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Abstract: The dominating set problem is a core NP-hard problem in combinatorial
optimization and graph theory, and has many important applications. Baker [JACM 41,1994]
introduces a k-outer planar graph decomposition-based framework for designing polynomial
time approximation scheme (PTAS) for a class of NP-hard problems in planar graphs. It is
mentioned that the framework can be applied to obtain an O(2ckn) time, c is a constant,
(1+1/k)-approximation algorithm for the planar dominating set problem. We show that the
approximation ratio achieved by the mentioned application of the framework is not bounded
by any constant for the planar dominating set problem. We modify the application of the
framework to give a PTAS for the planar dominating set problem. With k-outer planar graph
decompositions, the modified PTAS has an approximation ratio (1 + 2/k). Using 2k-outer
planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k)

in O(22ckn) time. We report a computational study on the modified PTAS. Our results show
that the modified PTAS is practical.

Keywords: dominating set problem; PTAS; branch-decomposition based algorithms; planar
graphs; computational study

1. Introduction

An important research area in graph theory and networks is domination; it has been energetically
investigated for many years due to its large number of real-world applications, such as resource
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allocation [1,2] and voting [3]. Haynes et al. In their books, [4,5] provide a good survey on domination
problems. Let G be a simple undirected graph with the set of vertices V (G) and the set of edges E(G).
We denote |V (G)| by n. The r-dominating set D of G is a subset of V (G) containing r vertices, such
that for every vertex v in V (G), either v ∈ D or v is adjacent to a vertex in D. The minimum integer
r for which G has a r-dominating set is called the domination number of G and is denoted by γ(G).
The dominating set problem is to decide that given a graph G and an integer r, whether γ(G) ≤ r. The
optimization version of this problem is to find a minimum dominating set.

The dominating set problem is a core NP-hard problem in combinatorial optimization and graph
theory [6]. There is a long history of research on the approximation and exact algorithms to tackle the
intractability of the problem. A minimization problem P is α−approximable (α ≥ 1) if there is an
algorithm which gives a solution for any instance of P in polynomial time in the instance size with
solution value at most αOPT , where OPT is the value of an optimal solution for the instance of P . If
P is (1 + ϵ)−approximable for any fixed ϵ > 0 then P has a polynomial time approximation scheme
(PTAS). The dominating set problem for general graphs is (1 + log n)−approximable [7], however, it is
not approximable within a factor (1 − ϵ) ln n for any ϵ > 0 unless NP ⊆ DTIME(nlog log n) [8]. The
dominating set problem has been widely studied on an important class of graphs, the planar graphs. A
graph is planar if it can be drawn on the sphere with no crossing edges. The dominating set problem in
planar graphs (planar dominating set problem) remains NP-hard [6] but admits a PTAS [9].

The fixed parameter algorithms have played a central role in exact algorithms for the planar
dominating set problem. A minimization problem P is fixed-parameter tractable if given a parameter r,
whether OPT of P is at most r can be decided in f(r)nO(1) time, where f(r) is a computable function
depending only on r [10]. Such an algorithm is called a fixed parameter tractable (FPT) algorithm.
Readers may refer to [11] for a survey on new techniques for developing exact algorithms for NP-hard
problems. It is shown in [10] that for general graphs, the dominating set problem is not fixed-parameter
tractable unless some collapses occur between parametrized complexity classes. However, the planar
dominating set problem is fixed-parameter tractable [10]. The planar dominating set problem also admits
a linear size kernel [12].

Recent progresses in FPT algorithms result in subexponential time exact algorithms for the planar
dominating set problem [13–15]. These algorithms use the tree-/branch-decomposition based approach
and have running time O(2c

√
γ(G)n+nO(1)), c is a constant. The branch-decomposition based algorithm

by Fomin and Thilikos (called FT algorithm in what follows) [14] achieves a smallest constant c in the
exponent of the running time. The notion of branch-decomposition of graphs is introduced by Robertson
and Seymour [16]. Informally, a branch-decomposition of a graph G is a collection of vertex cut sets
of G that decomposes G into subgraphs with each edge of G a minimal subgraph. The width of a
branch-decomposition is the maximum size of the vertex cuts in the collection. The branchwidth of G,
denoted by bw(G), is the minimum width of all possible branch-decompositions of G. Given a graph G

and a branch-decomposition of G with width β, FT algorithm finds an optimal solution in O(2(3 log4 3)βn)

time for the dominating set problem.
For a planar graph G, it is known that a branch-decomposition of minimum width bw(G) can be

computed in O(n3) time [17,18] and bw(G) ≤ 3
√

4.5γ(G) [14,19]. Alber et al. [12] give an O(n3) time
algorithm which computes a subgraph H (kernel) of G such that H has O(γ(G)) vertices, γ(H) ≤ γ(G),
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and a minimum dominating set of G can be constructed from a minimum dominating set of H in linear
time. Notice that for a subgraph H of G, bw(H) ≤ bw(G). From the above, the FT algorithm solves the
planar dominating set problem in O(2(3 log4 3)bw(G)γ(G) + n3) and O(215.13

√
γ(G)γ(G) + n3) time (The

running time of FT algorithm can be further improved to O(211.98
√

γ(G)γ(G) + n3) using fast matrix
multiplication in the dynamic programming step of the algorithm [20]. However, this improvement is
only of theoretical interest because the fast matrix multiplication is not practical [21]).

For graphs with small treewidth/branchwidth, an FPT algorithm may be efficient to find an optimal
solution, however, for graphs with large treewidth/branchwidth, one may have to rely on approximation
algorithms for the planar dominating set problem. A PTAS is highly desired if the solution values are
required to be close to optimal with a guaranteed approximation ratio. Baker introduces a framework
to obtain PTAS for a class of NP-hard problems [9]. This framework is based on decomposing a planar
graph into k-outer planar subgraphs.

A graph G is called outer planar or 1-outer planar if it has a planar embedding such that all vertices of
G are incident to a same face (called outer face). For k > 1, G is a k-outer planar graph, if it has a planar
embedding such that removing the vertices of G incident to the outer face will result in a (k − 1)-outer
planar graph. A k-outer planar graph G has a branchwidth of at most 2k. Baker’s PTAS framework for a
problem P in a planar graph G is to decompose G into a collection of k-outer planar subgraphs, find an
optimal partial solution of P in each subgraph by an exact algorithm, and take the union of the optimal
partial solutions as a solution of P in G. When the framework is used for a minimization problem,
G is decomposed in such a way that every two “neighbor” k-outer planar subgraphs share “one-level”
vertices. Baker shows that the framework gives a 2O(k)n time (1+1/k)-approximation algorithm for the
vertex cover problem in planar graphs and mentions that the framework can be applied to obtain 2O(k)n

time (1 + 1/k)-approximation algorithms for many other minimization problems, including the planar
dominating set problem [9]. For a maximization problem like the independent set problem in planar
graphs, Baker’s framework gives a 2O(k)n time k/(k + 1)-approximation algorithm.

We show that the approximation ratio of Baker’s framework is not bounded by any constant for the
planar dominating set problem when two “neighbor” k-outer planar subgraphs share only “one-level”
of vertices. To get a PTAS for the planar dominating set problem, the application of the framework has
to be modified. We modify the application of the framework by decomposing G into k-outer planar
subgraphs such that every two “neighbor” subgraphs share “two-levels” of vertices. Let O(2ckn), c

is a constant, be the running time of Baker’s framework with “one-level” of overlapping vertices for
the planar dominating set problem. We show that the modified application of the framework gives a
PTAS with approximation ratio (1 + 2/k) for the planar dominating set problem. By decomposing G

into 2k-outer planar subgraphs with “two-level” overlapping vertices, the modified PTAS achieves the
approximation ratio (1 + 1/k) in O(22ckn) time.

In addition to the theoretical progresses in the algorithms for the dominating set problem, the practical
performance of algorithms for the problem has received much attention. A computational study of
an exact algorithm (FT algorithm) for the planar dominating set problem is reported in [21]. The
study shows that the FT algorithm is practically efficient for graphs with small branchwidth. Heuristic
algorithms for the dominating set problem have also been well investigated and a computational study
of heuristic algorithms is reported in [22]. However, the practical performance of a PTAS is not known
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for the planar dominating set problem. One hurdle in evaluating the practical performance of a PTAS
is the implementation of the algorithm. We conduct a computational study to evaluate the practical
performance of the modified PTAS for the planar dominating set problem. In our implementation, the
FT algorithm is used to compute an optimal partial solution in each k-outer planar subgraph. Our results
show that the PTAS finds solutions with values very close to optimal in a practical time and much better
than those given by well used heuristic algorithms. The computational study gives a concrete example
on using a PTAS for solving important NP-hard problems in planar graphs and shows that the PTAS is
practical for the planar dominating set problem. This work provides a tool for computing solutions close
to optimal for the planar dominating set problem.

The next section gives preliminaries of the paper. In Section 3, we review Baker’s framework,
show that the approximation ratio of the framework is not bounded by a constant with “one-level” of
overlapping vertices for the planar dominating set problem, and modify the application of the framework
to give a PTAS for the problem. In Section 4, we report the computational study results. The final section
concludes the paper.

2. Preliminaries

A graph G consists of a set V (G) of vertices and a set E(G) of edges, where each edge e of E(G)

is a subset of two elements from V (G). For edge e = {u, v} ∈ E(G), we say that vertices u and v are
adjacent. The node degree of a vertex u is the number of vertices adjacent to u. Vertex u is dominated by
vertex v if u and v are adjacent or u = v. Vertex u is dominated by a set D if u is dominated by a vertex
of D. Edge e is covered by a vertex u if u ∈ e. For a subset U ⊆ V (G) and a subset A ⊆ E(G), we
denote by G[U ] and G[A] the subgraphs of G induced by U and A, respectively. For a subset A ⊆ E(G),
we denote by E(G) \A by A when G is clear from the context. A separation of graph G is a pair (A, A)

of subsets of E(G). For each A ⊆ E(G), we denote by ∂(A) the vertex set V (A) ∩ V (A). The order of
separation (A, A) is |∂(A)| = |∂(A)|.

A graph G is planar if G has a planar embedding (a draw on a sphere without edge crossing). We call
a planar embedding of G a plane graph. A face of a plane graph G is a connected region of the sphere
bounded by edges and vertices of G and containing no edge or vertex of G in its interior. For a plane
graph G and a face f of G, let VG(f) be the set of vertices in V (G) incident to f . Given a plane graph G

and a face fo (called outer face) of G, let V1 = VG(fo). For i ≥ 1, let Ui = ∪i
j=1Vj , Gi = G[V (G) \ Ui],

fi be the face of Gi such that fo ⊆ fi, and Vi+1 = VGi
(fi). We call the vertices of Vi level i vertices of

G. Intuitively, Gi is the plane graph obtained from removing vertices of levels 1, 2, ..., i from G. Vi+1 is
the vertices of Gi incident to the outer face of Gi.

Branch-decomposition based algorithms play a central role in the PTAS studied in this paper. The
notion of branch-decomposition is introduced by Robertson and Seymour [16]. A branch-decomposition
of graph G is a pair (ϕ, T ) where T is a tree each internal node of which has degree 3 and ϕ is a bijection
from the set of leaves of T to E(G). Consider a link e of T and let L1 and L2 denote the sets of
leaves of T in the two respective subtrees of T obtained by removing e. We say that the separation
(ϕ(L1), ϕ(L2)) is induced by this link e of T . We define the width of the branch-decomposition (ϕ, T )

to be the largest order of the separations induced by links of T . The branchwidth of G, denoted by
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bw(G), is the minimum width of all branch-decompositions of G. In the rest of this paper, we identify a
branch-decomposition (ϕ, T ) with the tree T , regarding each leaf of T as an edge of G.

Given a branch-decomposition T of G, an optimization problem P in G may be solved by the dynamic
programming method as follows: convert T into a rooted binary tree by replacing a link {x, y} of T with
three links {x, z}, {y, z}, {z, r}, where z and r are new nodes to T , and r is the root of T . For a link
e = {u, v} of T , assume u is the end node reachable from root r by passing through e. Let Ae be the set
of leaves of T reachable from r by passing through e. Link e = {u, v} is called a leaf link if u is a leaf
node, otherwise an internal link. An internal link e has two child links e1 and e2 covered by u. Notice
that Ae = Ae1 ∪ Ae2 . For a leaf link e, all partial solutions of P in the subgraph G[Ae] can be computed
by enumeration. For an internal link e, assume that all partial solutions of P in the subgraph G[Ae1 ] and
those in G[Ae2 ] have been computed. Then all partial solutions of P in the subgraph G[Ae] are computed
by merging the partial solutions in G[Ae1 ] and those in G[Ae2 ]. The merging process is performed in a
bottom-up way, from each leaf link to the link {z, r}, to find an optimal solution of P in G.

The FT algorithm is a branch-decomposition-based algorithm for the planar dominating set
problem. In FT Algorithm, the number of partial solutions in G[Ae] is 3|∂(Ae)|. To compute
a partial solution in G[Ae], every pair (s1, s2) is checked, where s1 and s2 are partial solutions
in G[Ae1 ] and G[Ae2 ], respectively. Notice that each of |∂(Ae)|, |∂(Ae1)|, |∂(Ae2)| is at most the
width of the given branch-decomposition T . When an optimal branch-decomposition T (of width
bw(G)) is given, the FT algorithm takes O(2(3 log4 3)bw(G)) time and O(3bw(G)γ(G)) memory space
to compute the partial solutions in G[Ae]. A planar graph G can be reduced to a kernel of
size O(γ(G)) in O(n3) time and there are O(γ(G)) merging steps for the kernel. An optimal
branch-decomposition of the kernel can be computed in O((γ(G))3) time. The FT algorithm solves
the planar dominating set problem in O(2(3 log4 3)bw(G)γ(G) + n3) time [14]. For many other NP-hard
problems, branch-decomposition-based algorithms usually have exponential time and memory space
in the width of a given branch-decomposition. The exponential time and memory space are often a
bottle-neck in applying branch-decomposition-based algorithms in practice.

3. PTAS for Planar Dominating Set Problem

3.1. Baker’s Framework for Minimization Problem

We review Baker’s PTAS framework for minimization problems. We define the terminology for
describing the framework. Given a plane graph G with m levels of vertices, for integers 2 ≤ k < m and
2 ≤ s ≤ k + 1, let r = ⌈(m − s)/k⌉. We define U(0, s) = ∪s

j=1Vj; U(i, s) = ∪k
j=0V(i−1)×k+s+j for

1 ≤ i < r; and U(r, s) = ∪m
j=(r−1)×k+sVj . Then G[U(0, s)] is the plane subgraph of G induced by the

vertices of G with levels 1, ..., s and is s-outer planar; each G[U(i, s)] is the subgraph of G induced by
the vertices of G with levels (i− 1)× k + s, ..., i× k + s and is (k + 1)-outer planar for 1 ≤ i < r; and
G[U(r, s)] is the subgraph of G induced by the vertices of G with levels (r − 1) × k + s, ...,m and is
t-outer planar, where t = m − [(r − 1) × k + s] + 1 ≤ k + 1. Below is Baker’s PTAS framework for
minimization problems.
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1. Let G be a plane graph with m levels of vertices for an outer face and k ≥ 2 be an integer. Compute
the vertex sets V1, ..., Vm.

2. for s = 2, ..., k + 1

(a) Compute subgraphs G[U(i, s)] for i = 0, 1, ..., r.
(b) For every subgraph G[U(i, s)], find an optimal solution S(i, s) by an exact algorithm.
(c) Let Ss = ∪r

i=0S(i, s).

3. Let S be a set of S2, ..., Sk+1 with the minimum cardinality.

Baker [9] gives a proof that the above framework achieves a (1 + 1/k)-approximation ratio for the
minimum vertex cover problem in plane graph G: find a minimum subset C of V (G) such that every
edge of G is covered by a vertex in C. We review Baker’s proof of the approximation ratio for the vertex
cover problem. This proof gives a base on our later argument for the planar dominating set problem.

Given a plane graph G, let C be a minimum vertex cover of G. Given integer k, let S(i, s) be a
minimum vertex cover of G[U(i, s)] and let C(i, s) = C ∩U(i, s), s = 2, ..., k + 1 and 0 ≤ i ≤ r. Since
no vertex of G in V (G) \ U(i, s) covers any edge of G[U(i, s)], C(i, s) is a vertex cover of subgraph
G[U(i, s)]. From this and the fact that S(i, s) is a minimum vertex cover of G[U(i, s)], |S(i, s)| ≤
|C(i, s)|. Therefore, Ss = ∪r

i=0S(i, s) is a vertex cover of G and

|Ss| ≤
r∑

i=0

|S(i, s)| ≤
r∑

i=0

|C(i, s)| (1)

Since the vertices of Vi×k+s appear in both subgraphs G[U(i, s)] and G[U(i + 1, s)], 0 ≤ i < r,

r∑
i=0

|C(i, s)| = |C| +
r−1∑
i=0

|C ∩ Vi×k+s| (2)

Notice that

k+1
min
s=2

{
r−1∑
i=0

|C ∩ Vi×k+s|} ≤ |C|
k

(3)

Let S be a Ss with a minimum cardinality. Then from Inequalities (1), (2), and (3), we have |S| ≤
|C|+ |C|

k
, that is, the solution produced by Baker’s framework has the approximation ratio (1 + 1/k) for

the minimum vertex cover problem in planar graphs.

3.2. Modified Framework for Planar Dominating Set Problem

In [9], it is mentioned that the framework in the previous section can be applied to obtain a (1+1/k)-
approximation algorithm for the planar dominating set problem. We show that this is not true. Recall
that for the vertex cover problem, no vertex of G in V (G)\U(i, s) can cover any edge of G[U(i, s)]. This
implies that for a minimum vertex cover C, C(i, s) = C∩U(i, s) is a vertex cover of subgraph G[U(s, i)]

and a minimum vertex cover S(i, s) of G[U(i, s)] has the property |S(i, s)| ≤ |C(i, s)|. However, for
the planar dominating set problem, the intersection of a minimum dominating set of G and U(i, s) may
not be a dominating set of G[U(i, s)] because a vertex of G in V (G) \ U(i, s) can dominate a vertex of
G[U(i, s)]. More specifically, let D be a minimum dominating set of G, D(i, s) = D∩U(i, s) and S(i, s)
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be a minimum dominating set of G[U(i, s)]. Then D(i, s) may not be a dominating set of G[U(i, s)] and
|S(i, s)| ≤ |D(i, s)| may not hold. Below we show by an example that the approximation ratio of the
mentioned application of Baker’s framework is not bounded by any constant for the planar dominating
set problem.

Let G be a plane graph with 4 levels of vertices shown in Figure 1. Let Xi be the set of vertices of
G with labels (i, 1), ..., (i, x), 1 ≤ i ≤ 6. The subgraph G[Xi] is a chain and there is a unique vertex
in G dominating all vertices of Xi. For a large x, G has a unique minimum dominating set D with its
six vertices shown as black squares in the figure. Let k = 2. For s = 2, the subgraphs G[U(0, 2)]

and G[U(1, 2)] are shown in Figure 2 (a) and (b), respectively. Let D(0, 2) = D ∩ U(0, 2). Then
D(0, 2) (the set of vertices denoted by black squares) is not a dominating set of G[U(0, 2)]. On the
other hand, a minimum dominating set S(0, 2) of G[U(0, 2)] contains a fraction of vertices in X3 and
|S(0, 2)| > |D(0, 2)| for large x = |X3|. Similarly, a minimum dominating set S(1, 2) of G[U(1, 2)]

contains a fraction of vertices in X2 and |S(1, 2)| > |D(1, 2)|. Let S2 = S(0, 2)∪S(1, 2). Then |S2|/|D|
is not bounded by any constant for non-constant x.

Figure 1. A plane graph G with four levels of vertices.
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Figure 2. (a) Subgraph G[U(0, 2)] and (b) Subgraph G[U(1, 2)] of G.
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For s = 3, the subgraphs G[U(0, 3)] and G[U(1, 3)] are shown in Figure 3 (a) and (b),
respectively. Then a minimum dominating set S(0, 3) of G[U(0, 3)] contains a fraction of vertices in
X4 and a minimum dominating set S(1, 3) of G[U(1, 3)] contains a fraction of vertices in X5. Let
S3 = S(0, 3) ∪ S(1, 3). Then |S3|/|D| is not bounded by any constant for non-constant x = |X4|.
Therefore, for a set S of S2 and S3 with the minimum cardinality, |S|/|D| is not bounded by any constant
for non-constant x.

Figure 3. (a) Subgraph G[U(0, 3)] and (b) Subgraph G[U(1, 3)] of G.
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We modify the application of Baker’s framework to get a PTAS for the planar dominating set problem.
The idea for the modification is that instead of decomposing G into (k + 1)-outer planar subgraphs with
two neighbor subgraphs G[U(i, s)] and G[U(i+1, s)] overlapping on one level of vertices, we decompose
G into (k+2)-outer planar subgraphs with two neighbor subgraphs overlapping on two levels of vertices.
For each subgraph, we find a minimum set which dominates only k levels of vertices in the subgraph.
The formal modification is described below.

Let G be a plane graph with m levels of vertices. For integers 2 ≤ k < m and 2 ≤ s ≤ k + 1, let
r = ⌈(m − s)/k⌉. We define W (0, s) = ∪s

j=1Vj; W (i, s) = ∪k
j=−1V(i−1)×k+s+j for 1 ≤ i < r; and

W (r, s) = ∪m
j=(r−1)×k+s−1Vj . G[W (0, s)] is the subgraph of G induced by the vertices of G with levels

1, ..., s and is s-outer planar; each G[W (i, s)] is the subgraph of G induced by the vertices of G with
levels (i − 1) × k + s − 1, ..., i × k + s and is (k + 2)-outer planar for 1 ≤ i < r; and G[W (r, s)] is the
subgraph of G induced by the vertices of G with levels (r − 1) × k + s − 1, ..., m and is t-outer planar,
where t = m− [(r−1)×k +s]+2 ≤ k +2. We call the vertices of G[W (0, s)] with level s, the vertices
of each subgraph G[W (i, s)] (1 ≤ i < r) with levels (i − 1) × k + s − 1 and i × k + s, and the vertices
of G[W (r, s)] with level (r − 1) × k + s − 1 the vertices on boundary; and call the other vertices the
interior vertices.

1. Let G be a plane graph with m levels of vertices for an outer face and k ≥ 2 be an integer. Compute
the vertex sets V1, ..., Vm.

2. for s = 2, ..., k + 1
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(a) Compute subgraphs G[W (i, s)] for i = 0, 1, ..., r.
(b) For subgraph G[W (0, s)], find a minimum subset S(0, s) of W (0, s) that dominates every

vertex of ∪s−1
j=1Vj (every interior vertex).

For every subgraph G[W (i, s)], i = 1, ..., r − 1, find a minimum subset S(i, s) of W (i, s)

that dominates every vertex of ∪i×k+s−1
j=(i−1)×k+sVj (every interior vertex).

For subgraph G[W (r, s)], find a minimum subset S(r, s) of W (r, s) that dominates every
vertex of ∪m

j=(r−1)×k+sVj (every interior vertex).
(c) Let Ss = ∪r

i=0S(i, s).

3. Let S be a set of S2, ..., Sk+1 with the minimum cardinality.

Theorem 3.1 The modified application of Baker’s framework gives an O(2(6 log4 3)(k+2))kn) time (1 +

2/k)-approximation algorithm for the planar dominating set problem.

Proof: We first show the approximation ratio of the framework. Notice that Ss = ∪r
i=0S(i, s) dominates

every vertex of

(∪s−1
j=1Vj) ∪ [∪r−1

i=1 (∪i×k+s−1
j=(i−1)×k+sVj)] ∪ (∪m

j=(r−1)×k+sVj) = ∪m
j=1Vj = V (G)

that is, Ss is a dominating set of G. Let D be a minimum dominating set of G and let
D(i, s) = D ∩ W (i, s), s = 2, ..., k + 1 and 0 ≤ i ≤ r. Since no vertex of G in V (G) \ W (i, s)

can dominate any interior vertex of G[W (i, s)] and D dominates every vertex of G, D(i, s) dominates
every interior vertex of G[W (i, s)]. From this and the fact that S(i, s) is a minimum subset of W (i, s)

dominating every interior vertex of G[W (i, s)], |S(i, s)| ≤ |D(i, s)|. From this, we have

|Ss| ≤
r∑

i=0

|S(i, s)| ≤
r∑

i=0

|D(i, s)| (4)

Since the vertices of Vi×k+s−1 and Vi×k+s appear in subgraphs G[W (i, s)] and G[W (i+1, s)], 0 ≤ i < r,

r∑
i=0

|D(i, s)| ≤ |D| +
r−1∑
i=0

|D ∩ Vi×k+s−1| + |D ∩ Vi×k+s| (5)

Notice that

k+1
min
s=2

{
r−1∑
i=0

|D ∩ Vi×k+s−1| + |D ∩ Vi×k+s|} ≤ 2|D|
k

(6)

Let S be an Ss with a minimum cardinality. Then from Inequalities (4), (5), and (6), we have
|S| ≤ |D| + 2|D|

k
. that is, the solution produced by the modified algorithm has the approximation ratio

(1 + 2/k) for the planar dominating set problem.
Given a planar graph G, a planar embedding of G can be computed in linear time [23]. It is obvious

that Step 1 and Step 3 can be computed in linear time. Step 2 (a) and (c) can be computed in O(kn)

time. Recall that FT Algorithm (by Fomin and Thilikos [14]) is the most efficient known exact algorithm
for the planar dominaing set problem. We use FT Algorithm for Step 2 (b). Given a graph G and a
branch-decomposition of G with width β, FT Algorithm finds an optimal solution for the dominating set
problem in O(2(3 log4 3)βn) time. Each subgraph G[W (i, s)] is (k + 2)-outer planar and has branchwidth
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at most 2(k + 2). A branch-decomposition of G[W (i, s)] with width at most 2(k + 2) can be computed
in linear time [24]. Each vertex of G appears in at most two subgraphs for a specific value s. Therefore,
Step 2 (b) takes

k+1∑
s=2

r∑
i=0

O(2(6 log4 3)(k+2)|W (i, s)|) =
k+1∑
s=2

O(2(6 log4 3)(k+2)n) = O(2(6 log4 3)(k+2)kn)

time which is the dominating part of the modified application’s running time. []

Notice that if G is decomposed into (2k +2)-outer planar subgraphs, the modified PTAS achieves the
approximation ratio (1 + 1/k) and has running time O(2(12 log4 3)(k+1)kn).

We conclude this section by comparing the running time of the modified PTAS with that of the
application of Baker’s framework in Section 3.1 for the planar dominating set problem. We assume that
the most efficient FT Algorithm is used in Step 2 (b) of both algorithms. Assume that G is decomposed
into (k + 1)-outer planar subgraphs in Baker’s framework in Section 3.1. Then a branch-decomposition
of G[U(i, s)] with width at most 2(k + 1) can be computed in linear time and Step 2 (b) takes

k+1∑
s=2

r∑
i=0

O(2(6 log4 3)(k+1)|U(i, s)|) = O(2(6 log4 3)(k+1)kn)

time which is the dominating part of the framework’s running time. The constant in the exponent of the
running time of the modified PTAS for the approximation ratio (1 + 1/k) is as twice as that of Baker’s
framework in Section 3.1.

4. Computational Study of PTAS

We study the practical performance of the PTAS for the planar dominating set problem. The PTAS
is implemented in C++ and its performance is tested for four different classes of graphs including the
Delaunay triangulations of point sets taken from TSPLIB [25] (Class (1)), triangulations (Class (2)) and
intersection graphs (Class (3)) generated by LEDA [26] and Gabriel graphs (Class (4)) generated using
the points uniformly distributed in a two-dimensional plane. Those classes of graphs are well used in
previous computational studies and the branchwidth of the graphs increases in the size of graphs (for
classes of graphs with small branchwidth such as the maximal random planar graphs from LEDA [26],
the FT algorithm can find optimal solutions efficiently [21] and thus they are not interesting in this study).
The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core Processor 4600+ (2.4 GHz)
and 3 GByte of internal memory. The operating system is SUSE Linux 10.2.

We use the FT algorithm to compute an optimal solution for each (k + 2)-outer planar subgraph.
There are three major steps of FT Algorithm:

1. Compute a linear size kernel H of the subgraph using the O(n3) time kernelization algorithm by
Alber et al. [12].

2. Compute an optimal branch-decomposition of H by the O(n3) time algorithm [17,18].
3. Find an optimal solution for H by dynamic programming based on the branch-decomposition of

H and compute an optimal solution for the subgraph from the optimal solution for H .
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Step 3 has exponential time complexity and memory complexity in the width of the
branch-decomposition used, and is the dominating part in the running time and used memory of the
FT algorithm. Thus we include the kernelization in the FT algorithm because, for a kernel H of a graph
G, bw(H) ≤ bw(G) and it often happens that bw(H) < bw(G) for a kernel computed. Also, the effort
for computing an optimal branch-decomposition reduces the running time and used memory in practice.
For a planar graph G, the FT algorithm implemented runs in O(2(3 log4 3)bw(H)γ(G) + n3) time and uses
O(3bw(H)γ(G)) memory space. Readers may refer to [21] for more details on the practical performance
of the FT algorithm.

Table 1 shows the computational results of the PTAS for the planar dominating set problem. For
every instance, we calculate the approximated solutions for two different values of k, 3 and 4, and, for
every value of k, we calculate the (k + 2)-outer planar decomposition for every face of the instance. We
choose the best value for an approximated solution. For some instances with small branchwidth, we also
include the optimal solutions computed by the FT algorithm and reported in [21] in the column of ”Exact
Alg.”. The size of a minimum dominating set of graph G, computed by the FT algorithm, is indicated by
γ(G) in Table 1, and for every value of k, DPTAS is the size of dominating set computed by the PTAS.
In the table, bw is the branchwidth of G, β is the branchwidth of a kernel H of G in the FT algorithm
and the largest branchwidth of a kernel H of a (k + 2)-outer planar subgraph in PTAS. The running time
is in seconds. For two large instances rand16000 and rand20000, we only compute γ(G) but not the
minimum dominating sets by the FT algorithm due to the memory constraint. These values of γ(G) are
identified by “*”.

In order to compare the size of dominating sets obtained from the PTAS with the optimal solutions,
we include some instances with small branchwidth for every class of graphs, such that a minimum
dominating set can be computed by FT Algorithm. The Exact Alg. column shows the results of FT
Algorithm reported in [21]. We use two values for k to decompose the instances into (k+2)-outer planar
component. Notice that the branchwidth of every (k+2)-outer planar graph is at most 2(k+2). Hence, by
increasing k the size of subgraphs and their branchwidth will increase. Theoretical results suggest that
increasing k gives smaller approximated solutions for minimization problems. Our computing results
confirm the theoretical analysis of the k-outer planar decomposition method. For example, for k = 4,
every instance can be decomposed into subgraphs with a branchwidth of at most 12. This is the largest
value of branchwidth that can be processed on our computational platform in a practical time.

Since the theory of NP-completeness has reduced hopes that NP-hard problems can be solved
in polynomial time, heuristic and approximation algorithms have attracted more attentions. These
algorithms compute near optimal solutions within a reasonable time for problems of practical size.
We compare the performance of the PTAS with the performance of three different heuristic algorithms
introduced in [22] for the planar dominating set problem. In what follows we briefly explain these
heuristic algorithms (for more details please refer to [22]).

In [22], six heuristic algorithms for the dominating set problem are studied. We test the performance
of these six methods, but only report three of them with better performances. The three reported
heuristics are described below. Let D be a dominating set computed by these heuristics.
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Table 1. Computational results (time in seconds) of PTAS for the planar dominating
set problem.

Graph |E(G)| bw Exact Alg. k = 3 k = 4
G γ(G) β time DP T AS β time DP T AS β time

(1) kroB150 436 10 23 10 10 28 8 2.07 - - -
pr299 864 11 47 11 37 56 10 11.42 - - -
tsp225 622 12 37 12 110 46 9 5.21 - - -
a280 788 13 43 13 337 53 10 8.40 51 12 12.09
rd400 1183 17 - - - 75 10 35.30 74 12 351.93

pcb442 1286 17 - - - 79 10 10.46 78 10 10.86
d657 1958 22 - - - 123 10 64.89 120 12 604.10

pr1002 2972 21 - - - 190 10 115.65 182 12 1253.9

(2) tri2000 5977 8 321 7 198 361 7 175.59 - - -
tri4000 11969 9 653 7 1903 724 7 733.06 - - -
tri6000 17979 9 975 8 3576 1136 8 1994.53 - - -
tri8000 23975 9 1283 7 7750 1430 7 2858.63 - - -

tri10000 29976 9 1606 7 16495 1804 7 4977.06 - - -
tri11000 32972 14 - - - 1987 8 5910.8 1958 8 12341.1
tri12000 35974 14 - - - 2164 7 5370.18 2132 7 6865.08
tri14000 41974 15 - - - 2514 7 8220.49 2434 7 9208.72
tri16000 47969 16 - - - 2920 7 10060.1 2885 7 12794.4

(3) rand6000 10293 11 1563 9 150 1658 8 104.85 - - -
rand10000 17578 13 2535 10 869 2850 8 535.87 2692 9 432.23
rand15000 26717 14 3758 12 2769 4144 10 1313.14 - - -
rand16000 28624 13 4002* 13 5917 4379 10 2443.27 4295 11 2027.7
rand20000 35975 14 4963* 14 13993 5465 10 4241.65 5368 12 5017.02
rand25000 40378 16 - - - 7101 8 6407.91 6632 12 9470

(4) Gab500 949 13 115 12 238 136 10 18.02 129 10 18.95
Gab600 1174 14 135 14 3074 164 10 26.05 156 10 22.10
Gab700 1302 14 162 14 5710 187 10 22.81 183 10 24.30
Gab800 1533 17 - - - 225 10 51.82 205 12 24.30
Gab900 1758 17 - - - 243 10 48.39 231 12 344.50

Gab1000 1901 18 - - - 260 10 49.69 259 12 781.89
Gab1500 2870 21 - - - 402 10 116.37 385 12 960.71

Greedy: Initially, D is empty. In each iteration, a vertex which dominates a maximum number of
vertices in V (G) \ D is added to D.

Greedy-Rev: Initially D = V (G). In each iteration, a vertex is removed from D, such that the
resulting set remains a dominating set of G. A vertex is chosen to be removed, by ordering the vertices
of D in increasing node degree, and removing the first vertex that does not dominate any vertex uniquely.
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Greedy-Vote: Initially, D is empty. This algorithm does not include a vertex u in D only based on the
number of vertices which are dominated by u. It uses a more complex voting scheme to select a vertex
to be included. We omit the details of the selection scheme and readers may refer to [22] for details.

Table 2. Computational results for heuristic algorithms and PTAS for the planar dominating
set problem (time in seconds).

Graph |E(G)| γ(G) Greedy Alg. Greedy-Rev Alg. Greedy-Vote Alg. PTAS
G DGr time DRev time DV ote time DP T AS time

(1) kroB150 436 23 27 0.002 31 0.01 31 0.002 28 2.08
pr299 864 47 54 0.003 63 0.032 62 0.005 56 11.42
tsp225 622 37 49 0.153 54 0.02 50 0.003 46 5.21
a280 788 43 51 0.004 62 0.025 62 0.006 51 12.09
rd400 1183 - 78 0.007 92 0.032 90 0.009 74 351.93

pcb442 1286 - 76 0.908 90 0.063 87 0.01 78 10.86
d657 1958 - 126 0.016 146 0.128 143 0.021 120 604.10

pr1002 2972 - 190 0.032 236 0.328 194 0.04 182 1253.9

(2) tri2000 5977 321 365 0.116 379 1.119 464 0.168 361 175.59
tri4000 11969 653 729 0.183 765 1.792 787 0.544 724 733.06
tri6000 17979 975 1118 0.418 1166 4.14 1306 0.541 1136 1994.53
tri8000 23975 1283 1449 0.715 1522 7.003 1653 0.918 1430 2858.63
tri10000 29976 1606 1819 1.117 1906 11.524 2302 1.572 1804 4977.06
tri11000 32972 - 2040 1.375 2116 14.092 3431 2.561 1958 12341.1
tri12000 35974 - 2186 1.607 2278 16.538 2741 2.243 2132 6865.08
tri14000 41974 2576 2.462 2664 22.976 3317 3.163 2434 9208.72
tri16000 47969 - 2917 2.839 3033 30.694 3684 4.005 2885 12794.4

(3) rand6000 10293 1563 1932 0.748 2166 4.517 2908 1.206 1658 104.85
rand10000 17578 2535 3197 2.06 3618 13.33 4164 2.878 2692 432.23
rand15000 26717 3758 4698 4.861 5402 29.487 7277 7.641 4144 1313.14
rand16000 28624 4002* 5039 5.176 5744 35.589 7552 10.327 4295 2027.7
rand20000 35975 4963* 6273 8.053 7168 55.948 8571 11.903 5398 5017.02
rand25000 45327 - 7772 12.467 8942 91.039 11865 20.615 6632 9470

(4) Gab500 949 115 146 0.006 173 0.039 160 0.007 129 18.95
Gab600 1174 135 168 0.007 199 0.051 171 0.009 156 22.10
Gab700 1302 162 200 0.01 242 0.072 238 0.012 183 24.30
Gab800 1533 - 227 0.012 270 0.097 307 0.019 205 24.30
Gab900 1758 - 254 0.016 303 0.103 323 0.022 231 344.50
Gab1000 1901 - 280 0.019 344 0.146 423 0.03 259 781.89
Gab1500 2870 - 426 0.042 507 0.335 496 0.051 385 960.71

We study the performances of the above heuristic algorithms for the four classes of planar graphs
that are used in the study of the PTAS. These heuristic algorithms are implemented in C++. Table 2
shows the computational results of these heuristic algorithms and the PTAS. In Table 2, DGr, DRev, and
DV ote are the sizes of dominating sets computed by the heuristic algorithm Greedy, Greedy-Rev, and
Greedy-Vote, respectively. For every graph instance, if the size of the instance allows the application of
the FT algorithm, we include the size of the minimum dominating set of the instance, as well. For the
PTAS, we include the best result DPTAS for every instance from Table 1. Time in the table is in seconds.
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The results in the table show that the heuristic algorithms are always faster than the PTAS. However,
the size of dominating sets computed by the heuristics are larger than those by the PTAS for most of
instances.

Based on our computational results, the Greedy algorithm gives the smallest dominating sets
compared to other heuristic algorithms. Table 3 shows the results of our computational study for the
FT algorithm, Greedy (the best heuristic method) and PTAS for graph instances whose branchwidths are
small enough to run the FT algorithm.

Table 3. Computational results for Exact, Greedy and PTAS algorithms for small instances
(time in seconds).

Graph |E(G)| Exact Alg. Greedy Alg. PTAS
G γ(G) time DG time DP T AS time

(1) kroB150 436 23 10 27 0.002 28 2.08
pr299 864 47 37 54 0.032 56 11.42
tsp225 622 37 110 49 0.153 46 5.21
a280 788 43 337 51 0.004 51 12.09

(2) tri2000 5977 321 198 365 0.116 361 175.59
tri4000 11969 653 1903 729 0.183 724 733.06
tri6000 17979 975 3576 1118 0.418 1136 1994.53
tri8000 23975 1283 7750 1449 0.715 1430 2858.63

tri10000 29976 1606 16495 1819 1.117 1804 4977.06

(3) rand6000 10293 1563 150 1932 0.748 1658 104.85
rand10000 17578 2535 869 3197 2.06 2692 432.23
rand15000 26727 3758 2769 4698 4.861 4144 1313.14
rand16000 28624 4002* 5917 5039 5.176 4295 2027.7
rand20000 35975 4963* 13993 6273 8.053 5398 5017.02

(4) Gab500 949 115 238 146 0.006 129 18.95
Gab600 1174 135* 3074 168 0.007 156 22.10
Gab700 1302 162* 5710 200 0.01 183 24.30

Since the branchwidth of graphs in Class(1) grow quickly in the size of graphs, we have only included
small instances of this class in Table 3. From the results of the table, we recommend the FT algorithm
for optimal solutions if the branchwidth of a graph in Class (1) is smaller than 14. For the instances
of Class (2), FT Algorithm is time consuming. If the running time is the driving factor, we suggest the
Greedy algorithm for this class of graphs. For the instances of Classes (3) and (4), as the results in Table
3 suggest, the sizes of dominating sets computed by Greedy are considerably bigger than those computed
by the PTAS. Moreover, the FT algorithm is time consuming, rendering the PTAS a better choice. For
instance, for graph instance rand20000 with 35,975 edges, the FT algorithm takes almost four hours to
compute the size of an optimal dominating set (not the set itself), while the PTAS computes a dominating
set of a slightly larger size than the optimal value in less than two hours.

Table 4 shows the computational results for the instances that the FT algorithm is not able to find an
optimal solution in practical time and memory space. The computational results show that for all of these
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instances, except one, the DPTAS is smaller than DGr. In summary, for applications with running-time
priority, Greedy is a better choice to compute an approximated dominating set, and if the running-time
is not a big concern, the PTAS is a better option for instances whose optimal dominating set cannot be
computed by the FT algorithm in a practical time.

Table 4. Computational results for Greedy and PTAS for large instances (time in seconds).

Graph |E(G)| Greedy Alg. PTAS
G DGr time DP T AS time

(1) rd400 1183 78 0.007 74 351.93
pcb442 1286 76 0.908 78 10.86
d657 1958 126 0.016 120 604.10

pr1002 2972 190 0.032 182 1253.9

(2) tri11000 32972 2040 1.375 1958 12341.1
tri12000 35974 2186 1.607 2132 6865.08
tri14000 41974 2576 2.462 2434 9208.72
tri16000 47969 2917 2.839 2885 12794.4

(3) rand25000 45327 7772 12.467 6632 9470

(4) Gab800 1533 227 0.012 205 24.30
Gab900 1758 254 0.016 231 344.50

Gab1000 1901 280 0.019 259 781.89
Gab1500 2870 426 0.042 385 960.71

5. Concluding Remarks

It is mentioned that Baker’s k-outer planar graph decomposition framework can be applied to
obtain a PTAS for the planar dominating set problem. We show that, in order to get a PTAS for the
planar dominating set problem, the mentioned application needs some modification. We modify the
application and give a PTAS for the planar dominating set problem. We also report a computational
study on the modified PTAS. Computational studies on exact algorithms and heuristic algorithms for
the planar dominating set problem have already been conducted, but no report on PTAS has yet been
given. Our study on the PTAS makes the computational study of planar dominating set problem more
comprehensive. For larger k, the PTAS gives better solutions, but is more time/memory consuming.
Due to the computation platform limitation, we only evaluated the PTAS for small k. It would be
interesting to test the practical performances of the PTAS for larger k on more powerful computation
platforms. The practical performances of PTASes for other optimization problems in planar graphs are
worth investigation.
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