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Abstract: Principal Component Analysis (PCA) is widely used for identifying the major
components of statistically distributed point clouds. Robust versions of PCA, often based
in part on the ℓ1 norm (rather than the ℓ2 norm), are increasingly used, especially for
point clouds with many outliers. Neither standard PCA nor robust PCAs can provide,
without additional assumptions, reliable information for outlier-rich point clouds and for
distributions with several main directions (spokes). We carry out a fundamental and complete
reformulation of the PCA approach in a framework based exclusively on the ℓ1 norm and
heavy-tailed distributions. The ℓ1 Major Component Detection and Analysis (ℓ1 MCDA)
that we propose can determine the main directions and the radial extent of 2D data from
single or multiple superimposed Gaussian or heavy-tailed distributions without and with
patterned artificial outliers (clutter). In nearly all cases in the computational results, 2D ℓ1

MCDA has accuracy superior to that of standard PCA and of two robust PCAs, namely, the
projection-pursuit method of Croux and Ruiz-Gazen and the ℓ1 factorization method of Ke
and Kanade. (Standard PCA is, of course, superior to ℓ1 MCDA for Gaussian-distributed
point clouds.) The computing time of ℓ1 MCDA is competitive with the computing times of
the two robust PCAs.
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1. Introduction

Discerning the major components of a point cloud is of importance for finding patterns in the cloud
and for compressing it. Principal Component Analysis (PCA) is a widely used successful tool to
determine the direction, spread, and dimensionality of point clouds [1,2]). In its standard formulation,
PCA is based on analysis in the square of the ℓ2 norm applicable to data from distributions with
finite second-order moments. This results in excellent performance when the point cloud has Gaussian
structure or the structure of a distribution close to Gaussian. However, point clouds obtained under
conditions other than benign laboratory conditions often contain significant numbers of outliers and the
points may follow a heavy-tailed distribution that does not have finite second-order moments, which
strongly limits the accuracy of standard PCA or prevents it from being applicable.

To remedy this situation, robust PCAs [3–6] and especially robust PCAs involving the ℓ1 norm [7–10]
have been investigated over the past few years. In most of the ℓ1 reformulations of PCA that have
been proposed, the ℓ1 norm is applied only to parts of the PCA process. An analytical connection with
heavy-tailed statistics is not present in any of these reformulations. Much of the previous work on ℓ1

methods for PCA and in other areas has been carried out under the assumption of sparsity of the principal
components or of the error. But the principal components and the error are often not sparse. While an
assumption of sparsity is common in many areas (for example, in compressed sensing) and can lead
to meaningful analytical and computational results in those areas, it restricts the set of situations that
a reformulated PCA can address. Finally, neither standard PCA nor any of the reformulated robust
PCAs are able to provide reliable information for distributions with two or more irregularly spaced main
directions (spokes, such as from superimposing several classical distributions).

We hypothesize that ℓ2-based concepts such as singular values, inner products, orthogonal projection,
averaging and second-order moments (variances and covariances) in the reformulated PCAs that have
been investigated in the recent literature are limiting factors in the applicability of these PCAs to
realistic outlier-rich point clouds that occur in geometric modeling, image analysis, object and face
recognition, data mining, network analysis and many other areas. To remedy this situation, we carry
out here a fundamental reformulation of the PCA approach in a framework based not just in part but in
total on the ℓ1 norm. The ℓ1 norm is chosen because it is an appropriate norm when the data cloud
has a significant number of outliers, either artificial outliers or outliers of a heavy-tailed statistical
distribution. While analysis of multivariate heavy-tailed distributions is still underdeveloped, there has
been progress [11–14]). Our ℓ1 approach here is related to the approach by which L1 splines, a new class
of splines that preserve shape for highly irregular data, have been created over the past 12 years [15–19].
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2. Standard PCA and Recently Developed Robust PCAs

In its standard formulation [2], PCA is designed to create uncorrelated components (“orthogonal
solutions”). There are variants of PCA that create correlated components (“oblique solutions”), but
we do not consider them here. Principal components are normally calculated using the singular value
decomposition of the data matrix, an efficient and stable numerical procedure. Standard PCA can be
summarized as follows:

1. Calculate the mean of the point cloud and subtract it out of the data.

2. Set up the matrix X of the data that result from Step 1. The rows of X are the data vectors.

3. Calculate the singular values of X , that is, the diagonal elements of the matrix Σ in the singular
value decomposition X = UΣV T . (These singular values are the eigenvalues of the covariance
matrix of the data.)

4. Order the components (the columns of the matrix V in the singular value decomposition) in
descending order of the singular values.

5. Select basis vectors to be the components corresponding to the largest singular values.

6. Conduct further processing (for example, project the data onto the basis consisting of the vectors
selected in Step 5).

Step 3 makes the limitations of standard PCA apparent. For the singular values to be meaningful,
the covariance matrix of the continuum distribution from which the samples come needs to exist, that
is, be finite. There are heavy-tailed distributions for which covariance matrices exist and others for
which they do not. When there are a significant number of outliers in the data, an assertion that the
covariance matrix of the continuum distribution exists can be dubious. A large number of outliers in the
data is often an indication that the data come from a continuum heavy-tailed distribution for which the
covariance matrix may not exist (has infinite entries). While the covariance matrix of a finite sample
always exists, it is meaningful only if the covariance matrix of the underlying continuum distribution
exists. In the remainder of this section, we discuss four robust variants of PCA that are currently in use.

Candès et al. [7] use the “nuclear norm” of a matrix in their robust PCA. The nuclear norm of a matrix
P , denoted by ∥P ∥•, is the sum of the singular values of P . Let ∥E ∥1 denote the sum of the absolute
values of the entries of a matrix E. Let D be the data matrix, P be the matrix of principal components,
and E be the error matrix. Candès et al. formulate the robust PCA problem as minimization of

∥P ∥• +λ ∥E ∥1 subject to P + E = D (1)

under assumptions that P is of low rank and E is sparse. Here, λ is a prescribed parameter based on
the size of the data set [7]. Using an ℓ1 norm to replace an ℓ2 norm in a computational method is often
a good procedure for robustifying the method. Minimization of expression (1) is seemingly based on
the ℓ1 norm, since both of the norms that occur in the objective-functional portion of expression (1)
consist of sums of absolute values. However, the nuclear norm is not an ℓ1 metric but only a “pseudo-ℓ1”
metric because the singular values on which it is based are created by an ℓ2-based process. Moreover,
the arithmetic mean used to center the data is also an ℓ2, not an ℓ1 quantity. It is our hypothesis that a
procedure that avoids use of singular values, which are ℓ2 quantities, and is based completely on the ℓ1
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metric will provide more accurate output information about realistic outlier-rich data than robust PCAs
that are based on the use of singular values.

Kwak [10] proposes maximizing the ℓ1 norm of the product of a vector and the data matrix and
provides face recognition results that indicate success. This method uses inner products (a matrix or a
vector times a matrix), which are ℓ2 operations that do not exist in an ℓ1 space. Here again, we surmise
that a procedure that avoids use of all ℓ2 quantities and is based completely on the ℓ1 metric will have
better performance.

Croux and Ruiz-Gazen [4] calculate robust estimates of the eigenvalues and eigenvectors of the
covariance matrix without estimating the covariance matrix itself. Their method is based on a
projection-pursuit approach developed by Li and Chen [20]. In this approach, one searches for directions
for which the data, projected onto these directions, have maximal dispersion. This dispersion is measured
not by the variance but by a robust scale estimator Sn. For data {xm}M−1

m=0 , the estimate of the first
eigenvector is defined to be

vSn,1 = argmax∥a∥=1Sn(aTx0, a
Tx1, . . . , a

TxM−1) (2)

and the associated eigenvalue is

λSn,1 = S2
n((vSn,1)

Tx0, (vSn,1)
Tx1, . . . , (vSn,1)

TxM−1) (3)

Subsequent eigenvectors are determined by searching in an analogous manner over subspaces orthogonal
to all subspaces already found. Croux and Ruiz-Gazen [4] made the projection-pursuit process of Li and
Chen more efficient by approximating on each step a full-space search for the vector a by a search over
a finite set while retaining a high finite-sample breakdown point.

Finally, Ke and Kanade [8,9] seek a UV factorization of the data matrix X = (x0,x1, . . . ,xM−1)

such that
∥X − UV T∥1 (4)

is minimized. This method uses the ℓ1 norm but also involves ℓ2 inner products (matrix multiplication).
The minimization of expression (4) is non-convex, so Ke and Kanade calculate U and V iteratively with
a random initialization of U , optimizing one matrix while keeping the other one fixed, in the following
manner. Given U = U (k), V (k) is defined to be

V (k) = argminV ∥X − U (k)V T∥1 (5)

The next U , that is, U (k+1) is defined to be

U (k+1) = argminU∥X − UV (k)T ∥1 (6)

These two ℓ1 minimization problems can be decomposed into independent minimization problems that
Ke and Kanade solve by linear programming or, approximately, by quadratic programming.

In addition to the issues mentioned above, currently available robust PCAs are not able to
meaningfully handle data from distributions with multiple, irregularly spaced main directions or
“spokes,” that is, directions in which the level surfaces of the probability density function extend further
out from the central point than in neighboring directions, a situation that is increasingly common for



Algorithms 2013, 6 16

some physical and a lot of non-physical (sociological, cognitive, human-behavior, etc.) data. These
PCAs provide only one main direction that accounts for the largest variability in the data and additional
orthogonal directions that account for the remaining variability. But these directions may provide very
little information about the data. In the literature, one extension of PCA that detects orthogonal spokes
using a union-of-subspaces model is available [21]. However, this extension does not involve the ℓ1

norm and is therefore not robust when a significant number of outliers is present. It is possible that
“superstructure” could be added to standard PCA and to robust PCAs to allow them to calculate multiple
non-orthogonal spokes, but such generalizations of these methods are not yet available in the literature.
There is nevertheless a need to develop a method that can calculate the directions and spreads of multiple
major components.

In the next section, we consider how to reformulate the PCA approach in a framework based
exclusively on the ℓ1 norm and heavy-tailed distributions, without using any ℓ2-based concepts, in a
way that allows calculation of the directions and spreads of single and of multiple major components.
Our reformulation occurs in a manner that differs from previous ℓ1-based robust PCAs not merely in
algorithmic structure but also in theory. The theory that we propose relies on the linkage between
heavy-tailed distributions and the ℓ1 norm, a linkage that is not discussed in the previous literature about
robust PCAs.

3. 2D ℓ1 Major Component Detection and Analysis

Reformulation of the PCA approach in the ℓ1 norm involves more than adjusting individual steps in
the standard PCA process that was outlined in Section 2. One must now accomplish the objective of
determining the main directions and the magnitudes of the spread of the point cloud in those directions
without the tools (singular values, inner products, orthogonal projection, averaging and second-order
moments) of the standard ℓ2-based approach.

The ℓ1 Major Component Detection and Analysis (ℓ1 MCDA) that we propose consists of the
following two steps:

1. Calculate the central point of the data and subtract it out of the data.

2. Calculate the main directions of the point cloud that results from Step 1 and the magnitudes of
radial extension in those directions.

Post-processing analogous to Step 6 of standard PCA will be part of a fully developed ℓ1 MCDA in the
future but will not be discussed in this paper.

The point cloud under consideration is denoted by {xm}M−1
m=0 . The distance between points x and y

in the data space is denoted by d(x,y). Since the ℓ1 norm requires fewer operations than the ℓ2 norm
(see Remark 1 below), we will use the ℓ1 norm to define the distance function in the data space for the
description of the algorithm in the present section and for the computational experiments discussed in
Section 4. However, ℓ1 MCDA works with any distance function in the data space that the user wishes to
choose, for example, the ℓ2 norm. The distance function does need not to satisfy the triangle inequality
but does need to allow definition of angular coordinates. All ℓp norms, 1 ≤ p < ∞, allow definition
of angular coordinates. We do not require orthogonality of the main directions of the distribution but
do allow orthogonality to be imposed based on outside information, for example, when we wish to
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identify major components of a point cloud that is known to be from a distribution with orthogonal main
directions or when the data are geometric data with orthogonal main directions in a Euclidean space.

Remark 1 Minimization of a “linear” ℓ1 functional (sum of absolute values of linear components)
is a linear programming problem that is generally more expensive to solve than minimization of a
corresponding ℓ2 functional (sum of squares of linear components), which is carried out by solving one
linear system. Not surprisingly, therefore, the ℓ1 MCDA that we will develop will be more expensive
than standard ℓ2-based PCA. However, as a functional for measuring distance in the data space, the ℓ1

norm is not an ℓ1 minimization problem but rather simply a defined metric. As a metric in the data
space, the ℓ1 norm, which is a sum of absolute values, is computationally much cheaper than the ℓ2

norm, which is a square root of a sum of products. Rotation in ℓ1-normed space consists of adding
and/or subtracting quantities from the coordinates while rotation in ℓ2-normed space involves the more
expensive operations of calculation of multiple sums of products. This situation suggests that using the
ℓ1 norm in the data space is meaningful. Even when the natural norm in the data space is the ℓ2 norm,
using the computationally cheaper ℓ1 norm as an approximation of the ℓ2 norm (rather than vice versa
as has traditionally been the case) is a meaningful choice. The fact that ℓ1-based methods are more
expensive than ℓ2-based methods in many higher-level situations does not change the fact that the ℓ1

metric is much less expensive than the ℓ2 metric at the lowest level of measuring distance in a data space.

3.1. ℓ1 MCDA Step 1: Calculation of the Central Point

We define the multivariate median to be the point x̂ that minimizes

M−1∑
m=0

d(x̂,xm) (7)

In standard PCA, the central point is calculated by minimizing (7) with the square of the ℓ2 norm
as the distance function d. This yields the multidimensional average, which costs O(M) (sequential)
operations. However, many heavy-tailed distributions, including the Student t distribution with 1 degree
of freedom that we will use in the computational experiments in this paper, do not have an average. When
the continuum distribution from which a sample is drawn does not have an average, using the average
of the data points in that sample for any purpose whatsoever is wrong. When d is the ℓ1 norm, x̂ is the
coordinate-wise median, an estimator of the central point [22], that consists of scalar medians (one for
each coordinate direction) and costs O(M) (sequential). In this paper, we will use the coordinate-wise
median, which exists for all heavy-tailed and light-tailed distributions, as the central point of the data set.

Remark 2 For distributions with spokes that are not symmetrically positioned around a central point,
the coordinate-wise median is not an appropriate central point. Other options such as the “L1-median”
investigated by Fritz et al. [23] in which the distance function d is the ℓ2 norm (rather than the widely
chosen square of the ℓ2 norm square of the ℓ2 norm) may be more meaningful. In the present paper, we
will assume that all of the spokes of the data are symmetrically positioned around a central point, that
opposite spokes have the same structure and, therefore, that the coordinate-wise median is an appropriate
central point.

Once the central point is calculated, it is subtracted out of the data, resulting in a point cloud that
is centered at the origin of the space. Since there is little possibility of confusion, we denote the data
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set after the central point has been subtracted out by {xm}M−1
m=0 , the same notation used for the original

data set.

3.2. ℓ1 MCDA Step 2: Calculation of the Main Directions

After the data have been centered in Step 1, we need to calculate the main directions in which the
distribution extends. Standard PCA prescribes that the main directions of the distribution are orthogonal
to each other and that the measure of the extension in each of the orthogonal directions is determined
by the covariance matrix. Such structure is consistent with a standard assumption of Gaussian or near-
Gaussian distribution of the data. This structure is a leading factor in keeping the computational cost of
standard PCA (calculated by singular value decomposition) low. At the same time, its rigidity is a cause
of the limited applicability of standard PCA.

The central point of a symmetric univariate heavy-tailed distribution is its 50% quantile, the median
of the distribution. The spread of a univariate heavy-tailed distribution around its central point is
represented by the distance to other quantiles, for example, the 25% and 75% quantiles. The further
away the 25% and 75% quantiles are from the central point, the more spread out (flatter, with heavier
tails) the distribution is. One can calculate the 25% and 75% quantiles by calculating the median of the
data between the 0% quantile and 50% quantile and the median of the data between the 50% quantile
and 100% quantile, respectively. This procedure for calculating the 25% and 75% quantiles is used
here because it can be generalized to higher dimensions. For symmetric distributions, one need, of
course, calculate only the 25% or the 75% quantile, not both. The univariate situation provides the
guideline for how we approach determining the properties of a multivariate heavy-tailed distribution.
How heavy-tailed a multivariate distribution is in a given direction is estimated by the “median radius”
of the data points in and near that direction.

Assume for now that, as previously stated, the distribution is symmetric around the origin, that is,
“spokes” are in precisely opposite directions. Since the distribution is symmetric, we map, without loss
of generality, every original data point xm = (xm, ym) for which xm < 0 or for which xm = 0 and
ym > 0 to an origin-symmetric data point (−xm,−ym). To avoid proliferation of notation, we denote
each such data point (−xm,−ym) also by xm. For each data point xm (whether an original data point or
a data point obtained by mapping to the origin-symmetric point), define the ℓ1 direction θm (analogous to
an angle in ℓ2 polar coordinates) to be the y-coordinate of the corresponding point on the ℓ1 “unit circle”
(unit diamond), that is,

θm =
ym

|xm| + |ym|
(8)

Here, all of the coordinates xm are nonnegative and the θm are in the interval [−1, 1). In what follows, we
will need periodic extension of the θm’s. Let k = sM +m for some integer s and for m, 0 ≤ m ≤ M−1.
The θk for k outside the range 0 ≤ m ≤ M − 1 are defined in a natural manner as

θk = θm + 2s (9)

(This situation is a direct analogue of the fact that the standard ℓ2 angle α of a point can be represented
by α + 2πs for any integer s.) The original data points as well as the data points obtained in this manner
can be represented in “polar” form as (θk, rk) where rk = |xk| + |yk| is the ℓ1 radius of the data point.
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In what follows, we assume that the data points (θm, rm) have been ordered so that the values of θm

increase monotonically with m. To avoid proliferation of notation, we use the same notation (θm, rm)

for the sorted data that was used for the unsorted data.
Due to statistical variability, we cannot find good approximations of the directions in which the

distribution spreads farthest simply by identifying the locally largest values of rm (as a function of
m). One estimates the directions in which the multidimensional distribution spreads farthest and the
extent to which it spreads in these directions by calculating the local maxima with respect to θ of the
median radius of the distribution. To find the directions in which the median radius is locally maximal,
we have to approximate the data (θm, rm) in a smooth manner and then find the directions θ in which
this approximation is locally maximal. A method for finding local maxima that relies on fitting the data
with a global function would be computationally feasible in 2D. However, fitting a global surface to the
data would be less computationally attractive in 3D and 4D (space + time) and not at all computationally
useful in n dimensions for n > 4. For this reason, we adopt the following locally based algorithm for
calculating values of a function r(θ) that represents the median radius of the data points (θm, rm) and for
identifying local maxima of this function:

1. Choose a point θm from which to start.

2. Choose an integer q that represents the number of neighbors in each direction (index lower and
higher than m) that will be included in a local domain D.

3. On the local domain D = [θm−q, θm+q], calculate the quadratic polynomial a0 + a1θ + a2θ
2 that

best fits the data in the ℓ1 norm, that is, minimizes,

m+q∑
k=m−q

|a0 + a1θk + a2θ
2
k − rk| (10)

over all real numbers a0, a1 and a2.

4. Determine the location of the maximum of the quadratic polynomial on the local domain D. If the
location of the maximum is strictly inside D, go to Step 5. If the location of the maximum is at
θm−q or θm+q, call this direction a new θm and return to Step 3.

5. Refine the location and value of the maximum of the median radius in the following way. Calculate
a quadratic polynomial on a local domain with a larger q∗ around the node closest to the location of
the approximate local maximum identified in Step 4. The maximum of this quadratic polynomial
is the estimate of the maximum of the median radius.

The above procedure is for calculating one local maximum. To calculate all local maxima for a
distribution with several spokes, one needs to assume that the spokes are distinct from each other, that is,
do not overlap in a way that two closely placed spokes appear nearly like one spoke. For example, one
may have information that the spokes are locally separated by angular distances greater than or equal
to a known lower bound. One then chooses starting points for multiple implementations of Step 1 that
cover the interval [−1, 1) at distances that are slightly less than the lower bound. For applications for
which local minima are important, one can calculate local minima analogously.

Remark 3 The (unusual) situation in which all points lie on one or a few radial lines does not allow
use of the local fitting method described above and can be taken care of by other procedures. In this
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case, the maxima of the median radius occur at the directions of the radial lines. From the clusters of
points with identical θi, one identifies the directions of the lines and then calculates the one-dimensional
median of the ri in each cluster.

Theoretical guidance for choosing the q and q∗ of Steps 2 and 5 is not yet available but it is clear that
q and q∗ need to be chosen based on the structure of the distribution and the properties of the outliers in
the data. There will certainly be a trade-off between accuracy and computational efficiency. With more
noise and outliers, one will need to use larger local domains (more neighbors, that is, larger q and/or q∗)
to retain sufficient accuracy.

4. Computational Experiments

In this section, we present comparisons of 2D ℓ1 MCDA with standard PCA, Croux and Ruiz-Gazen’s
method and Ke and Kanade’s method. Of all the robust PCAs that have been developed, only
Ke and Kanade’s method [8,9], uses ℓ1 as its main basis. For this reason, comparison of our ℓ1

MCDA, which is “fully ℓ1”, with Ke and Kanade’s method is important. For further contextual
awareness, comparison with another widely used robust PCA, for example, Croux and Ruiz-Gazen’s
projection-pursuit method [4] is equally important.

Eight types of distributions were used for the computational experiments:

• Bivariate Gaussian without and with additional artificial outliers

• Bivariate Student t with 1 degree of freedom without and with additional artificial outliers

• Three superimposed bivariate Gaussians without and with additional artificial outliers

• Three superimposed bivariate Student t with 1 degree of freedom without and with additional
artificial outliers

Bivariate Student t distributions with 1 degree of freedom are heavy-tailed distributions with particularly
heavy tails. These distributions were chosen for the computational experiments because they represent a
significant computational challenge for standard PCA, the robust PCAs and ℓ1 MCDA.

All computational results were generated by MATLAB R2009b on a sequential 2.50 GHz computer
with 1GB memory. The quadratic functions in Steps 3 and 5 of the local ℓ1 fitting algorithm described
in Subsection 3.2 were calculated by the MATLAB linprog module. The q and q∗ of Steps 2 and 5 of
the algorithm for calculating the directions and values of the local maxima of the median radius were
chosen to be 5 and 12, respectively.

We generated samples from distributions with median ℓ1 radius ρ in the ℓ1 direction α for the following
ρ and α. For the one-main-direction situation, we used samples from bivariate distributions with
{ρ, α} = {2.1291, 0.2929}. Distributions with three main directions were generated by superimposing
three distributions with {ρ, α} = {2.3340,−0.4308}, {2.1291, 0.2929} and {2.1291, 0.7071}. Samples
from the bivariate Student t distributions were generated by the Matlab mvtrnd module using the

correlation matrix A =

[
1 0.9

0.9 1

]
. These samples were rotated (in ℓ2) to the ℓ1 directions mentioned

above. In the figures described below in which we illustrate these distributions, we indicate the points of
these samples by red dots. Directions and magnitudes of the maxima of the median radius are indicated
by bars extending out from the origin.
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Figure 1. Sample from one Gaussian distribution without artificial outliers.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 2. Sample from three superimposed Gaussian distributions without artificial outliers.
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In the computational experiments, we used data sets consisting of 50, 150 and 500 points. In
Figures 1–4, we present examples of the data sets with 500 points (red dots) for one Gaussian distribution,
one Student t distribution, three superimposed Gaussian distributions and three superimposed Student
t distributions, respectively. In order to exhibit the major components clearly, we show in these
figures data points only in [−10, 10] × [−10, 10]. For Student t distributions, there are still many
points outside [−10, 10] × [−10, 10]. We also generated data sets consisting of data from the
distributions described above along with 5%, 10% and 20% patterned artificial outliers that represent
clutter. For the one-distribution situation, artificial outliers were set up using a uniform statistical
distribution on the ℓ1 diamond with radius 1000 in the ℓ1-direction window [−0.9,−0.5]. For
the three-superimposed-distribution situation, artificial outliers were set up using uniform statistical
distributions on the ℓ1 diamond with radius 1000 in the three different ℓ1-direction windows [−0.9,−0.8],
[−0.3,−0.2] and [0.4, 0.5]. In Figs. 5, 6, 7 and 8, we present examples of 500-point data sets with
10% artificial outliers (depicted by blue dots) for one Gaussian distribution, one Student t distribution,
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three superimposed Gaussian distributions and three superimposed Student t distributions (points from
distributions depicted by red dots), respectively.

Figure 3. Sample from one Gaussian distribution with 10% artificial outliers.
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Figure 4. Sample from three superimposed Gaussian distributions with 10%
artificial outliers.
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For each type of data, we carried out 100 computational experiments, each time with a new
sample from the statistical distribution(s), including the uniform distributions that generated the outliers.
To measure the accuracy of the results, we calculated the average and standard deviation (over
100 computational experiments) of the error of each main ℓ1 direction and the average and standard
deviation of the error of the median radius in that direction vs. the theoretical values of the direction of
maximum spread and the median radius in that direction of the continuum distribution. In Tables 1–5,
we present computational results for the sets of 500 points. Computational results for 50 and 150 points
were analogous to those for 500 points.
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Table 1. Average error (av. error) and standard deviation of the error (std. dev.) of ℓ1 direction
θ for one Gaussian distribution.

Standard PCA Croux+Ruiz-Gazen Ke+Kanade ℓ1 MCDA

av. error 0.00005 −0.0034 −0.0063 −0.0081

std. dev. 0.0051 0.0563 0.0084 0.0105
av. error −0.0053 0.0219 — 0.0349
std. dev. 0.0901 0.1733 — 0.1683

Table 2. Average error (av. error) and standard deviation of the error (std. dev.) of ℓ1 direction
θ for one Gaussian distribution with 10% artificial outliers.

Standard PCA Croux+Ruiz-Gazen Ke+Kanade ℓ1 MCDA

av. error 1.0046 −0.0168 0.9148 −0.0105

std. dev. 0.0184 0.0837 0.0243 0.0114
av. error 261.9384 0.3185 — 0.1138
std. dev. 3.4384 0.1482 — 0.2028

Table 3. Average error (av. error) and standard deviation of the error (std. dev.) of ℓ1 direction
θ for one Student t distribution.

Standard PCA Croux+Ruiz-Gazen Ke+Kanade ℓ1MCDA

av. error 0.0353 0.0614 0.0474 0.0163
std. dev. 0.1983 0.0743 0.1738 0.01717
av. error 147.2380 −0.7139 — 0.1438
std. dev. 258.1932 0.1692 — 0.2302

Table 4. Average error (av. error) and standard deviation of the error (std. dev.) of ℓ1 direction
θ for one Student t distribution with 10% artificial outliers.

Standard PCA Croux+Ruiz-Gazen Ke+Kanade ℓ1 MCDA

av. error 1.0023 0.0624 −0.8274 −0.0213

std. dev. 0.2683 0.1744 0.2038 0.0234
av. error 385.4844 −0.2839 — 0.2301
std. dev. 212.3327 0.2732 — 0.2289
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Table 5. Average error (av. error) and standard deviation of the error (std. dev.) of ℓ1

direction θ calculated by ℓ1 MCDA for three superimposed distributions without and with
10% artificial outliers.

Distribution av. error std. dev.

−0.0091 0.0103
3 Gaussians 0.0124 0.0201

0.0111 0.0103
−0.0093 0.0221

3 Gaussians with 10% outliers −0.0084 0.0252
0.0124 0.0110
−0.0092 0.0224

3 Student t 0.0130 0.0202
−0.0110 0.0193
0.0143 0.0224

3 Student t with 10% outliers −0.0159 0.0252
0.0130 0.0243
0.0832 0.1593

3 Gaussians 0.1291 0.1788
0.1402 0.1891
0.1382 0.1632

3 Gaussians with 10% outliers 0.1389 0.1738
0.1537 0.1838
0.1839 0.2582

3 Student t 0.1783 0.2633
0.1478 0.2537
0.1987 0.2638

3 Student t with 10% outliers 0.1733 0.2837
0.2018 0.2738

Remark 4 Since ℓ1 MCDA is an ℓ1 method, one may ask why the accuracy of the results is measured
using averages and standard deviations rather than, for example, ℓ1 measures such as medians and other
quantiles. The statistical distributions of the directions and median radii that are calculated by ℓ1 MCDA
are zero-tailed and (apparently) light-tailed, respectively, which indicates that averages and standard
deviations are more appropriate measures than quantiles.

Remark 5 No results for Ke and Kanade’s method are provided in Tables 1–4 because Ke and Kanade’s
method does not yield radius information.

The results in Table 1 indicate that, as theoretically predicted, standard PCA performs better
than any of the other three methods for data from one single Gaussian distribution. The results in
Tables 2–4 indicate that, as expected, standard PCA does not handle data with artificial outliers and/or
from heavy-tailed distributions well. The results in Tables 2–4 show, consistent with theoretical and



Algorithms 2013, 6 25

computational evidence available in the previous literature, the advantages of Croux and Ruiz-Gazen’s
projection-pursuit method and of Ke and Kanade’s ℓ1 factorization method over standard PCA. These
results also show in nearly all cases a marked advantage of ℓ1 MCDA over Croux and Ruiz-Gazen’s
projection-pursuit and Ke and Kanade’s ℓ1 factorization. For the multiple superimposed distributions
considered in Table 5, standard PCA, Croux and Ruiz-Gazen’s projection-pursuit and Ke and Kanade’s
ℓ1 factorization each provide only one main direction for the superimposed distributions and do not yield
any meaningful information about the individual main directions. For this reason, no results for these
three methods are presented in Table 5. It is worth noting in Table 5 that the accuracy of ℓ1 MCDA for
three superimposed distributions without and with artificial outliers is just as good as the accuracy of ℓ1

MCDA for single distributions without and with artificial outliers.
As the computing times reported in Table 6 indicate, 2D ℓ1 MCDA in its current implementation costs

30 to 40 times as much as standard PCA, roughly 3 times as much as Ke and Kanade’s factorization
and 30% to 40% less than Croux and Ruiz-Gazen’s projection-pursuit (all methods sequentially
implemented). The wide applicability of ℓ1 MCDA in comparison with Ke and Kanade’s factorization
method justifies an increase of computing time by a factor of 3. Moreover, the computing time of ℓ1

MCDA is likely to decrease as the method is further investigated and more efficient implementations
are designed.

Table 6. Sequential computing times for generating the results in Tables 1–5 by the
four methods.

Data of Standard PCA Croux+Ruiz-Gazen Ke+Kanade ℓ1 MCDA

Table 1 3.398ms 177.832ms 32.921ms 107.382ms
Table 2 4.411ms 198.833ms 33.477ms 116.504ms
Table 3 3.667ms 197.221ms 48.133ms 131.338ms
Table 4 5.277ms 210.442ms 55.672ms 147.185ms

225.348ms
Table 5 248.392ms

299.392ms
335.429ms

Computational results for 5% artificial outliers were analogous to the results for 10% artificial outliers.
Computational results for ℓ1 MCDA with 20% artificial outliers in the data were not as accurate as those
for 10% outliers. A quantitative description of the robustness of ℓ1 MCDA in terms of breakdown point
(proportion of outliers beyond which the method produces errors that are arbitrarily large) or influence
function (how the result changes when one point is changed) will depend not only on the radii and angular
coordinates of the points that are changed but also on clustering patterns of these points in relation to the
other points. This task is beyond the scope of this paper but will be an objective of future research.

The results in Tables 1–5 indicate that, for the data considered here, ℓ1 MCDA always outperforms
standard PCA in accuracy except when the data come from one single Gaussian distribution and that ℓ1

MCDA outperforms two robust PCAs in accuracy in nearly all cases in accuracy in nearly all the cases
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presented here. These computational results are consistent with the theoretically known fact that standard
PCA is optimal for one single Gaussian distribution. Interestingly, however, the results in Table 1 indicate
that ℓ1 MCDA performs quite well—albeit sub-optimally—for one single Gaussian distribution. Thus,
there is no major disadvantage in using ℓ1 MCDA as a default PCA (instead of standard PCA), since it
performs well both for the cases when standard PCA is known to be optimal and, as we have seen, for
the many other cases when standard PCA and robust PCAs perform less well, poorly or not at all.

5. Conclusions and Future Work

The assumptions underlying ℓ1 MCDA are less restrictive and more practical than those underlying
standard PCA and currently available robust PCAs. The 2D ℓ1 MCDA that we have developed differs
from standard PCA and all previously proposed robust PCAs in that it (1) allows use of a wide variety
of distance functions in the data space (while noting the advantages of using the ℓ1 norm to define
the distance function); (2) replaces all (not just some) of the ℓ2-based procedures and concepts in
standard PCA with ℓ1-based procedures and concepts; (3) has a theoretical foundation in heavy-tailed
statistics but works well for data from both heavy-tailed and light-tailed distributions; (4) is applicable
for data that need not have (but can have) mutually orthogonal main directions, can have multiple
spokes and can contain patterned artificial outliers (clutter) and (5) does not require assumption of
sparsity of the principal components or of the error. Most of the robust PCAs (with the exception
of Ke and Kanade’s) that have previously been proposed in the literature involve use of the ℓ1 norm
not at all or only to a limited extent and continue to rely on ℓ2-based items including singular values,
inner products, orthogonal projection, averaging and second moments (variances, covariances). The ℓ1

MCDA that we propose comes exclusively from a unified theoretical framework based on the ℓ1 norm.
The computational results presented in Section 4 show that the ℓ1 MCDA proposed here significantly
outperforms not only the standard PCA but also two robust PCAs in terms of accuracy.

This ℓ1 MCDA is a foundation for a new, robust procedure that can be used for identification
of dimensionality, identification of structure (including nonconventional spoke structure) and data
compression in Rn, n ≥ 3, a topic on which the authors of this paper are currently working. In
designing ℓ1 MCDA for higher dimensions, the guiding principles will continue to be direct connection
with heavy-tailed statistics and exclusive reliance on ℓ1 operations. The higher-dimensional versions of
Steps 1 and 2 of ℓ1 MCDA are feasible as long as appropriate higher-dimensional angular coordinates
can be defined. The reader may question whether the “ℓ1 polar coordinates” that are used in 2D can be
extended to n dimensions. Indeed they can in the following manner. In direct analogy to the definition
of the polar coordinate θm in (8) in two dimensions, one defines angular coordinates one defines n − 1

angular coordinates of an n-dimensional data point (x
(1)
m , x

(2)
m , . . . , x

(n)
m ) to be the quotients with the

components of the point as numerators and the ℓ1 radius
∑n

j=1 |x
(j)
m | of the point as denominators. In

passing we note that these higher-dimensional ℓ1 angular coordinates are computationally cheaper than
standard ℓ2 hyperspherical angular coordinates, which require calculation of square roots of sums of
squares.

For samples of M vectors in Rn, M > n, the cost of classical PCA is O(Mn2). The costs of
Croux and Ruiz-Gazen’s method and of Ke and Kanade’s method are not specified in the literature but
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apparently scale linearly with respect to sample size M . We hypothesize that the extension of ℓ1 MCDA
to higher dimensions will have a sequential cost of O(Mn) and will be comparable with or lower than
the cost of competing robust PCAs.

ℓ1 MCDA is expected to be a robust tool in terrain modeling, geometric modeling, image analysis,
information mining, face/object recognition and general pattern recognition. As suggested by the
computational results presented in the present paper, it is expected that ℓ1 MCDA will be particularly
useful for pattern recognition under patterned clutter. For example, ℓ1 MCDA will be useful for
identification of objects behind occlusions because it handles the occlusions as outliers and does not
require a separate step of segmenting out the occlusions. This capability will provide a basis for going
directly from point cloud to robust semantic labeling.
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