrementally constructed
as follows. We start with the partition {S} consisting of the single block S. For each path P from the
root to ⊤, we obtain a new partition from the current partition by separating each block b into the two
parts b ∩ TP and b ∩ (S \ TP ) if both parts are nonempty, where TP denotes the set in C corresponding
to P . This can be done by checking which arc is selected at each node of P . For example, let us see the
ZDD given in Figure 3: If we first examine the path 1 99K 2 99K 3 99K 4 → ⊤, then the block S of
the initial partition splits into the two parts {4} and S \ {4}, since HI arc is selected only at the label 4

node. It can be easily verified that after all paths are examined, the co-occurrence partition induced by
C is constructed. However, since this method depends on the number of paths (thus the size of C), this
is not effective for ZDDs which efficiently compress a large number of sets. It would be desirable if we
could construct a co-occurrence partition directly from a ZDD.

Figure 3. The computing process of our algorithm for the ZDD that represents the set family
{{e4}, {e3, e5}, {e2, e6}, {e1, e4}, {e1, e3, e5}, {e1, e2, e4, e6}} is shown below. For example,
in the third line from the bottom of the left column, the number 2 on the left side means
that ⊤ was visited twice; the right arrow means that the state of e2 changed from LO to HI;
the left arrow means that the state of e3 changed from HI to LO. In the bottom of the right
column, the co-occurrence partition {{e1}, {e2, e6}, {e3, e5}, {e4}} is obtained.
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0 : 1, 2, 3, 4, 5, 6

0 : 1, 2, 3, 5, 6 // 4

1 : 1, 2, 5, 6 // 3 4

1 : 1, 2, 6 // 3, 5 4

2 : 1, 6 // 2 3, 5 4

2 : 1, 6 // 2 3 5oo 4

2 : 1, 6 // 2 3, 5 4

2 : 1 // 2, 6 3, 5 4

3 : 1 2 6oo 3, 5 4

3 : 1 2 6oo 5 // 3 4

3 : 1 2 6oo 3, 5 4

3 : 1 2, 6 3, 5 4

4 : 1 6 // 2 3, 5 4

4 : 1 6 // 2 3 5oo 4

4 : 1 6 // 2 3, 5 4

4 : 1 2, 6 3, 5 4

Our algorithm improves the naive method above by avoiding as many useless visits of nodes as
possible. We traverse a ZDD basically in a depth-first order. In each node, we select the next node
in a LO arc first order, i.e., the LO child if the LO child is not⊥; otherwise, the HI child. After we arrive
at ⊤, we go back to the most recent branch node and select the HI arc. Note that we need not go back to
the root, since arc types do not change until the most recent branch node. For example, in Figure 3, after
the first visit of ⊤, we go back to the label 3 node and go ahead along the path 3→ 5→ ⊤.
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The difference from the usual depth-first search is that when we visit an already visited node, we
go down from the node to ⊤ by selecting only HI-arcs. This is essential because the usual depth-first
search may fail to detect separable elements. For example, in Figure 4, the two elements e3 and e4 are
separable, and in our traversal the third and fourth columns in the table 3b have different arc types thus
we can know that they are really separated. On the other hand, in the usual depth-first search they are
observed as if they had a common arc type: Since an already visited node is no longer visited, the arc
type of e4 in the table 3a is not updated, which means the type remains LO.

Figure 4. Each table on the center shows the change of selected arc types when the ZDD is
traversed by the usual depth-first search. Similarly, the tables on the right correspond to the
changes when traversed by our algorithm.
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Unlike the usual depth-first search, we do not skip necessary paths as the following lemma implies.

Lemma 3.1. In each visit of a node g after the first, two elements get separated when traversing the
subgraph whose root is g if and only if they get separated when going from g to ⊤ with only HI-arcs.

Proof. Since the sufficiency is immediate, we only show the necessity. Suppose for contradiction that
two elements ei and ej (i < j) get separated when visiting all nodes below g, while they are not separated
when only selecting HI-arcs. Let ek denote the element corresponding to g. For the case i < k, there are
two paths from g such that they have different arc types at ej . However, in the first visit of g, we could
trace both paths and know that ei and ej are separated, which is a contradiction. For the other case k ≤ i,
there is a path from g with different arc types at ei and ej , and we could trace this path in the first visit of
g and reach a contradiction.

The traversal part is formally described in Algorithm 1. We here explain some notation and
terminology. Recall that in each internal node f , the next node of f in a LO arc first order is the LO
child if f is a branch node, i.e., an internal node whose two children have paths leading to ⊤; otherwise,
the HI child. In order to traverse a ZDD, branch nodes are pushed onto the stack BRANCH, and visited
nodes are contained in Nvisited. The ⊤ is contained in Nvisited in the initialization part, which reduces
an exceptional case in the traversal part, i.e., the loop block. For each step of the traversal, by invoking
the function Update, we update the current partition p according to which arc is selected at the currently
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visited node f and whether there exist nodes hidden between f and the next node g due to the node
elimination rule. To do this efficiently, we need the following things: The graph structure G defined on
the blocks of p, the set Bnew of blocks which have been created since the last visit of ⊤, and the set EHI

of elements whose arc types are HI. The set Bnew is refreshed for each visit of ⊤. The function Update

is explained in detail in the next subsection.

Algorithm 1 Calculate a co-occurrence partition from a ZDD defined on a set S := {e1, . . . , en}
Require: ZDD is neither ⊥ nor ⊤, and n > 0

p← the partition {S};
G← the digraph with no arc and one vertex corresponding to the unique block S of p;
EHI ← ∅; Bnew ← ∅; Initialize BRANCH as an empty stack;
f ← the root of ZDD;
g ← the next node of f in a LO arc first order;
Nvisited ← {⊤, f};
if f is a branch node then

push f onto BRANCH;
end if
loop

Update (f, g, p, G, Bnew, EHI);
if g ̸∈ Nvisited then

f ← g;
g ← the next node of f in a LO arc first order;
Nvisited ← Nvisited ∪ {f};
if f is a branch node then

push f onto BRANCH;
end if

else
while g ̸= ⊤ do

f ← g;
g ← HI (f);
Update (f, g, p, G,Bnew, EHI);

end while
if BRANCH is empty then

return p; // End of the traversal
end if
Bnew ← ∅;
f ← the node popped from BRANCH;
g ← HI (f);

end if
end loop



Algorithms 2012, 5 660

3.2. Manipulation Part

In the traversal described in the previous subsection, whenever we visit a node f and select the next
node g, we update the current partition p by invoking the function Update. Namely, when we find an
element ei which is separable from the other elements in the same block, we move ei to an appropriate
block so that each block consists of inseparable elements with respect to the information up to this time.

For example, let us see the computing process in Figure 3 step by step. Suppose that we arrive at the
label 3 node after the first visit of ⊤. At this time p = {S \ {e4}, {e4}}. When we go to the label 5 node
along the HI arc, the element e3 becomes in a HI state while the other elements are in a LO state. Thus
we create a new block and move e3 into it. We furthermore memorize the arc from the previous block b,
which e3 was in, to the new block b′, which now consists of only e3. This is necessary because e5 ∈ b

soon becomes in a HI state and we have to insert e5 into b′, not a new block. We then reach ⊤ and go
back to the label 2 node on the left side. The element e2 ∈ b becomes in a HI state, but we never insert
e2 into b′, since insertion is allowed only within the period from the creation of b′ until the arrival at ⊤.
Therefore, we create a new block b′′ and move e2 into it. We furthermore redirect the outgoing arc of b

to the new block b′′. In this way, we update the current partition p, the graph structure G on the blocks
of p, and the set Bnew of blocks created since the last visit of ⊤.

The function Update is formally described in Algorithm 2. Let ei and ej be the elements
corresponding to the current node f and the next node g, respectively. We move ei to another block
only if the arc type of ei changes from LO to HI or from HI to LO. Note that we need not move ei in the
other cases. This move operation for ei is done in the former part of the function Update by invoking
the function Move. The destination block of ei is determined by means of the auxiliary data structures
G and Bnew. The G defines a parent-child relation between the blocks of the current partition p. That a
block b is a parent of a block b′ implies that b′ is formed by elements which most recently went out from
b. Moving elements of b to b′ is allowed only within the period from the creation of b′ until the arrival at
⊤, which can be decided by using Bnew.

There may be some nodes hidden between the current node f and the next node g due to the node
elimination rule. Let el be the element corresponding to such a hidden node. Since el is now in a LO
state, it suffices to move el only if the previous arc type is HI. This computation is done in the latter part
of the function Update.

We are now ready to state the time complexity of our algorithm. Recall that a branch node is an
internal node whose two children have paths leading to ⊤.

Theorem 3.2. Let k be the maximum number of HI arcs in a path from the root to⊤. Let m be the number
of branch nodes. Let n be the size of a ground set. Algorithm 1 correctly computes a co-occurrence
partition. It can be implemented to run in time proportional to n + km.

Proof. From Lemma 3.1 and the observations up to here, we can easily verify that Algorithm 1 correctly
computes a co-occurrence partition. Throughout this proof, we mean by a period the time period from a
visit of ⊤ to the next visit.

The time necessary to create the initial partition is proportional to n. We show that the function
Update can be implemented so that the total time in a period is proportional to k. Partitions can be
manipulated so that the function Move runs in constant time. Thus the latter part of the function Update
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is the computational bottleneck. To compute this part efficiently, we implement EHI as a doubly linked
list (see Figure 5). For each step of the traversal, we memorize the position of the most recently inserted
element into EHI. Note that when we arrive at ⊤ and go back to the most recent branch node, we
have to recover the corresponding position in some way e.g., by means of a stack. When we insert
an element ei into EHI, we put ei in the next position of the most recently inserted element. It can be
easily verified that all elements placed before (respectively, after) the most recently inserted element are
sorted in increasing order of their indices. Thus, in order to scan all elements el ∈ EHI with i < l < j,
it suffices to search from the position of the most recently inserted element until the condition breaks.
Since the total number of elements searched in a period is proportional to k, we obtain the time necessary
to compute the function Update through a period.

Algorithm 2 Update the current partition p and the auxiliary data structures G,Bnew, EHI according to
the current node f , the selected arc type of f , and the next node g

function UPDATE(f , g, p, G, Bnew, EHI)
i← V (f); j ← V (g);
if the HI arc of f is selected and ei ̸∈ EHI then

Move (ei, p, G,Bnew); EHI ← EHI ∪ {ei};
else if the LO arc of f is selected and ei ∈ EHI then

Move (ei, p, G,Bnew); EHI ← EHI \ {ei};
end if
for all el ∈ EHI with i < l < j do

Move (el, p, G,Bnew); EHI ← EHI \ {el};
end for

end function

function MOVE(ei, p, G, Bnew)
b← the block of p which contains ei;
if the child of b is not in Bnew then

Add a new empty block b′ to p;
Add b′ to G in such a way that b′ has no child and the child of b is b′;
Bnew ← Bnew ∪ {b′};

end if
Move ei to the block corresponding to the child of b;
Delete b from p and G if b is empty;

end function

Let us consider the number of traversed nodes with repetition during the computation. Clearly the
number of periods is m + 1. For each i (0 ≤ i ≤ m), let Pi denote the path traced in the i-th period,
which starts with a branch node and ends with ⊤. The number of HI arcs in Pi is bounded above by k.
The head of each LO arc in Pi is a branch node, since the LO arc of a non-branch node is not selected
in our traversal. The LO arc of any branch node is traversed exactly once. Thus the total number of LO
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arcs traversed during the computation is m. Therefore,
∑

0≤i≤m |Pi| ≤ (m+1)k +m. We conclude that
the time necessary to execute Algorithm 1 is proportional to n + km.

Figure 5. For each step of the traversal of the ZDD given in Figure 3, the doubly linked list
of HI-state elements is shown below, where the index denotes the number of times ⊤ was
visited and the double box or circle denotes the position after which an element is inserted.
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3.3. Conditional Co-occurrence Relations

Given a ZDD where every two elements are separable, Algorithm 1 cannot extract any useful
information from the ZDD, but even so, we want to find some structural information hidden in the
ground set. In this subsection we focus on the condition that enforces some elements always to be in a
HI state and some elements always to be in a LO state.

Let (ON, OFF) be a pair of subsets of the ground set S of a ZDD. Two elements ei, ej ∈ S are
conditionally inseparable with respect to (ON, OFF) if they co-occur with each other for all paths that
satisfy the condition: the HI arcs are always selected for all elements in ON; The LO arcs are always
selected for all elements in OFF.

Before extracting this relation, we need a preprocessing so that we can trace only paths that satisfy
the condition above. Recall that the cardinality of a node f is the number of paths from f to ⊤. It is
known (see also Algorithm C and Exercise 208 in [12]) that given a ZDD, the cardinalities of all nodes
in the ZDD can be computed in time proportional to the size of f . This computation can be done in a
bottom-up fashion: The cardinalities of⊥ and⊤ are 0 and 1, respectively; the cardinality of each internal
node is the sum of the cardinalities of the two children. Given a pair (ON, OFF), it is easy to change
to be able to compute the numbers of paths from all internal nodes f to ⊤ that satisfy the condition
concerning (ON, OFF). For convenience we call these numbers conditional cardinalities with respect to
(ON, OFF).

To construct a conditional co-occurrence partition, change Algorithm 1 as follows.
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1. Return the initial partition if the conditional cardinality of the root is zero.
2. The next node g of the current node f is the LO child if the conditional cardinalities of the two

children are nonzero; else if the conditional cardinality of the LO child is zero, the HI child; else,
the LO child.

3. In the while block of Algorithm 1, the next node g is the LO child if the conditional cardinality of
the HI child is zero; otherwise, the HI child.

Theorem 3.3. Let m be the number of branch nodes. Let n be the size of a ground set. The computation
for a conditional co-occurrence partition can be done in time proportional to mn.

Proof. This theorem can be proved in a similar way to the proof in Theorem 3.2, but an upper bound for
the number of the traversed nodes cannot be similarly calculated. Indeed, because of the change in the
while block, we may have to select many LO arcs. At least we can say that the size of each path Pi is at
most n and the number of periods is at most m + 1. Thus the time is proportional to mn.

Thanks to this theorem, when selecting a pair (ON, OFF), there is no need to worry about a rapid
increase of computation time. This is in contrast to the case where we arbitrarily select paths and compute
a co-occurrence partition from the selected paths. These paths are no longer compressed, and even if
they can be compressed in some way, the size is generally irrelevant to the size of the original ZDD, and
thus we cannot give a similar guarantee.

4. Examples

In this section we provide two examples. First, we applied our algorithm to two datasets commonly
used in frequent itemset mining. The datasets we used are mushroom and pumsb obtained from the
Frequent Itemset Mining Dataset Repository. The mushroom dataset contains characteristics of various
species of mushrooms and the pumsb dataset contains census data for population and housing. In both
datasets, each record consists of distinct item IDs, which indicate characteristics of the record. Each
record is considered as a set of items and a dataset as a set family, thus both datasets can be represented
as ZDDs (see Table 1). The parameters n and k given in Theorem 3.2 correspond to the number of
distinct items that appear in a dataset and the maximum number of items in a record, respectively.
Although the maximum item ID in the pumsb dataset is 7116 and the minimum item ID is 0, there
are only 2113 distinct item IDs. Thus we normalized the ground set to be the set {1, 2, . . . , 2113} such
that each element i in the set corresponds to the i-th item ID that appears in the pumsb dataset.

Table 1. The used datasets, where n, k,m denote the parameters given in Theorem 3.2.

#Records #Items (n) k m n + km #ZDD Nodes

mushroom 8,124 119 23 288 6,743 791
pumsb 49,046 2,113 74 48,058 3,558,405 1,498,636

The computed partitions for the mushroom and the pumsb datasets are shown in Table 2, where
the entries in the right table are shown as original pumsb item IDs. For example, in each record of
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the mushroom dataset, either elements 75 and 89 both appear or none of them do. Since items in the
same block have the same behavior, when we want to find useful information from a ZDD, we need
not distinguish between them. If the number of blocks is small, then various analyses on a ZDD can
be efficiently performed on a small set of items by selecting one representative from each block. Thus
our algorithm is useful. Unfortunately, without any constraints there are many blocks in both datasets;
however, a few constraints may reduce the number of blocks significantly. For example, in the pumsb
dataset, there are 2037 many blocks without any constraints, while the constraints ON = {5065} and
OFF = ∅ reduce the number to 71 (see Table 3 for other settings of constraints).

Table 2. The computed results for the mushroom dataset (left) and the pumsb dataset (right),
where the blocks of single items are omitted in the left table and the blocks of at most two
items are omitted in the right table. Each line corresponds to one block.

Blocks

3 74 84 92 97
75 89
73 83

Blocks

4409 4491 4494 4945 6866
49 1118 4163

5945 6855 6865
154 4497 4500

4953 5946 6856

Table 3. The numbers of blocks in various settings of constraints ON and OFF in the pumsb
dataset. In the left table, each line in the first column contains one item chosen at random
for ON, where OFF = ∅; in the right table, each line in the first column contains five items
chosen at random for OFF, where ON = ∅. Items are shown as original pumsb item IDs.

ON #Blocks

5065 71
98 330

208 408
52 45

5375 12

OFF #Blocks

1 4744 4933 5894 6021 1,466
347 1469 4447 4503 4772 1,774

0 3280 4543 6052 6062 1,898
271 5695 6140 6405 7057 1,772

2421 4656 5949 6159 6299 2,031

As a second example, we applied the algorithm for the conditional case to a set of paths enumerated
from the graph given in Figure 6. We considered paths from the vertex 01 to the vertex 47 of the
graph such that no vertices are visited twice, which are called simple paths. Since simple paths can
be identified with sets of edges, the set of all simple paths from 01 to 47 can be represented as a ZDD
whose ground set corresponds to the edge set of the graph. The number of such simple paths turns out
to be 14,144,961,271, while the corresponding ZDD in our ordering of the edge set has only 599 branch
nodes (see Table 4). This is in contrast to the pumsb dataset in the previous example, where the number
of branch nodes is roughly the same as the number of records represented by a ZDD. The ZDD of the
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present example can be quickly constructed in a top-down fashion. This technique has been described
in the literature; see, e.g., [5,12], (Exercise 225 in §7.1.4). We analyzed which edges co-occur with each
other for all simple paths with the constraints ON and OFF given in Figure 6. The computed partition is
shown in the right table of Figure 6. As we showed in Theorem 3.3, once we obtain a small ZDD like in
this case, we can quickly compute co-occurrence partitions in various settings of ON and OFF.

Figure 6. We considered simple paths from the vertex 01 to the vertex 47. When the
edge set ON consists of bold edges and OFF consists of dashed edges, the blocks of the
corresponding co-occurrence partition except for blocks of single edges are shown in the
right table as the collections of edges separated by horizontal lines.

01

02

0809

12
11

10

47

05 03

06
04

07
15

20

16

13
14

19
22

21

23

17

25

24

18

26

2928
27

30

36

33

31

3738

39

34

32

35

40

44

43

41

45

46

42

Blocks

04–06 07–15 10–20 12–14 14–19
15–20 16–20 17–21 18–21 19–20
20–22 21–25 21–24 21–23 24–26
26–28 26–27 27–29 33–37 40–41
41–42 43–45
01–02 13–14 14–22 16–21 20–23
20–21 27–30 27–28 35–40 46–47
15–16 19–22 23–24
16–17 17–18 22–23
36–39 37–38
36–37 37–38
28–36 34–38
44–45 45–46

Table 4. The ZDD representing simple paths from the vertex 01 to the vertex 47, where
n, k, m denote the parameters given in Theorem 3.2.

Start End #Paths #Edges (n) k m n + km #ZDD Nodes

01 47 14,144,961,271 92 44 599 26,448 1,085

In order to enumerate simple paths and construct ZDDs, we used the Stanford GraphBase, the
simpath and the simpath-reduce programs by Knuth [13,14]. Furthermore, in both examples we used
the Colorado University Decision Diagram Package by Somenzi [15].

5. Conclusions

We presented the following basic algorithm of ZDDs: Given a ground set S and a ZDD that represents
a collection of subsets of S, the algorithm extracts a hidden structure, called a co-occurrence relation,
on S from the ZDD. We furthermore introduced conditional co-occurrence relations and presented an
extraction algorithm, which enables us to discover further structural information. We showed that these
computations can be done in time complexity that is related not to the number of sets, but to some feature
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values of a ZDD. Our algorithms are effective especially when a large number of sets are compressed
into a small ZDD.
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