
Algorithms 2013, 6, 169-196; doi:10.3390/a6010169

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

An Open-Source Implementation of the Critical-Line Algorithm

for Portfolio Optimization

David H. Bailey
1,2

 and Marcos López de Prado
1,3,

*

1
 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA;

E-Mail: dhbailey@lbl.gov
2
 Department of Computer Science, University of California, Davis, CA 95616, USA

3
Hess Energy Trading Company, 1185 Avenue of the Americas, New York, NY 10036, USA

* Author to whom correspondence should be addressed; E-Mail: lopezdeprado@lbl.gov;

Tel.: +1-212-536-8370; Fax: +1-203-552-8643.

Received: 29 January 2013; in revised form: 8 March 2013 / Accepted: 18 March 2013 /

Published: 22 March 2013

Abstract: Portfolio optimization is one of the problems most frequently encountered by

financial practitioners. The main goal of this paper is to fill a gap in the literature by

providing a well-documented, step-by-step open-source implementation of Critical Line

Algorithm (CLA) in scientific language. The code is implemented as a Python class object,

which allows it to be imported like any other Python module, and integrated seamlessly

with pre-existing code. We discuss the logic behind CLA following the algorithm’s

decision flow. In addition, we developed several utilities that support finding answers to

recurrent practical problems. We believe this publication will offer a better alternative to

financial practitioners, many of whom are currently relying on generic-purpose optimizers

which often deliver suboptimal solutions. The source code discussed in this paper can be

downloaded at the authors’ websites (see Appendix).

Keywords: portfolio selection; quadratic programming; portfolio optimization; constrained

efficient frontier; turning point; Kuhn-Tucker conditions; risk aversion

OPEN ACCESS

mailto:dhbailey@lbl.gov

Algorithms 2013, 6 170

1. Introduction

Since the work of Markowitz [1], portfolio optimization has become one of the most critical

operations performed in investment management. In Modern Portfolio Theory, this operation consists

in computing the Efficient Frontier, defined as the set of portfolios that yield the highest achievable

mean excess return (in excess of the risk-free rate) for any given level of risk (measured in terms of

standard deviation). This portfolio optimization problem receives two equivalent formulations:

(i) Minimizing the portfolio’s standard deviation (or variance) subject to a targeted excess return or

(ii) Maximize the portfolio’s excess return subject to a targeted standard deviation (or variance). Because

the solution to both formulations in the same, we will focus on (i) for the remainder of the paper.

Every financial firm is constantly faced with the problem of optimizing a portfolio. Wealth

managers determine optimal holdings in order to achieve a strategic goal. Mutual funds attempt to beat

a benchmark by placing active bets, based on some tactical superior knowledge with regard to the

future expected returns or their covariance. Multi-manager hedge funds must allocate capital to

portfolio managers, based on their performance expectations. Portfolio managers allocate capital to a

variety of bets, incorporating their views about the future state of the economy. Risk managers may

compute the portfolio that delivers the best hedge against a position that cannot be liquidated, etc. The

current size of the global asset management industry is estimated to be in excess of US $58 trillion at

year-end 2011. Thus, robust portfolio optimization software is a necessity of the first order [2].

Most practitioners are routinely faced with the problem of optimizing a portfolio subject to

inequality conditions (a lower and an upper bound for each portfolio weight) and an equality condition

(that the weights add up to one). There is no analytic solution to this problem, and an optimization

algorithm must be used. Markowitz [3,4] developed a method for computing such a solution, which he

named the “critical line algorithm” or CLA. Wolfe [5] developed a Simplex version of CLA to deal

with inequality constraints on linear combinations of the optimal weights. These more general

constraints make Wolfe’s algorithm more flexible. However, the standard portfolio optimization

problem does not require them, making CLA the approach favored by most practitioners.

Given the importance of CLA, one would expect a multiplicity of software implementations in a

wide range of languages. Yet, we are aware of only one published source-code for CLA, by Markowitz

and Todd [6]. This is written in Excel’s Microsoft Visual Basic for Applications (VBA-Excel), and it

is the descendant of a previous implementation in an experimental programming language called

EAS-E [7]. Steuer et al. [8] point out the inconveniences of working with VBA-Excel, most notably its

low computational performance and its limitation to covariance matrices with a maximum order of

(256 × 256). In addition, the VBA-Excel spreadsheet has to be manually adjusted for different

problems, which prevents its industrial use (Kwak [9] explains that VBA-Excel implementations are

ubiquitous in the financial world, posing a systemic risk. Citing an internal JP Morgan investigation,

he mentions that a faulty Excel implementation of the Value-at-Risk model may have been partly

responsible for the US $6 billion trading loss suffered by JP Morgan in 2012, popularly known as the

“London whale” debacle). Hence, it would be highly convenient to have the source code of CLA in a

more scientific language, such as C++ or Python.

A number of authors seem to have implemented CLA in several languages, however their code does

not appear to be publicly available. For example, Hirschberger et al. [10] mention their implementation

Algorithms 2013, 6 171

of CLA in Java. These authors state: “For researchers intending to investigate mid- to large-scale

portfolio selection, good, inexpensive and understandable quadratic parametric programming software,

capable of computing the efficient frontiers of problems with up to two thousand securities without

simplifications to the covariance matrix, is hardly known to be available anywhere”. This insightful

paper discusses the computational efficiency of their CLA implementation, and makes valuable

contributions towards a better understanding of CLA’s properties. However, it does not provide the

source code on which their calculations were based.

Niedermayer et al. [11] implemented CLA in Fortran 90, and concluded that their algorithm was

faster than Steuer et al. [8] by a factor of 10,000, on a universe of 2000 assets. These authors also state

that “no publicly available software package exists that computes the entire constrained minimum

variance frontier”. Like other authors, they discuss the performance of their implementation, without

providing the actual source code.

To our knowledge, CLA is the only algorithm specifically designed for inequality-constrained

portfolio optimization problems, which guarantees that the exact solution is found after a given number

of iterations. Furthermore, CLA does not only compute a single portfolio, but it derives the entire

efficient frontier. In contrast, gradient-based algorithms will depend on a seed vector, may converge to

a local optimum, are very sensitive to boundary constraints, and require a separate run for each

member of the efficient frontier. The Scipy library offers an optimization module called optimize,

which bears five constrained optimization algorithms: The Broyden-Fletcher-Goldfarb-Shanno method

(BFGS), the Truncated-Newton method (TNC), the Constrained Optimization by Linear Approximation

method (COBYLA), the Sequential Least Squares Programming method (SLSQP) and the Non-Negative

Least Squares solver (NNLS). Of those, BFGS and TNC are gradient-based and typically fail because

they reach a boundary. COBYLA is extremely inefficient in quadratic problems, and is prone to

deliver a solution outside the feasibility region defined by the constraints. NNLS does not cope with

inequality constraints, and SLSQP may reach a local optimum close to the original seed provided.

Popular commercial optimizers include AMPL, NAG, TOMLAB and Solver. To our knowledge, none

of them provide a CLA implementation. Barra offers a product called Optimizer, which “incorporates

proprietary solvers developed in-house by MSCI’s optimization research team”. The details of these

algorithms are kept confidential, and documentation is only offered to customers, so we have not been

able to determine whether this product includes an implementation of CLA. The lack of publicly

available CLA software, commercially or open-source, means that most researchers, practitioners and

financial firms are resorting to generic linear or quadratic programming algorithms that have not been

specifically designed to solve the constrained portfolio optimization problem, and will often return

suboptimal solutions. This is quite astounding, because as we said most financial practitioners face this

problem with relatively high frequency.

The main goal of this paper is to fill this gap in the literature by providing a well-documented,

step-by-step open-source implementation of CLA in a scientific language (All code in this paper is

provided “as is”, and contributed to the academic community for non-business purposes only, under a

GNU-GPL license. Users explicitly renounce to any claim against the authors. The authors retain the

commercial rights of any for-profit application of this software, which must be pre-authorized in

written by the authors). We have chosen Python because it is free, open-source, and it is widely used in

the scientific community in general, and has more than 26,000 extension modules currently available

Algorithms 2013, 6 172

(To be precise, our code has been developed using the EPD 7.3 product (Enthought Python

Distribution), which efficiently integrates all the necessary scientific libraries). An additional reason is

that the Python language stresses readability. Its “pseudocode” appearance makes it a good choice for

discussion in an academic paper. Because the procedure published in [11] seems to be the most

numerically efficient, our implementation will follow closely their analysis. We have solved a wide

range of problems using our code, and ensured that our results exactly match those of the VBA-Excel

implementation in [6].

CLA was developed by Harry Markowitz to optimize general quadratic functions subject to linear

inequality constraints. CLA solves any portfolio optimization problem that can be represented in such

terms, like the standard Efficient Frontier problem. The posterior mean and posterior covariance

derived by Black-Litterman [12] also lead to a quadratic programming problem, thus CLA is also a

useful tool in that Bayesian framework. However, the reader should be aware of portfolio optimization

problems that cannot be represented in quadratic form, and therefore cannot be solved by CLA. For

example, the authors of this paper introduced in [13] a Sharpe ratio Efficient Frontier framework that

deals with moments higher than 2, and thus has not a quadratic representation. For that particular

problem, the authors have derived a specific optimization algorithm, which takes skewness and

kurtosis into account.

The rest of the paper is organized as follows: Section 2 presents the quadratic programming

problem we solve by using the CLA. Readers familiar with this subject can go directly to Section 3,

where we will discuss our implementation of CLA in a class object. Section 4 expands the code by

adding a few utilities. Section 5 illustrates the use of CLA with a numerical example. Section 6

summarizes our conclusions. Results can be validated using the Python code in the Appendix.

2. The Problem

Consider an investment universe of n assets with observations characterized by a (nx1) vector of

means and a (nxn) positive definite covariance matrix . The mean vector and covariance matrix

are computed on time-homogeneous invariants, i.e., phenomena that repeat themselves identically

throughout history regardless of the reference time at which an observation is made. Time-homogeneity

is a key property that our observations must satisfy, so that we do not need to re-estimate for a

sufficiently long period of time. For instance, compounded returns are generally accepted as good

time-homogeneous invariants for equity, commodity and foreign-exchange products. In the case of

fixed income products, changes in the yield-to-maturity are typically used. In the case of derivatives,

changes in the rolling forward at-the-money implied volatility are usually considered a good

time-homogeneous invariant (see [14] for a comprehensive discussion of this subject). The numerical

example discussed in Section 5 is based on equity products, hence the mean vector and covariance

matrix are computed on compounded returns.

Following [11], we solve a quadratic programming problem subject to linear constraints in

inequalities and one linear constraint in equality, and so we need some nomenclature to cover

those inputs:

 is a set of indices that number the investment universe.

 is the (nx1) vector of asset weights, which is our optimization variable.

Algorithms 2013, 6 173

 l is the (nx1) vector of lower bounds, with .

 u is the (nx1) vector of upper bounds, with .

 is the subset of free assets, where . In words, free assets are those that do not

lie on their respective boundaries. F has length .

 is the subset of weights that lie on one of the bounds. By definition, .

Accordingly, we can construct and as a block array and matrix.

 ,

 ,

 (1)

where denotes the (kxk) covariance matrix among free assets, the ((n − k)x(n − k)) covariance

matrix among assets lying on a boundary condition, and the (kx(n − k)) covariance between

elements of F and B, which obviously is equal to (the transpose of) since is symmetric.

Similarly, is the (kx1) vector of means associated with F, is the ((n − k)x1) vector of means

associated with B, is the (kx1) vector of weights associated with F, is the ((n − k)x1) vector of

weights associated with B.

The solution to the unconstrained problem (“Unconstrained problem” is a bit of a misnomer,

because this problem indeed contains two linear equality constraints: Full investment (the weights add

up to one) and target portfolio mean. What is meant is to indicate that no specific constraints are

imposed on individual weights) consists in minimizing the Lagrange function with respect to the

vector of weights and the multipliers and :

 (2)

where is the (nx1) vector of ones and is the targeted excess return. The method of Lagrange

multipliers applies first order necessary conditions on each weight and Lagrange multiplier, leading to

a linear system of n + 2 conditions. See [14] for an analytical solution to this problem.

As the constrained problem involves conditions in inequalities, the method of Lagrange multipliers

cannot be used. One option is to apply Karush-Kuhn-Tucker conditions. Alternatively, we can “divide

and conquer” the constrained problem, by translating it into a series of unconstrained problems. The

key concept is that of turning point. A solution vector is a turning point if in its vicinity there is

another solution vector with different free assets. This is important because in those regions of the

solution space away from turning points the inequality constraints are effectively irrelevant with

respect to the free assets. In other words, between any two turning points, the constrained solution

reduces to solving the following unconstrained problem on the free assets.

(3)

where is known and does not change between turning points. Markowitz [3] focused his effort in

computing the optimal portfolio at each turning point is because the efficient frontier can be simply

derived as a convex combination between any two neighbor turning points (In the unconstrained case,

this is sometimes referred to as the “two mutual funds theorem”. In the constrained case, it still holds

between any two neighbor turning points, because as we argued earlier, between them the constrained

Algorithms 2013, 6 174

problem reduces to an unconstrained problem on the free assets). Hence, the only remaining challenge

is the determination of the turning points, to which end we dedicate the following section.

3. The Solution

We have implemented CLA as a class object in Python programming language. The only external

library needed for this core functionality is Numpy, which in our code we instantiate with the

shorthand np. The class is initialized in Snippet 1. The inputs are:

 mean: The (nx1) vector of means.

 covar: The (nxn) covariance matrix.

 lB: The (nx1) vector that sets the lower boundaries for each weight.

 uB: The (nx1) vector that sets the upper boundaries for each weight.

Implied is the constraint that the weights will add up to one. The class object will contain four lists

of outputs:

 w: A list with the (nx1) vector of weights at each turning point.

 l: The value of at each turning point.

 g: The value of at each turning point.

 f: For each turning point, a list of elements that constitute F.

Snippet 1. CLA initialization.

class CLA:

 def__init__(self, mean, covar, lB, uB):

 # Initialize the class

 self.mean = mean

 self.covar = covar

 self.lB = lB

 self.uB = uB

 self.w = [] # solution

 self.l = [] # lambdas

 self.g = [] # gammas

 self.f = [] # free weights

The key insight behind Markowitz’s CLA is to find first the turning point associated with the

highest expected return, and then compute the sequence of turning points, each with a lower expected

return than the previous. That first turning point consists in the smallest subset of assets with highest

return such that the sum of their upper boundaries equals or exceeds one. We have implemented this

search for the first turning point through a structured array. A structured array is a Numpy object that,

among other operations, can be sorted in a way that changes are tracked. We populate the structured

array with items from the input mean, assigning to each a sequential id index. Then we sort the

structured array in descending order. This gives us a sequence for searching for the first free asset. All

weights are initially set to their lower bounds, and following the sequence from the previous step, we

Algorithms 2013, 6 175

move those weights from the lower to the upper bound until the sum of weights exceeds one. The last

iterated weight is then reduced to comply with the constraint that the sum of weights equals one. This

last weight is the first free asset, and the resulting vector of weights the first turning point. See

Snippet 2 for the actual implementation of this initialization operation.

Snippet 2. Algorithm initialization.

def initAlgo(self):

 # Initialize the algo

 #1) Form structured array

 a = np.zeros((self.mean.shape[0]), dtype = [('id', int), ('mu', float)])

 b = [self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list

 a[:] = zip(range(self.mean.shape[0]), b) # fill structured array

 #2) Sort structured array

 b = np.sort(a, order = 'mu')

 #3) First free weight

 i,w = b.shape[0], np.copy(self.lB)

 while sum(w) < 1:

 i-=1

 w[b[i][0]] = self.uB[b[i][0]]

 w[b[i][0]] += 1 − sum(w)

 return [b[i][0]], w

The transition from one turning point to the next requires that one element is either added to or

removed from the subset of free assets, F. Because and are linearly and positively related, this

means that each subsequent turning point will lead to a lower value for . This recursion of adding or

removing one asset from F continues until the algorithm determines that the optimal expected return

cannot be further reduced. In the first run of this iteration, the choice is simple: F has been initialized

with one asset, and the only option is to add another one (F cannot be an empty set, or there would be

no optimization). Snippet 3 performs this task.

Snippet 3. Determining which asset could be added to F.

#2) case b): Free one bounded weight

 l_out = None

 if len(f) < self.mean.shape[0]:

 b = self.getB(f)

 for i in b:

 covarF, covarFB, meanF, wB = self.getMatrices(f + [i])

 covarF_inv = np.linalg.inv(covarF)

 l,bi = self.computeLambda(covarF_inv, covarFB, meanF, wB, meanF.shape[0] − 1, \

 self.w[−1][i])

 if (self.l[−1] == None or l < self.l[−1]) and l > l_out:l_out, i_out = l,i

Algorithms 2013, 6 176

In this part of the code, we search within B for a candidate asset i to be added to F. That search only

makes sense if B is not an empty set, hence the first if. Because F and B are complementary sets, we

only need to keep track of one of them. In the code, we always derive B from F, thanks to the functions

getB and diffLists, detailed in Snippet 4.

Snippet 4. Deriving B from F.

def getB(self, f):

 return self.diffLists(range(self.mean.shape[0]), f)

#---

def diffLists(self, list1, list2):

 return list(set(list1) − set(list2))

Snippet 3 invokes a function called getMatrices. This function prepares the necessary matrices to

determine the value of associated with adding each candidate i to F. In order to do that, it needs to

reduce a matrix to a collection of columns and rows, which is accomplished by the function

reduceMatrix. Snippet 5 details these two functions.

Snippet 5. Preparing .

def getMatrices(self, f):

 # Slice covarF, covarFB, covarB, meanF, meanB, wF, wB

 covarF = self.reduceMatrix(self.covar, f, f)

 meanF = self.reduceMatrix(self.mean, f, [0])

 b = self.getB(f)

 covarFB = self.reduceMatrix(self.covar, f, b)

 wB = self.reduceMatrix(self.w[−1], b, [0])

 return covarF, covarFB, meanF, wB

#---

def reduceMatrix(self, matrix, listX, listY):

 # Reduce a matrix to the provided list of rows and columns

 if len(listX) == 0 or len(listY) == 0:return

 matrix_ = matrix[:, listY[0]:listY[0] + 1]

 for i in listY[1:]:

 a = matrix[:, i:i + 1]

 matrix_ = np.append(matrix_, a, 1)

 matrix__ = matrix_[listX[0]:listX[0] + 1, :]

 for i in listX[1:]:

 a = matrix_[i:i+1, :]

 matrix__ = np.append(matrix__, a, 0)

 return matrix__

Algorithms 2013, 6 177

Using the matrices provided by the function getMatrices, can be computed as:

with

(4)

A proof of these expressions can be found in [11]. Equation (4) is implemented in function

computeLambda, which is shown is Snippet 6. We have computed some intermediate variables, which

can be re-used at various points in order to accelerate the calculations. With the value of , this

function also returns , which we will need in Snippet 7.

Snippet 6. Computing .

def computeLambda(self, covarF_inv, covarFB, meanF, wB, i, bi):

 #1) C

 onesF = np.ones(meanF.shape)

 c1 = np.dot(np.dot(onesF.T, covarF_inv), onesF)

 c2 = np.dot(covarF_inv, meanF)

 c3 = np.dot(np.dot(onesF.T, covarF_inv), meanF)

 c4= np.dot(covarF_inv, onesF)

 c = −c1*c2[i] + c3*c4[i]

 if c == 0:return

 #2) bi

 if type(bi) == list:bi = self.computeBi(c, bi)

 #3) Lambda

 if wB == None:

 # All free assets

 return float((c4[i] − c1*bi)/c), bi

 else:

 onesB = np.ones(wB.shape)

 l1 = np.dot(onesB.T, wB)

 l2 = np.dot(covarF_inv, covarFB)

 l3 = np.dot(l2, wB)

 l2 = np.dot(onesF.T, l3)

 return float(((1 − l1 + l2)*c4[i] − c1*(bi + i3[i]))/c), bi

Algorithms 2013, 6 178

Snippet 7. Deciding between the two alternative actions.

#4) decide lambda

 if l_in > l_out:

 self.l.append(l_in)

 f.remove(i_in)

 w[i_in] = bi_in # set value at the correct boundary

 else:

 self.l.append(l_out)

 f.append(i_out)

 covarF, covarFB, meanF, wB = self.getMatrices(f)

 covarF_inv = np.linalg.inv(covarF)

In Snippet 3, we saw that the value of which results from each candidate i is stored in variable l.

Among those values of l, we find the maximum, store it as l_out, and denote as i_out our candidate to

become free. This is only a candidate for addition into F, because before making that decision we need

to consider the possibility that one item is removed from F, as follows.

After the first run of this iteration, it is also conceivable that one asset in F moves to one of its

boundaries. Should that be the case, Snippet 8 determines which asset would do so. Similarly to the

addition case, we search for the candidate that, after removal, maximizes (or to be more precise,

minimizes the reduction in , since we know that becomes smaller at each iteration). We store our

candidate for removal in the variable i_in, and the associated in the variable l_in.

Snippet 8. Determining which asset could be removed from F.

#1) case a): Bound one free weight

 l_in = None

 if len(f) > 1:

 covarF, covarFB, meanF, wB = self.getMatrices(f)

 covarF_inv = np.linalg.inv(covarF)

 j = 0

 for i in f:

 l, bi = self.computeLambda(covarF_inv, covarFB, meanF, wB, j, [self.lB[i], self.uB[i]])

 if l > l_in:l_in, i_in, bi_in = l, i, bi

 j += 1

All auxiliary functions used in Snippet 8 have been discussed earlier. At this point, we must take

one of two alternative actions: We can either add one asset to F, or we can remove one asset from F.

The answer is whichever gives the greater value of , as shown in Snippet 7. Recall that in Snippet 6

the function computeLambda had also returned . This is the boundary value that we will assign to a

formerly free weight (now a member of B).

Algorithms 2013, 6 179

We finally know how to modify F in order to compute the next turning point, but we still need to

compute the actual turning point that results from that action. Given the new value of , we can derive

the value of , which together determine the value of the free weights in the next turning point, .

(5)

Equation (5) is evaluated by the function computeW, which is detailed in Snippet 9.

Snippet 9. Computing the turning point associated with the new F.

def computeW(self, covarF_inv, covarFB, meanF, wB):

 #1) compute gamma

 onesF = np.ones(meanF.shape)

 g1 = np.dot(np.dot(onesF.T, covarF_inv), meanF)

 g2 = np.dot(np.dot(onesF.T, covarF_inv), onesF)

 if wB == None:

 g, w1 = float(−self.l[−1]*g1/g2 + 1/g2), 0

 else:

 onesB = np.ones(wB.shape)

 g3 = np.dot(onesB.T, wB)

 g4 = np.dot(covarF_inv, covarFB)

 w1 = np.dot(g4, wB)

 g4 = np.dot(onesF.T, w1)

 g = float(−self.l[−1]*g1/g2 + (1 − g3 + g4)/g2)

 #2) compute weights

 w2 = np.dot(covarF_inv, onesF)

 w3 = np.dot(covarF_inv, meanF)

 return −w1 + g*w2 + self.l[−1]*w3, g

Again, we are computing some intermediate variables for the purpose of re-using them, thus

speeding up calculations. We are finally ready to store these results, as shown in Snippet 10. The last

line incorporates the exit condition, which is satisfied when , as it cannot be further reduced.

Snippet 10. Computing and storing a new solution.

#5) compute solution vector

 wF, g = self.computeW(covarF_inv, covarFB, meanF, wB)

 for i in range(len(f)):w[f[i]] = wF[i]

 self.w.append(np.copy(w)) # store solution

 self.g.append(g)

 self.f.append(f[:])

 if self.l[−1] == 0:break

Algorithms 2013, 6 180

The algorithm then loops back through Snippets 3–10, until no candidates are left or the highest

lambda we can get is negative (We also depart here from [11], who keep searching for turning points

with negative). When that occurs, we are ready to compute the last solution, as follows. Each turning

point is a minimum variance solution subject to a certain target portfolio mean, but at some point we

must also explicitly add the global minimum variance solution, denoted Minimum Variance Portfolio.

This possibility is not considered by [11], but it is certainly a necessary portfolio computed by [6]. The

analysis would be incomplete without it, because we need the left extreme of the frontier, so that we

can combine it with the last computed turning point. When the next is negative or it cannot be

computed, no additional turning points can be derived. It is at that point that we must compute the

Minimum Variance portfolio, which is characterized by and a vector of zeroes. Snippet 11

prepares the relevant variables, so that the function computeW returns that last solution.

Snippet 11. Computing the Minimum Variance portfolio.

if (l_in == None or l_in < 0) and (l_out == None or l_out < 0):

 #3) compute minimum variance solution

 self.l.append(0)

 covarF, covarFB, meanF, wB = self.getMatrices(f)

 covarF_inv = np.linalg.inv(covarF)

 meanF = np.zeros(meanF.shape)

4. A Few Utilities

The CLA class discussed in Section 3 computes all turning points plus the global Minimum Variance

portfolio. This constitutes the entire set of solutions, and from that perspective, Section 3 presented an

integral implementation of Markowitz’s CLA algorithm. We think that this functionality can be

complemented with a few additional methods designed to address problems typically faced

by practitioners.

4.1. Search for the Minimum Variance Portfolio

The Minimum Variance portfolio is the leftmost portfolio of the constrained efficient frontier. Even

if it did not coincide with a turning point, we appended it to self.w, so that we can compute the segment

of efficient frontier between the Minimum Variance portfolio and the last computed turning point.

Snippet 12 exemplifies a simple procedure to retrieve this portfolio: For each solution stored, it

computes the variance associated with it. Among all those variances, it returns the squared root of the

minimum (the standard deviation), as well as the portfolio that produced it. This portfolio coincides

with the solution computed in Snippet 11.

Algorithms 2013, 6 181

Snippet 12. The search for the Minimum Variance portfolio.

def getMinVar(self):

 # Get the minimum variance solution

 var = []

 for w in self.w:

 a = np.dot(np.dot(w.T, self.covar), w)

 var.append(a)

 return min(var)**.5, self.w[var.index(min(var))]

4.2. Search for the Maximum Sharpe Ratio Portfolio

The turning point with the maximum Sharpe ratio does not necessarily coincide with the maximum

Sharpe ratio portfolio. Although we have not explicitly computed the maximum Sharpe ratio portfolio

yet, we have the building blocks needed to construct it. Every two neighbor turning points define a

segment of the efficient frontier. The weights that form each segment result from the convex

combination of the turning points at its edges.

For , gives the portfolios associated with the segment of the

efficient frontier delimited by and . The Sharpe ratio is a strongly unimodal function of

(see [15] for a proof). We know that is a strictly monotonic function of , because cannot increase

as we transition from to . The conclusion is that the Sharpe ratio function is also a strongly

unimodal function of . This means that we can use the Golden Section algorithm to find the

maximum Sharpe ratio portfolio within the appropriate segment (The Golden Section search is a

numerical algorithm for finding the minimum or maximum of a real-valued and strictly unimodal

function. This is accomplished by sequentially narrowing the range of values inside which the

minimum or maximum exists. Avriel [16] introduced this technique, and [17] proved its optimality).

Snippet 13 shows an implementation of such algorithm. The goldenSection function receives

as arguments:

 obj: The objective function on which the extreme will be found.

 a: The leftmost extreme of search.

 b: The rightmost extreme of search.

 **kargs: Keyworded variable-length argument list.

Snippet 13. Golden section search algorithm.

def goldenSection(self, obj, a, b, **kargs):

 # Golden section method. Maximum if kargs['minimum'] == False is passed

 from math import log,ceil

 tol, sign, args = 1.0e −9, 1, None

 if 'minimum' in kargs and kargs['minimum'] == False:sign = −1

 if 'args' in kargs:args = kargs['args']

 numIter = int(ceil(−2.078087*log(tol/abs(b − a))))

 r = 0.618033989

Algorithms 2013, 6 182

 c = 1.0 − r

 # Initialize

 x1 = r*a + c*b; x2 = c*a + r*b

 f1 = sign*obj(x1, *args); f2 = sign*obj(x2, *args)

 # Loop

 for i in range(numIter):

 if f1 > f2:

 a = x1

 x1 = x2; f1 = f2

 x2 = c*a + r*b; f2 = sign*obj(x2, *args)

 else:

 b = x2

 x2 = x1; f2 = f1

 x1 = r*a + c*b; f1 = sign*obj(x1, *args)

 if f1 < f2:return x1, sign*f1

 else:return x2, sign*f2

The extremes of the search are delimited by the neighbor turning points, which we pass as a

keyworded variable length argument (kargs). kargs is a dictionary composed of two optional

arguments: “minimum” and “args”. Our implementation of the Golden Section algorithm searches for

a minimum by default, however it will search for a maximum when the user passes the optional

argument “minimum” with value False. “args” contains a non-keyworded variable-length argument,

which (if present) is passed to the objective function obj. This approach allows us to pass as many

arguments as the objective function obj may need in other applications. Note that, for this particular

utility, we have imported two additional functions from Python’s math library: log and ceil.

We ignore which segment contains the portfolio that delivers the global maximum Sharpe ratio.

We will compute the local maximum of the Sharpe ratio function for each segment, and store the

output. Then, the global maximum will be determined by comparing those local optima. This operation

is conducted by the function getMaxSR in Snippet 14. evalSR is the objective function (obj) which we

pass to the goldenSection routine, in order to evaluate the Sharpe ratio at various steps between and

 . We are searching for a maximum between those two turning points, and so we set

kargs = {'minimum':False, 'args':(w0, w1)}.

Snippet 14. The search for Maximum Sharpe ratio portfolio.

def getMaxSR(self):

 # Get the max Sharpe ratio portfolio

 #1) Compute the local max SR portfolio between any two neighbor turning points

 w_sr, sr = [], []

 for i in range(len(self.w) − 1):

 w0 = np.copy(self.w[i])

 w1 = np.copy(self.w[i + 1])

 kargs = {'minimum':False, 'args':(w0, w1)}

Algorithms 2013, 6 183

 a, b = self.goldenSection(self.evalSR, 0, 1, **kargs)

 w_sr.append(a*w0 + (1 − a)*w1)

 sr.append(b)

 return max(sr), w_sr[sr.index(max(sr))]

#---

def evalSR(self, a, w0, w1):

 # Evaluate SR of the portfolio within the convex combination

 w = a*w0 + (1 − a)*w1

 b = np.dot(w.T, self.mean)[0,0]

 c = np.dot(np.dot(w.T, self.covar), w)[0,0]**.5

 return b/c

4.3. Computing the Efficient Frontier

As argued earlier, we can compute the various segments of the efficient frontier as a convex

combination between any two neighbor turning points. This calculation is carried out by the function

efFrontier in Snippet 15. We use the Numpy function linspace to uniformly partition the unit segment,

excluding the value 1. The reason for this exclusion is, the end of one convex combination coincides

with the beginning of another, and so the uniform partition should contain that value 0 or 1, but not

both. When we reach the final pair of turning points, we include the value 1 in the uniform partition,

because this is the last iteration and the resulting portfolio will not be redundant. efFrontier outputs

three lists: Means, Standard Deviations and the associated portfolio weights. The number of items in

each of these lists is determined by the argument points.

Snippet 15. Computing the Efficient Frontier.

def efFrontier(self, points):

 # Get the efficient frontier

 mu, sigma, weights = [], [], []

 a = np.linspace(0, 1, points/len(self.w))[:−1] # remove the 1, to avoid duplications

 b = range(len(self.w) − 1)

 for i in b:

 w0, w1 = self.w[i], self.w[i + 1]

 if i == b[−1]:a = np.linspace(0, 1, points/len(self.w)) # include the 1 in the last iteration

 for j in a:

 w = w1*j + (1 − j)*w0

 weights.append(np.copy(w))

 mu.append(np.dot(w.T, self.mean)[0, 0])

 sigma.append(np.dot(np.dot(w.T, self.covar), w)[0, 0]**.5)

 return mu, sigma, weights

Algorithms 2013, 6 184

5. A Numerical Example

We will run our Python implementation of CLA on the same example that accompanies the

VBA-Excel implementation by [6]. Table 1 provides the vector of expected returns and the covariance

matrix of returns. We set as boundary conditions that , and the implicit

condition that
 .

Table 1. Covariance Matrix, Vector of Expected Returns and boundary conditions.

L Bound 0 0 0 0 0 0 0 0 0 0

U Bound 1 1 1 1 1 1 1 1 1 1

Mean 1.175 1.19 0.396 1.12 0.346 0.679 0.089 0.73 0.481 1.08

Cov 0.4075516

 0.0317584 0.9063047

 0.0518392 0.0313639 0.194909

 0.056639 0.0268726 0.0440849 0.1952847

 0.0330226 0.0191717 0.0300677 0.0277735 0.3405911

 0.0082778 0.0093438 0.0132274 0.0052667 0.0077706 0.1598387

 0.0216594 0.0249504 0.0352597 0.0137581 0.0206784 0.0210558 0.6805671

 0.0133242 0.0076104 0.0115493 0.0078088 0.0073641 0.0051869 0.0137788 0.9552692

 0.0343476 0.0287487 0.0427563 0.0291418 0.0254266 0.0172374 0.0462703 0.0106553 0.3168158

 0.022499 0.0133687 0.020573 0.0164038 0.0128408 0.0072378 0.0192609 0.0076096 0.0185432 0.1107929

Snippet 16 shows a simple example of how to use the CLA class. We have stored the data in a csv

file, with the following structure:

 Row 1: Headers

 Row 2: Mean vector

 Row 3: Lower bounds

 Row 4: Upper bounds

 Row 5 and successive: Covariance matrix

Snippet 16. Using the CLA class.

def main():

 import numpy as np

 import CLA

 #1) Path

 path='H:/PROJECTS/Data/CLA_Data.csv'

 #2) Load data, set seed

 headers=open(path,'r').readline().split(',')[:-1]

 data=np.genfromtxt(path,delimiter=',',skip_header=1) # load as numpy array

 mean=np.array(data[:1]).T

 lB=np.array(data[1:2]).T

 uB=np.array(data[2:3]).T

 covar=np.array(data[3:])

Algorithms 2013, 6 185

 #3) Invoke object

 cla=CLA.CLA(mean,covar,lB,uB)

 cla.solve()

 print cla.w # print all turning points

 #4) Plot frontier

 mu,sigma,weights=cla.efFrontier(100)

 plot2D(sigma, mu, 'Risk', 'Expected Excess Return', 'CLA-derived Efficient Frontier')

 #5) Get Maximum Sharpe ratio portfolio

 sr,w_sr = cla.getMaxSR()

 print np.dot(np.dot(w_sr.T, cla.covar), w_sr)[0, 0]**.5, sr

 print w_sr

 #6) Get Minimum Variance portfolio

 mv, w_mv = cla.getMinVar()

 print mv

 print w_mv

 return

#---

Boilerplate

if __name__ == '__main__':main()

The key lines of code are:

 cla = CLA.CLA(mean, covar, lB, uB): This creates a CLA object named cla, with the input

parameters read from the csv file.

 cla.solve(): This runs the solve method within the CLA class (see the Appendix), which

comprises all the Snippets listed in Section 3 (Snippets 1–11).

Once the cla.solve() method has been run, results can be accessed easily:

 cla.w contains a list of all turning points.

 cla.l and cla.g respectively contain the values of and for every turning point.

 cla.f contains the composition of F used to compute every turning point.

Table 2 reports these outputs for our particular example. Note that sometimes an asset may become

free, and yet the turning point has the weight for that asset resting precisely at the same boundary it

became free from. In that case, the solution may seem repeated, when in fact what is happening is that

the same portfolio is the result of two different F sets.

Algorithms 2013, 6 186

Table 2. Return, Risk, λ and composition of the 10 turning points.

CP Num Return Risk Lambda X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10)

1 1.190 0.952 58.303 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 1.180 0.546 4.174 0.649 0.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.160 0.417 1.946 0.434 0.231 0.000 0.335 0.000 0.000 0.000 0.000 0.000 0.000

4 1.111 0.267 0.165 0.127 0.072 0.000 0.281 0.000 0.000 0.000 0.000 0.000 0.520

5 1.108 0.265 0.147 0.123 0.070 0.000 0.279 0.000 0.000 0.000 0.006 0.000 0.521

6 1.022 0.230 0.056 0.087 0.050 0.000 0.224 0.000 0.174 0.000 0.030 0.000 0.435

7 1.015 0.228 0.052 0.085 0.049 0.000 0.220 0.000 0.180 0.000 0.031 0.006 0.429

8 0.973 0.220 0.037 0.074 0.044 0.000 0.199 0.026 0.198 0.000 0.033 0.028 0.398

9 0.950 0.216 0.031 0.068 0.041 0.015 0.188 0.034 0.202 0.000 0.034 0.034 0.383

10 0.803 0.205 0.000 0.037 0.027 0.095 0.126 0.077 0.219 0.030 0.036 0.061 0.292

We can also access the utilities described in Section 4. For instance, the instruction

mu, sigma, weights = cla.efFrontier(100) in Snippet 16 computes 100 points of the Efficient Frontier,

and plots them using the auxiliary function in Snippet 17. If the optional argument pathChart is not

used, the chart is plotted, but if a path is provided, the chart is saved as a file in that destination.

Snippet 17. The efficient frontier.

def plot2D(x, y, xLabel = '', yLabel = '', title = '', pathChart = None):

 import matplotlib.pyplot as mpl

 fig = mpl.figure()

 ax = fig.add_subplot(1, 1, 1) # one row, one column, first plot

 ax.plot(x, y, color = 'blue')

 ax.set_xlabel(xLabel)

 ax.set_ylabel(yLabel, rotation = 90)

 mpl.xticks(rotation = 'vertical')

 mpl.title(title)

 if pathChart == None:

 mpl.show()

 else:

 mpl.savefig(pathChart)

 mpl.clf() # reset pylab

 return

Figure 1 plots the efficient frontier, using the plot2D function provided in Snippet 17. Figure 2 plots

the Sharpe ratio as a function of risk. Visually, the maximum Sharpe ratio portfolio is located around a

risk of 0.2, and reaches a level close to 4.5. This can be easily verified by running the instruction

sr, w_sr = cla.getMaxSR(), which returns a Sharpe ratio of 4.4535 for a portfolio with risk 0.2274.

Similarly, running the instruction mv, w_mv = cla.getMinVar() reports a Minimum Variance portfolio

with a risk of 0.2052.

Algorithms 2013, 6 187

Figure 1. The Efficient Frontier

Figure 2. Sharpe ratio as a function of risk.

VBA-Excel’s double data type is based on a modified IEEE 754 specification, which offers a

precision of 15 significant figures ([18]). Our Python results exactly match the outputs obtained when

using the implementation of [6], to the highest accuracy offered by VBA-Excel.

6. Conclusions

Portfolio optimization is one of the problems most frequently encountered by financial

practitioners. Following Markowitz [1], this operation consists in identifying the combination of assets

that maximize the expected return subject to a certain risk budget. For a complete range of risk

budgets, this gives rise to the concept of Efficient Frontier. This problem has an analytical solution in

the absence of inequality constraints, such as lower and upper bounds for portfolio weights.

In order to cope with inequality constraints, [3,4] introduced the Critical Line Algorithm (CLA).

To our knowledge, CLA is the only algorithm specifically designed for linear inequality-constrained

quadratic portfolio optimization problems, which guarantees that the exact solution is found after a

given number of iterations. Furthermore, CLA does not only compute a single portfolio, but it derives

Algorithms 2013, 6 188

the entire efficient frontier. In the context of portfolio optimization problems, this approach is clearly

more adequate than generic-purpose quadratic programming algorithms.

Given these two facts that portfolio optimization is a critical task, and that CLA provides an

extremely efficient solution method, one would expect a myriad of software implementations to be

available. Yet, to our surprise, we are only aware of one open-source, fully documented

implementation of CLA, by [6]. Unfortunately, that implementation was done in VBA-Excel. This

requires manual adjustments to a spreadsheet, which inevitably narrows its applicability to small-scale

problems. Consequently, we suspect that most financial practitioners are resorting to generic-purpose

quadratic programming software to optimize their portfolios, which often delivers

suboptimal solutions.

The main goal of this paper is to fill this gap in the literature by providing a well-documented,

step-by-step open-source implementation of CLA in a scientific language. The code is implemented as

a Python class object, which allows it to be imported like any other Python module, and integrated

seamlessly with pre-existing code. Following the explanation provided in this paper, our class can also

be easily translated to other languages, such as C, C++ or Fortran-90. We have discussed the logic

behind CLA following the algorithm’s decision flow. In addition, we have developed several utilities

that facilitate the answering of recurrent practical problems. Our results match the output of [6] at the

highest accuracy offered by Excel.

Appendix

A.1. Python Implementation of the Critical Line Algorithm

This Python class contains the entirety of the code discussed in Sections 3 and 4 of the paper.

Section 4 presents an example of how to generate objects from this class. The following source code

incorporates two additional functions:

 purgeNumErr(): It removes turning points which violate the inequality conditions, as a result of

a near-singular covariance matrix .

 purgeExcess(): It removes turning points that violate the convex hull, as a result of unnecessary

drops in .

The purpose of these two functions is to deal with potentially ill-conditioned matrices. Should the

input matrices and vectors have good numerical properties, these numerical controls would be

unnecessary. Since they are not strictly a part of CLA, we did not discuss them in the paper. This

source code can be downloaded at [19] or [20].

Snippet 18. The CLA Python class.

#!/usr/bin/env python

On 20130210, v0.2

Critical Line Algorithm

by MLdP <lopezdeprado@lbl.gov>

import numpy as np

http://www.quantresearch.info/Software.htm

Algorithms 2013, 6 189

#---

#---

class CLA:

 def __init__(self,mean,covar,lB,uB):

 # Initialize the class

 self.mean=mean

 self.covar=covar

 self.lB=lB

 self.uB=uB

 self.w=[] # solution

 self.l=[] # lambdas

 self.g=[] # gammas

 self.f=[] # free weights

#---

 def solve(self):

 # Compute the turning points,free sets and weights

 f,w=self.initAlgo()

 self.w.append(np.copy(w)) # store solution

 self.l.append(None)

 self.g.append(None)

 self.f.append(f[:])

 while True:

 #1) case a): Bound one free weight

 l_in=None

 if len(f)>1:

 covarF,covarFB,meanF,wB=self.getMatrices(f)

 covarF_inv=np.linalg.inv(covarF)

 j=0

 for i in f:

 l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,j,[self.lB[i],self.uB[i]])

 if l>l_in:l_in,i_in,bi_in=l,i,bi

 j+=1

 #2) case b): Free one bounded weight

 l_out=None

 if len(f)<self.mean.shape[0]:

 b=self.getB(f)

 for i in b:

 covarF,covarFB,meanF,wB=self.getMatrices(f+[i])

 covarF_inv=np.linalg.inv(covarF)

 l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,meanF.shape[0]-1, \

 self.w[-1][i])

 if (self.l[-1]==None or l<self.l[-1]) and l>l_out:l_out,i_out=l,i

Algorithms 2013, 6 190

 if (l_in==None or l_in<0) and (l_out==None or l_out<0):

 #3) compute minimum variance solution

 self.l.append(0)

 covarF,covarFB,meanF,wB=self.getMatrices(f)

 covarF_inv=np.linalg.inv(covarF)

 meanF=np.zeros(meanF.shape)

 else:

 #4) decide lambda

 if l_in>l_out:

 self.l.append(l_in)

 f.remove(i_in)

 w[i_in]=bi_in # set value at the correct boundary

 else:

 self.l.append(l_out)

 f.append(i_out)

 covarF,covarFB,meanF,wB=self.getMatrices(f)

 covarF_inv=np.linalg.inv(covarF)

 #5) compute solution vector

 wF,g=self.computeW(covarF_inv,covarFB,meanF,wB)

 for i in range(len(f)):w[f[i]]=wF[i]

 self.w.append(np.copy(w)) # store solution

 self.g.append(g)

 self.f.append(f[:])

 if self.l[-1]==0:break

 #6) Purge turning points

 self.purgeNumErr(10e-10)

 self.purgeExcess()

#---

 def initAlgo(self):

 # Initialize the algo

 #1) Form structured array

 a=np.zeros((self.mean.shape[0]),dtype=[('id',int),('mu',float)])

 b=[self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list

 a[:]=zip(range(self.mean.shape[0]),b) # fill structured array

 #2) Sort structured array

 b=np.sort(a,order='mu')

 #3) First free weight

 i,w=b.shape[0],np.copy(self.lB)

 while sum(w)<1:

 i-=1

 w[b[i][0]]=self.uB[b[i][0]]

 w[b[i][0]]+=1-sum(w)

Algorithms 2013, 6 191

 return [b[i][0]],w

#---

 def computeBi(self,c,bi):

 if c>0:

 bi=bi[1][0]

 if c<0:

 bi=bi[0][0]

 return bi

#---

 def computeW(self,covarF_inv,covarFB,meanF,wB):

 #1) compute gamma

 onesF=np.ones(meanF.shape)

 g1=np.dot(np.dot(onesF.T,covarF_inv),meanF)

 g2=np.dot(np.dot(onesF.T,covarF_inv),onesF)

 if wB==None:

 g,w1=float(-self.l[-1]*g1/g2+1/g2),0

 else:

 onesB=np.ones(wB.shape)

 g3=np.dot(onesB.T,wB)

 g4=np.dot(covarF_inv,covarFB)

 w1=np.dot(g4,wB)

 g4=np.dot(onesF.T,w1)

 g=float(-self.l[-1]*g1/g2+(1-g3+g4)/g2)

 #2) compute weights

 w2=np.dot(covarF_inv,onesF)

 w3=np.dot(covarF_inv,meanF)

 return -w1+g*w2+self.l[-1]*w3,g

#---

 def computeLambda(self,covarF_inv,covarFB,meanF,wB,i,bi):

 #1) C

 onesF=np.ones(meanF.shape)

 c1=np.dot(np.dot(onesF.T,covarF_inv),onesF)

 c2=np.dot(covarF_inv,meanF)

 c3=np.dot(np.dot(onesF.T,covarF_inv),meanF)

 c4=np.dot(covarF_inv,onesF)

 c=-c1*c2[i]+c3*c4[i]

 if c==0:return

 #2) bi

 if type(bi)==list:bi=self.computeBi(c,bi)

 #3) Lambda

 if wB==None:

 # All free assets

Algorithms 2013, 6 192

 return float((c4[i]-c1*bi)/c),bi

 else:

 onesB=np.ones(wB.shape)

 l1=np.dot(onesB.T,wB)

 l2=np.dot(covarF_inv,covarFB)

 l3=np.dot(l2,wB)

 l2=np.dot(onesF.T,l3)

 return float(((1-l1+l2)*c4[i]-c1*(bi+l3[i]))/c),bi

#---

 def getMatrices(self,f):

 # Slice covarF,covarFB,covarB,meanF,meanB,wF,wB

 covarF=self.reduceMatrix(self.covar,f,f)

 meanF=self.reduceMatrix(self.mean,f,[0])

 b=self.getB(f)

 covarFB=self.reduceMatrix(self.covar,f,b)

 wB=self.reduceMatrix(self.w[-1],b,[0])

 return covarF,covarFB,meanF,wB

#---

 def getB(self,f):

 return self.diffLists(range(self.mean.shape[0]),f)

#---

 def diffLists(self,list1,list2):

 return list(set(list1)-set(list2))

#---

 def reduceMatrix(self,matrix,listX,listY):

 # Reduce a matrix to the provided list of rows and columns

 if len(listX)==0 or len(listY)==0:return

 matrix_=matrix[:,listY[0]:listY[0]+1]

 for i in listY[1:]:

 a=matrix[:,i:i+1]

 matrix_=np.append(matrix_,a,1)

 matrix__=matrix_[listX[0]:listX[0]+1,:]

 for i in listX[1:]:

 a=matrix_[i:i+1,:]

 matrix__=np.append(matrix__,a,0)

 return matrix__

#---

 def purgeNumErr(self,tol):

 # Purge violations of inequality constraints (associated with ill-conditioned covar matrix)

 i=0

 while True:

 if i==len(self.w):break

Algorithms 2013, 6 193

 w=self.w[i]

 for j in range(w.shape[0]):

 if w[j]-self.lB[j]<-tol or w[j]-self.uB[j]>tol:

 del self.w[i]

 del self.l[i]

 del self.g[i]

 del self.f[i]

 break

 i+=1

#---

 def purgeExcess(self):

 # Remove violations of the convex hull

 i,repeat=0,False

 while True:

 if repeat==False:i+=1

 if i==len(self.w)-1:break

 w=self.w[i]

 mu=np.dot(w.T,self.mean)[0,0]

 j,repeat=i+1,False

 while True:

 if j==len(self.w):break

 w=self.w[j]

 mu_=np.dot(w.T,self.mean)[0,0]

 if mu<mu_:

 del self.w[i]

 del self.l[i]

 del self.g[i]

 del self.f[i]

 repeat=True

 break

 else:

 j+=1

#---

 def getMinVar(self):

 # Get the minimum variance solution

 var=[]

 for w in self.w:

 a=np.dot(np.dot(w.T,self.covar),w)

 var.append(a)

 return min(var)**.5,self.w[var.index(min(var))]

#---

 def getMaxSR(self):

Algorithms 2013, 6 194

 # Get the max Sharpe ratio portfolio

 #1) Compute the local max SR portfolio between any two neighbor turning points

 w_sr,sr=[],[]

 for i in range(len(self.w)-1):

 w0=np.copy(self.w[i])

 w1=np.copy(self.w[i+1])

 kargs={'minimum':False,'args':(w0,w1)}

 a,b=self.goldenSection(self.evalSR,0,1,**kargs)

 w_sr.append(a*w0+(1-a)*w1)

 sr.append(b)

 return max(sr),w_sr[sr.index(max(sr))]

#---

 def evalSR(self,a,w0,w1):

 # Evaluate SR of the portfolio within the convex combination

 w=a*w0+(1-a)*w1

 b=np.dot(w.T,self.mean)[0,0]

 c=np.dot(np.dot(w.T,self.covar),w)[0,0]**.5

 return b/c

#---

 def goldenSection(self,obj,a,b,**kargs):

 # Golden section method. Maximum if kargs['minimum']==False is passed

 from math import log,ceil

 tol,sign,args=1.0e-9,1,None

 if 'minimum' in kargs and kargs['minimum']==False:sign=-1

 if 'args' in kargs:args=kargs['args']

 numIter=int(ceil(-2.078087*log(tol/abs(b-a))))

 r=0.618033989

 c=1.0-r

 # Initialize

 x1=r*a+c*b;x2=c*a+r*b

 f1=sign*obj(x1,*args);f2=sign*obj(x2,*args)

 # Loop

 for i in range(numIter):

 if f1>f2:

 a=x1

 x1=x2;f1=f2

 x2=c*a+r*b;f2=sign*obj(x2,*args)

 else:

 b=x2

 x2=x1;f2=f1

 x1=r*a+c*b;f1=sign*obj(x1,*args)

 if f1<f2:return x1,sign*f1

Algorithms 2013, 6 195

 else:return x2,sign*f2

#---

 def efFrontier(self,points):

 # Get the efficient frontier

 mu,sigma,weights=[],[],[]

 a=np.linspace(0,1,points/len(self.w))[:-1] # remove the 1, to avoid duplications

 b=range(len(self.w)-1)

 for i in b:

 w0,w1=self.w[i],self.w[i+1]

 if i==b[-1]:a=np.linspace(0,1,points/len(self.w)) # include the 1 in the last iteration

 for j in a:

 w=w1*j+(1-j)*w0

 weights.append(np.copy(w))

 mu.append(np.dot(w.T,self.mean)[0,0])

 sigma.append(np.dot(np.dot(w.T,self.covar),w)[0,0]**.5)

 return mu,sigma,weights

#---

#---

Acknowledgments

Supported in part by the Director, Office of Computational and Technology Research, Division of

Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under

contract number DE-AC02-05CH11231.

We would like to thank the Editor-In-Chief of Algorithms, Kazuo Iwama (Kyoto University), as

well as two anonymous referees for useful comments. We are grateful to Hess Energy Trading

Company, our colleagues at CIFT (Lawrence Berkeley National Laboratory), Attilio Meucci (Kepos

Capital, New York University), Riccardo Rebonato (PIMCO, University of Oxford) and Luis Viceira

(Harvard Business School).

References

1. Markowitz, H.M. Portfolio selection. J. Financ. 1952, 7, 77–91.

2. Beardsley, B.; Donnadieu, H.; Kramer, K.; Kumar, M.; Maguire, A.; Morel, P.; Tang, T.

Capturing Growth in Adverse Times: Global Asset Management 2012. Research Paper, The

Boston Consulting Group, Boston, MA, USA, 2012.

3. Markowitz, H.M. The optimization of a quadratic function subject to linear constraints. Nav. Res.

Logist. Q. 1956, 3, 111–133.

4. Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments, 1st ed.; John Wiley

and Sons: New York, NY, USA, 1959.

5. Wolfe, P. The simplex method for quadratic programming. Econometrica 1959, 27, 382–398.

6. Markowitz, H.M.; Todd, G.P. Mean Variance Analysis in Portfolio Choice and Capital Markets,

1st ed.; John Wiley and Sons: New York, NY, USA, 2000.

Algorithms 2013, 6 196

7. Markowitz, H.M.; Malhotra, A.; Pazel, D.P. The EAS-E application development system:

principles and language summary. Commun. ACM 1984, 27, 785–799.

8. Steuer, R.E.; Qi, Y.; Hirschberger, M. Portfolio optimization: New capabilities and future

methods. Z. Betriebswirtschaft 2006, 76, 199–219.

9. Kwak, J. The importance of Excel. The Baseline Scenario, 9 February 2013. Available online:

http://baselinescenario.com/2013/02/09/the-importance-of-excel/ (accessed on 21 March 2013).

10. Hirschberger, M.; Qi, Y.; Steuer, R.E. Quadratic Parametric Programming for Portfolio Selection

with Random Problem Generation and Computational Experience. Working Paper, Terry College

of Business, University of Georgia, Athens, GA, USA, 2004.

11. Niedermayer, A.; Niedermayer, D. Applying Markowitz’s Critical Line Algorithm. Research

Paper Series, Department of Economics, University of Bern, Bern, Switzerland, 2007.

12. Black, F.; Litterman, R. Global portfolio optimization. Financ. Anal. J. 1992, 48, 28–43.

13. Bailey, D.H.; López de Prado, M. The sharpe ratio efficient frontier. J. Risk 2012, 15, 3–44.

14. Meucci, A. Risk and Asset Allocation, 1st ed.; Springer: New York, NY, USA, 2005.

15. Kopman, L.; Liu, S. Maximizing the Sharpe Ratio. MSCI Barra Research Paper No. 2009-22.

MSCI Barra: New York, NY, USA, 2009.

16. Avriel, M.; Wilde, D. Optimality proof for the symmetric Fibonacci search technique.

Fibonacci Q. 1966, 4, 265–269.

17. Dalton, S. Financial Applications Using Excel Add-in Development in C/C++, 2nd ed.; John

Wiley and Sons: New York, NY, USA, 2007; pp. 13–14.

18. Kiefer, J. Sequential minimax search for a maximum. Proc. Am. Math. Soc. 1953, 4, 502–506.

19. David H. Bailey’s Research Website. Available online: www.davidhbailey.com (accessed on

21 March 2013).

20. Marcos López de Prado’s Research Website. Available online: www.quantresearch.info (accessed

on 21 March 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

http://www.quantresearch.info/

