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Abstract: The problem of finding the maximum number of vertex-disjoint uni-color paths
in an edge-colored graph has been recently introduced in literature, motivated by applications
in social network analysis. In this paper we investigate the approximation and parameterized
complexity of the problem. First, we show that, for any constant ε > 0, the problem is not
approximable within factor c1−ε, where c is the number of colors, and that the corresponding
decision problem is W[1]-hard when parametrized by the number of disjoint paths. Then,
we present a fixed-parameter algorithm for the problem parameterized by the number and
the length of the disjoint paths.
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1. Introduction

Social networks are usually represented and studied as graphs. Vertices represent the elements
analyzed (e.g., individuals), while edges represent a binary relation between the considered elements.
Among the different properties considered to study such graphs, one of the most relevant is the vertex
connectivity of two given vertices. Vertex connectivity is a measure of the information flowing from
one vertex to the other, and it has many applications. For example, it is used for the identifications
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of important structural properties of a social network, like group cohesiveness and centrality [1,2]. A
classical result of graph theory, known as Menger’s theorem, states that vertex connectivity is equivalent
to the maximum number of disjoint paths between two given vertices.

While a lot of interest has been put in the study of networks that represent a single type of relation,
a natural extension that has been recently introduced in literature [3] is to consider multi-relational
social networks, that is social networks where more than one kind of relation between elements of the
network is considered. In order to investigate vertex connectivity in multi-relational social networks,
the combinatorial problem known as Maximum Colored Disjoint Paths (MAX CDP) has been introduced
in [3]. MAX CDP asks for the maximum number of vertex-disjoint uni-color paths in an edge-colored
graph, where the different edge-colors represent different kinds of relation.

The computational and approximation complexity of MAX CDP has been investigated in [3]. When
the input graph contains exactly one color, MAX CDP is polynomial time solvable (it can be reduced to
the maximum flow problem), while it has been shown to be NP-hard when the edges of the graph are
colored. Moreover, MAX CDP is shown to be approximable within factor c, where c is the number of
colors of the edges of the input graph, but not approximable within factor 2 − ε, for any ε > 0, even
when c is a fixed constant.

In [3], it is also investigated a variant of the problem, denoted as `-LCDP, where the length of the
paths in the solution are (upper) bounded by an integer ` ≥ 1. The `-LCDP problem is NP-hard, for
` ≥ 4, while it admits a polynomial time algorithm when ` ≤ 3. This variant of the problem can be
approximated in polynomial time within factor (`− 1)/2 + ε.

In this paper we investigate the approximation and parameterized complexity of MAX CDP and
`-LCDP. First, we show in Section 3 that MAX CDP is not approximable within factor c1−ε, for any
constant ε > 0, and that the corresponding decision problem (CDP) is W[1]-hard when parametrized
by the number p of disjoint uni-color paths. Then, in Section 4, we give a fixed-parameter algorithm
for `-LCDP, when ` and the number of disjoint uni-color paths are considered as parameters. Table 1
summarizes the results known about the complexities of these problems along with the new results
presented in this work.

Table 1. Complexity status of MAX CDP.

Problem Parameter Status Ref.

MAX CDP c NP-hard for any c ≥ 2,
[3]

c-approximable

Inapprox. within c1−ε new

CDP p W[1]-hard new

`-LCDP ` NP-hard for ` ≥ 4 [3]
Poly-time for ` ≤ 3 [3]

`-LCDPp (`, p) FPT new
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2. Definitions

In this section we give some preliminary definitions that will be useful in the rest of the paper. First,
in this paper, we will consider only undirected graphs. Consider a set of colors C = {1, . . . , c}. In the
paper we denote by c the cardinality of C. A C-edge-colored graph (or simply an edge-colored graph
when the set of colors is clear from the context) is defined as G = (V, E), where V denotes the set of
vertices of G and E = {E1, . . . , Ec} denotes a collection of edge sets, where the set Ei, with i ∈ C,
represents the set of edges colored with color i. Notice that, for a given pair of vertices vi, vj , there may
exist more than one edge between vi and vj (each of these edges is associated with a distinct color of C).

A path π in G is called a uni-color path if all the edges of π have the same color, that is they belong
to the same set Ei (for some i ∈ C). Given two vertices x, y ∈ V , an xy-path is a path between vertices
x and y. Two paths π′ and π′′ are internally disjoint (or, simply, disjoint) if they do not share any internal
vertex, while a set of paths are internally disjoint if they are pairwise internally disjoint.

Next, we introduce the formal definitions of the problems we deal with in this paper, namely the
optimization problem MAX CDP, the decision problem (CDP) naturally associated with MAX CDP, and
the corresponding length-bounded variants `-LCDP and `-LCDPp.

Problem 1. MAXIMUM COLORED DISJOINT PATHS (MAX CDP).
Input: a set C of colors, a C-edge-colored graph G = (V, E), and two vertices s, t ∈ V .
Output: the maximum number of disjoint uni-color st-paths.

Problem 2. COLORED DISJOINT PATHS (CDP).
Input: a set C of colors, a C-edge-colored graph G = (V, E), a non-negative integer p, and two vertices
s, t ∈ V .
Output: Do there exist at least p disjoint uni-color st-paths in G?

The `-LENGTH COLORED DISJOINT PATHS (`-LCDP) problem is a variant of MAX CDP where the
length of the paths in the solution is bounded by an integer ` ≥ 1. The `-LCDPp problem is the decision
version of `-LCDP which asks if there exists a solution of `-LCDP with cardinality at least p.

3. Approximation and Parameterized Complexity of MAX CDP

In this section, we present a reduction from MAXIMUM INDEPENDENT SET to MAX CDP. Since the
reduction preserves the solution cost, it implies that MAX CDP is not approximable within factor c1−ε,
for any ε > 0, and that CDP is W[1]-hard when the parameter is the size p of the solution.

Given an undirected graph GI = (VI , EI), the MAXIMUM INDEPENDENT SET (MAX INDSET) problem
asks for an independent set I ⊆ VI of maximum cardinality, i.e., a maximum-cardinality set I such that
if v′, v′′ ∈ I then {v′, v′′} 6∈ EI . In the following, starting from a graph GI , we construct a gadget (an
edge-colored graph) GC , such that finding an independent set I of cardinality k in GI is equivalent to
finding k disjoint uni-color st-paths in GC . First, we describe the edge-colored graph GC associated
with a generic graph GI , then we prove some properties of the computed gadget.

Description of the gadget. Let GI = (VI , EI) be an undirected graph, with V = {v1, . . . , vn} and
EI = {e1, . . . , em}. Without loss of generality, we assume that GI is connected, since a maximum
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independent set of a non-connected graph is the union of the maximum independent sets of its connected
components. Let ΠEI

be an ordered list of the edges of GI , based on some ordering. We construct an
edge-colored graph GC = (VC , E1, . . . , En) associated with GI as follows. Informally, the vertex set VC

is composed by two distinguished vertices s and t and a vertex for each edge of GI , while each set Ei,
1 ≤ i ≤ c, is composed connecting the vertices associated with edges of GI incident to vi in the same
order as they appear in ΠEI

. Formally, the set of colors is:

C = {1, . . . , n}

Now, we define the vertex set VC :

VC = {s, t} ∪ {ui,j | {vi, vj} ∈ EI}

Finally, we define the edge set Ei, 1 ≤ i ≤ n:

Ei =
{
{ui,x, ui,y} | no edge {vi, vz} appears between {vi, vx} and {vi, vy} in the list ΠEI

}
∪{

{s, ui,j} | ui,j is the first edge incident in vi of the list ΠEI

}
∪{

{ui,j, t} | ui,j is the last edge incident in vi of the list ΠEI

}
Figure 1 represents an example of an undirected graph GI and of the edge-colored graph GC associated
with it.

Figure 1. An example of a graph GI and the edge-colored graph GC associated with it. For
convenience, we labelled the edges of GI such as they correspond to the vertices in GC . The
colors of the edges in GC are indicated by numbers placed near the edges, while the two
distinguished vertices s and t are highlighted in grey. The order ΠEI

of the edges of GI is
simply the lexicographic order of their labels.
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Given a graph GI with n vertices and m edges, the associated edge-colored graph GC has m + 2

vertices, O(mn) edges, and n colors, i.e., c = n.

Properties of the gadget. First, we introduce the following properties of the gadget.

Remark 1. A uni-color st-path of color i, with 1 ≤ i ≤ c, contains each vertex ui,x of GC associated
with an edge incident in vi ∈ VI .
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Proof. The proof follows by construction, since the edges of color i, with 1 ≤ i ≤ c, induce a st-path that
contains each vertex ui,x of GC associated with an edge incident in vi ∈ VI ordered as in list ΠEI

.

Next, we prove the two main results of the reduction from MAX INDSET to MAX CDP.

Lemma 2. Let GI = (VI , EI) be an undirected graph and I ⊆ VI be an independent (vertex) set for GI .
Then, we can compute in polynomial time (at least) |I| disjoint uni-color st-paths in the edge-colored
graph GC associated with GI .

Lemma 3. Let GI = (VI , EI) be an undirected graph and GC be the edge-colored graph associated
with GI . If there exist k disjoint uni-color st-paths in GC , then we can compute in polynomial time an
independent set I ⊆ VI for GI , with |I| = k.

The first lemma is easily proved by showing that the uni-color st-paths associated with the vertices
of the independent set I are pairwise disjoint. Conversely, the second lemma can be proved by showing
that the vertices of GI associated with the k uni-color st-paths of GC form an independent set for GI .

Proof of Lemma 2. By construction, in GC there exists a uni-color st-path associated with each vertex v
of the original graph GI . We will show that the set P of paths of GC associated with each vertex v ∈ I
are internally disjoint. Let πi and πj be two paths of P associated with vertices vi and vj , respectively,
of I . Notice that the two paths πi and πj connect the vertices which represent the edges of GI incident
to vi and vj , respectively. Since I is an independent set in GI , no edge e′ ∈ EI is incident to both vi and
vj (i.e., ui,j 6∈ EI), thus πi and πj are (internally) disjoint.

Proof of Lemma 3. Let P be the set of k disjoint uni-color st-paths of GC . Since each color is (bi-
univocally) associated with a single path in GC which, in turn, is (bi-univocally) associated with a single
vertex of GI , we can define a set I ⊆ VI that consists of the vertices of GI associated with a path of P .
Clearly, |I| = |P | = k. We claim that I is an independent vertex set for GI . Suppose that I is not an
independent set, thus there exist two vertices vi, vj ∈ I such that {vi, vj} ∈ EI . Let ui,j be the vertex
of GC representing edge {vi, vj}. Since vi, vj ∈ I , then there exist two paths πi, πj in P associated with
vi and vj . By Remark 1, both paths must contain vertex ui,j as an internal vertex, since edge {vi, vj}
is incident to both vi and vj . Hence paths πi and πj are not internally disjoint, which contradicts our
assumption and thus I is an independent set for GI .

Consequences. Lemmas 2 and 3 prove the existence of an L-reduction [4] from MAX INDSET to
MAX CDP with constants β = γ = 1. Hence, considering that, unless P = NP, MAX INDSET cannot be
approximated in polynomial time within factor |VI |1−ε for any constant ε > 0 [5], and that |VI | = c, the
following theorem holds.

Theorem 4. For any constant ε > 0, MAX CDP cannot be approximated within factor c1−ε in polynomial
time unless P = NP.

This result greatly improves the previous inapproximability factor 2− ε for MAX CDP [3] and, given
the c-approximation algorithm presented in [3], it is the asymptotically optimal inapproximability ratio
for MAX CDP. However, notice that the inapproximability factor 2 − ε for MAX CDP given in [3] holds
even if c is a fixed constant, while in our reduction c is not fixed.
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From the parameterized complexity point of view, the reduction also implies the W[1]-hardness of
the decision problem CDP, as stated in the following theorem.

Theorem 5. CDP is W[1]-hard when parameterized by the number p of disjoint uni-color st-paths.

Proof. The reduction presented by Lemmas 2 and 3 is also a parameterized reduction [6] from
INDEPENDENT SET (the decision problem naturally associated with MAX INDSET) to CDP (indeed the
size of an independent set of GI is identical to the number of disjoint uni-color st-path in GC). Since
INDEPENDENT SET is W[1]-hard when the parameter is the size of the required independent set [7], then
also CDP is W[1]-hard when parametrized by number p of disjoint uni-color st-paths.

4. A Fixed-Parameter Algorithm for `-LCDPp

In this section, we study `-LCDPp, the length-bounded (decision) version of MAX CDP, which asks if
there exist p uni-color disjoint st-paths of length at most `. We show that `-LCDPp is fixed-parameter
tractable when the parameters are ` and p by presenting a parameterized algorithm based on the color
coding technique [8]. For an introduction to parameterized complexity see [6]. Notice that `-LCDPp is
unlikely to admit fixed-parameter tractable algorithms when parameterized only by p or only by `. Indeed
in the latter case, `-LCDPp is already NP-hard when ` = 4 [3]. In the former case, we have proved in
the previous section that CDP (hence `-LCDPp, when ` = n) is W[1]-hard when parameterized by p.

Color coding is a technique initially introduced to design fixed-parameter algorithms for various
restrictions of the subgraph isomorphism problem. It then gained popularity and it has been successfully
applied to tackle the computational hardness of various problems on networks and graphs [9–11], on
strings [12,13], and problems of subset selection [14,15]. The basic idea of the color coding technique
applied on graph problems is, first, to “color” the vertices of the graph from a set of k colors (for an
appropriate choice of the number k of colors), and, then, to find a solution of the given problem with the
additional constraint that the vertices of the solution are colored with distinct colors (called a “colorful”
or “color coded” solution), if such a solution exists. The process is re-iterated with a different coloring
if a colorful solution is not found.

The key theoretical result, which allows to obtain deterministic algorithms based on the color coding
technique, is the deterministic construction of k-perfect families of hash functions. A family F of hash
functions from a set U (the vertex set in the traditional applications of color coding) to the set {1, . . . , k}
of colors is k-perfect if, for each subset U ′ of U such that |U ′| = k, there exists a hash function f in
F such that U ′ is colorful w.r.t. f , i.e., f assigns a distinct label to each element of U ′. In fact, if the
given problem has a solution S of size k, then there exists a hash function in F such that solution S is
colorful. Hence, it suffices to test if there exists a colorful solution for one of the colorings given by the
hash functions of the k-perfect family in order to guarantee the existence of a solution of the original
problem, if such a solution exists. Crucial to the overall running time is the size of a k-perfect family
and the time required to enumerate and evaluate the hash functions of the family. Currently, the best
bounds (such as [8,16,17]) are, in general, explicit constructions of families of size 2O(k) logO(1)(|U |) in
time proportional to their size.

The description of the parameterized algorithm for the `-LCDPp problem is divided into two parts.
First, we present a procedure that, given an edge-colored graph GC and a vertex-coloring function λ,
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verifies if in GC there exist p disjoint uni-color st-paths long at most ` and with the additional constraint
that the inner vertices of the p paths are colored with distinct colors. Then, we show that, by exploiting
well-known properties of families of perfect hash functions, the previous procedure can be used to
solve the `-LCDPp problem in polynomial time (if p and ` are parameters). In the following, to avoid
ambiguities between vertex’s and edge’s colors, function λ will be called vertex-labelling function (or,
simply, a labelling function) instead of the traditional term of coloring function.

A dynamic-programming procedure for the L-labelled `-LCDPp problem. Let
GC = (V,E1, . . . , Ec) be a C-edge-colored graphs with two distinguished vertices s and t, and
let λ be a labelling function which maps each vertex v of V \ {s, t} to a label λ(v) belonging to a set
L (we assume that λ assigns a distinct label to each vertex of a solution of `-LCDPp). Let L ⊆ L be a
fixed set of labels. A simple path π in GC is L-labelled if and only if the labels of its vertices (with the
exclusion of s and t) are contained in L and are pairwise distinct. A set {π1, . . . , πk} of simple paths
is L-labelled if and only if there exists a partition {L1, . . . , Lk} of L such that each πi is Li-labelled.
We say that a path π is g-colored, with g ∈ C, if all of its edges belong to set Eg. The L-labelled
`-LCDPp problem, given GC and λ : V → L with |L| = (` − 1)p, asks if there exists an L-labelled
solution for the `-LCDPp problem on GC . We solve the L-labelled `-LCDPp problem by combining two
dynamic-programming recurrences. The first one, M [L, v, g], tests if, for a set of labels L ⊆ L, there
exists an L-labelled g-colored path from vertex s to a vertex v different from t. The second one, P [L],
tests if, for a set of labels L ⊆ L such that |L| = (` − 1)q for some integer q ∈ [0, p], there exists a
partition {L1, . . . , Lq} of L in q subsets such that each set Li labels a gi-colored st-path of length l ≤ `.

Recurrence for M [L, v, g] is defined as follows (where ] represents the disjoint union operator):

M [L, v, g] =


1 if v = s

0 if L = ∅ and v 6= s

max
{
M [L′, u, g] | L = L′ ] {λ(v)} ∧ {u, v} ∈ Eg

}
otherwise

(4.1)

Correctness of the previous recurrence is proved by the following lemma.

Lemma 6. M [L, v, g] is true if and only if there exists an L-labelled g-colored path from s to v.

Proof. The proof is by induction on the cardinality of L. If |L| = 0, the base cases apply and a path
which does not use any label exits if and only if v = s. Now, assume that M [L, v, g] is correct for
any L such that |L| ≤ k (for some k) and we will prove the correctness of M [L′, v, g] for all L′ such
that |L′| = k + 1. Moreover, assume that v 6= s, since, otherwise, the first base case applies which is
clearly correct. Then, an L′-labelled g-colored path from s to v 6= s exists if and only if (i) λ(v) ∈ L
and (ii) there exists an L′′-labelled g-colored path π from s to a vertex u such that {u, v} ∈ Eg and
L′′ = L′ \ {λ(v)}. Since |L′′| = |L′| − 1 = k, path π exists if and only if M [L′′, u, g] is true. The
inductive case of Equation 4.1 tests the above mentioned conditions, hence M [L′, v, g] is correct also for
sets of labels L such that |L| = k + 1, concluding the proof.

Clearly, M can be used to test if there exists an L-labelled g-colored st-path, as illustrated by the
following corollary.
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Corollary 7. The existence of an L-labelled g-colored st-path can be tested in time O(2|L| |Eg|).

Proof. By Lemma 6, to test the existence of an L-labelled g-colored st-path, it suffices to test the
existence of a vertex v such that {v, t} ∈ Eg and M [L, v, g] is true. For a fixed color g and a fixed
set L of labels, the time needed to evaluate M [L, v, g] for all v ∈ V is O(|Eg|) since each edge is
considered only a constant number of times (twice, indeed). Since there exist 2|L| distinct subsets of L,
the overall time is O(2|L| |Eg|).

The second recurrence, P [L], which, given an integer q ∈ [0, p] and a subset L ⊆ L such that
|L| = (`− 1)q, solves the L-labelled `-LCDPq problem, is defined as follows:

P [L] =


1 if L = ∅
max

{
P [L′] ∧ M [L′′, v, g] |
L = L′ ] L′′ ∧ |L′′| = (`− 1) ∧ g ∈ C ∧ {v, t} ∈ Eg

} otherwise
(4.2)

Notice that we implicitly assume that the solution of the ∅-labelled `-LCDP0 problem is always YES

(i.e., P [∅] = 1).
Correctness of Equation 4.2, as proved in the following lemma, derives from Corollary 7, from the

bound on the cardinality of L′′, and from the disjointness of L′ and L′′.

Lemma 8. Given an edge-colored graph GC and a vertex-labelling function λ : V → L with
|L| = (`− 1)p, then there exists an L-labelled set S of p disjoint uni-color st-paths of length at most `
if and only if P [L] is true.

To prove this lemma, we first prove some intermediate results.

Property 9. Let Li and Lj be two disjoint subsets of L, let vi and vj be two distinct vertices, and gi and
gj be two (possibly equal) colors. Then M [Li, vi, gi] and M [Lj, vj, gj] are both true if and only if there
exist two disjoint uni-color paths πi and πj from s to vi and vj , respectively.

Proof. By Lemma 6, since both M [Li, vi, gi] and M [Lj, vj, gj] are true, paths πi and πj exist labelled
with set Li and Lj , respectively. Since Li and Lj are disjoint, there could not exist a common vertex v
(different from s), otherwise λ(v) would belong to both Li and Lj . Hence, πi and πj are disjoint.

Property 10. The length of an L-labelled path π from s to a vertex v 6= t is, at most, |L|.

Proof. All the vertices (but s, which is not labelled) of π are labelled with distinct labels in L, hence
there could be at most |L|+ 1 vertices in π.

Proof of Lemma 8. We prove the correctness of P by induction on the number of paths p. If p = 0, then
|L| = (`− 1)p = 0. Thus, the base case applies and, since we assume that 0 paths always exist, it is also
correct. Let us assume that P is correct for any p ≤ k and let us prove its correctness for p = k+1. First,
we prove that if P [L] is true, then a solution S for `-LCDPp can be built. Notice that the second case of
Equation 4.2 tries every possible bi-partition of set L in two sets L′ and L′′ of cardinality |L| − (` − 1)

and ` − 1, respectively. If function P [L] is true, then at least one of the bi-partitions verifies the given
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conditions. Notice that |L′| = |L| − (`− 1) = (`− 1)(k+ 1)− (`− 1) = (`− 1)k. Hence, by induction
hypothesis, since P [L′] is true, there exists an L′-labelled set S ′ of k disjoint uni-color st-paths. The
other conditions, as shown in the proof of Corollary 7, test the existence of an L′′-labelled g-colored
st-path π for some color g ∈ C. Thus, if there exists a bi-partition which satisfies all the conditions,
then there exits an L-labelled set S = S ′ ] {π} of k + 1 uni-color st-paths. Moreover, since L′ and L′′

are disjoint, by Property 9, path π and any path of S are disjoint. Furthermore, since |L′′| = ` − 1, by
Property 10, the length of π is, at most, ` (in particular, `− 1 from s to vertex v, plus 1 from v to t). As
a consequence, S is an L-labelled set of p = k + 1 disjoint uni-color st-paths of length, at most, `.

Now, we prove that if there exists an L-labelled set S of (k+ 1) disjoint uni-color st-paths, then P [L]

is true. For each path π ∈ S, let Li be the set of labels labelling πi. Since the paths in S are disjoint,
also the sets L1, . . . , Lk+1 are disjoint. Moreover, since the length of each path is at most `, we have
that |Li| ≤ (` − 1). Notice that |L| is (` − 1)(k + 1), thus it is possible to find a partition of L in p
sets L′1, . . . L

′
k+1 of cardinality ` − 1 such that each Li is a subset of L′i. Let us consider a generic path

πi. Since πi is a uni-color st-path (of length at most `), then there exists a vertex v and a color g such
that M [L′i, v, g] is true and {v, t} ∈ Eg (Corollary 7). Finally, since L̄′i = L \ L′i is a set of labels of
cardinality (` − 1)k and S \ {πi} is an L̄′i-labelled set of k disjoint uni-color st-paths of length at most
`, by induction hypothesis we have that P [L̄′i] is true. Therefore, the bi-partition {L′i, L̄′i} satisfies all the
condition of Equation 4.2 and P [L] is true.

An immediate consequence is that the L-labelled `-LCDPp problem can be solved in polynomial time
when ` and p are parameters.

Corollary 11. TheL-labelled `-LCDPp problem can be solved in timeO(22`pm), wherem =
∑

g∈C |Eg|.

Proof. The evaluation of M needs O(2|L|m) time. For a fixed L ⊆ L, the evaluation of P [L] requires
O(2|L|m) and, since there are 2|L| possible subsets of L, the time needed to evaluate P is O(2|L|) +

O(2|L|2|L|m) = O(22`pm).

The algorithm for `-LCDPp. As explained before, it is possible to explicitly construct a k-perfect
family F of hash functions, that is a set F of hash functions from a universal set U to the set of integers
{1, . . . , k} such that for each U ′ ⊆ U of cardinality k there exists a hash function f ∈ F which assigns
distinct integers to the elements of U ′. It has been shown (see, for example, [8,16,17]) that a k-perfect
family of hash functions of size 2O(k) logO(1) |U | can be explicitly constructed in time proportional to
its size. As a consequence, the `-LCDPp problem can be solved by solving the L-labelled `-LCDPp

problem for all the labelling functions given by the hash functions of a (` − 1)p-perfect family (where
U = V ) in time 2O(`p)O(m logO(1) |VC |). We remark that this algorithm is mainly of theoretical interest,
since the running times are impractical even with modest choices of the parameters ` and p. However,
as formalized by the following theorem, it settles the parameterized complexity of the `-LCDPp problem
for the parameters ` and p.

Theorem 12. The `-LCDPp problem parameterized by the bound on the path length ` and the number p
of disjoint uni-color st-paths is in FPT.
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5. Conclusions

In this paper we have considered the MAX CDP problem, a combinatorial problem motivated by
applications in social network analysis that, given an edge-colored graph GC , asks for the maximum
number of disjoint uni-color paths in GC . We have shown that the problem is not approximable within
factor c1−ε, for any constant ε > 0, and that the corresponding decision problem (CDP) is W[1]-hard
when parametrized by the number p of disjoint uni-color paths. Then, we have given a fixed-parameter
algorithm for `-LCDPp, a restriction of the problem where the length of the disjoint paths are bounded
by a parameter. An interesting open problem is to improve the time complexity of the fixed-parameter
algorithm for `-LCDPp. Moreover, kernelization complexity issues are still completely unexplored.
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