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Abstract: In the stable marriage problem, any instance admits the so-called man-optimal
stable matching, in which every man is assigned the best possible partner. However, there
are instances for which all men receive low-ranked partners even in the man-optimal stable
matching. In this paper we consider the problem of improving the man-optimal stable
matching by changing only one man’s preference list. We show that the optimization variant
and the decision variant of this problem can be solved in time O(n3) and O(n2), respectively,
where n is the number of men (women) in an input. We further extend the problem so that
we are allowed to change k men’s preference lists. We show that the problem is W[1]-hard
with respect to the parameter k and give O(n2k+1)-time and O(nk+1)-time exact algorithms
for the optimization and decision variants, respectively. Finally, we show that the problems
become easy when k = n; we give O(n2.5 log n)-time and O(n2)-time algorithms for the
optimization and decision variants, respectively.
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1. Introduction

An instance of the stable marriage problem [1] consists of the same number n of men and women,
and each person’s preference list. In a preference list, each person ranks all the members of the opposite
sex in a strict order. A matching is a set of n disjoint man–woman pairs in which each person appears
exactly once. A blocking pair for a matching M is a man–woman pair each of whom prefers the other
to his/her partner in M . A matching is stable if it contains no blocking pair.

It is known that there exists at least one stable matching in any instance, and one can be found by
the Gale–Shapley algorithm (GS) in O(n2) time [1,2]. The stable matching found by GS is called the
man-optimal stable matching that has an extreme property that every man is assigned the best possible
partner among all the stable matchings. In applications for asymmetric settings, such as assigning
residents to hospitals or students to schools, it is common to formulate the problem by setting residents or
students to the men’s side, so that those people can receive benefit. Nevertheless, there are instances for
which all (or almost all) men are assigned low-ranked partners even in the man-optimal stable matching,
(e.g., a worst case instance for GS given in Figure 1, which originates from [2]). For such instances, the
merit of using the man-optimal mechanism cannot be sufficiently exploited.

Figure 1. Worst case example for the Gale–Shapley algorithm for n = 5. Partners in the
man-optimal stable matching are underlined. Each preference list is ordered from left to
right in increasing order of the rank, i.e., the leftmost person is the most preferable and the
rightmost person is the least preferable.

m1: w1 w2 w3 w4 w5 w1: m2 m3 m4 m5 m1

m2: w2 w3 w4 w1 w5 w2: m3 m4 m5 m1 m2

m3: w3 w4 w1 w2 w5 w3: m4 m5 m1 m2 m3

m4: w4 w1 w2 w3 w5 w4: m5 m1 m2 m3 m4

m5: w1 w2 w3 w4 w5 w5: m1 m2 m3 m4 m5

To overcome this drawback, we consider the problem of improving the man-optimal stable matching
by allowing small changes in preference lists. In this paper we first allow only one man’s preference list to
be changed, and consider optimization and decision variants. In the optimization variant, we are asked to
find a man and a way of changing his list that cause the maximum improvement. In the decision variant,
we ask if we can obtain a positive improvement. For both problems, we impose a restriction that no
man should be assigned a worse partner than the man-optimal partner in the original instance. We show
that these problems can be solved in time O(n3) and O(n2), respectively. We then extend the problem
so that we are allowed to change k men’s preference lists. We show that the optimization variant is
W[1]-hard with respect to the parameter k. We also give O(n2k+1)-time and O(nk+1)-time exact
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algorithms for the optimization and decision variants, respectively. Finally, we show that the problems
become easy when k = n, i.e., we are allowed to change the preference lists of any number
of men. We give O(n2.5 log n)-time and O(n2)-time algorithms for the optimization and decision
variants, respectively.

Our problem can also be viewed as an issue of coalition strategy by men. Knowing all the preference
lists, men are trying to maximize their total profit by submitting falsified preference lists, while bounding
the number of such liars and guaranteeing that no one becomes worse off. Results of this paper show
the computational complexities of obtaining an optimal strategy depending on the number k of liars.
Strategic issue in the stable marriage problem is an extensively studied topic (see [3] for example).

2. Preliminaries

2.1. Problem Definitions

Let I be an instance of the stable marriage problem. In this paper, we consider only complete
preference lists with no ties. The rank of a woman w in man m’s preference list, denoted rm(w), is
one plus the number of women that precede w in m’s list. For a matching M and a person p, let M(p) be
p’s partner in M . The score of m in M is the rank of his partner in M , i.e., rm(M(m)). The score of M

is the sum of the scores of all men, i.e.,
∑

m rm(M(m)). The man-optimal score of I , denoted MO(I),
is the score of the man-optimal stable matching M0 of I .

Let k be a positive integer. If Ĩ is an instance obtained by changing the preference lists of at most
k men in I in some way, then we say that Ĩ is a k-neighbor of I . Suppose that Ĩ is a k-neighbor
obtained by changing the preference lists of m̃1, m̃2, . . . , m̃ℓ (ℓ ≤ k) and let M̃0 be the man-optimal
stable matching for Ĩ . The man-optimal score of Ĩ with respect to I , denoted MOI(Ĩ), is the score of
M̃0 where m̃1, m̃2, . . . , m̃ℓ’s scores are measured in terms of their preference lists in I . (Intuitively, their
scores are measured in their true preference lists.) We say that Ĩ is proper if each man receives at least
as good a partner in M̃0 as in M0, i.e., rm(M̃0(m)) ≤ rm(M0(m)) for each m, where m̃1, m̃2, . . . , m̃ℓ’s
scores are measured in their preference lists in I .

The problem MAX MAN-OPT IMPROVE(k) (MMI(k) for short) is, given a stable marriage instance
I , to find a proper k-neighbor Ĩ of I such that MO(I)−MOI(Ĩ) is maximized. The problem POSITIVE
MAN-OPT IMPROVE(k) (PMI(k) for short) is to determine if there is a proper k-neighbor Ĩ of I such
that MO(I) − MOI(Ĩ) > 0.

2.2. Reduced Lists and Rotation Digraphs

In constructing algorithms and proving W[1]-hardness, we use reduced lists and rotation digraphs.
These are defined on an instance I and its stable matching M , and are constructed in the following way:
For each man m and each woman w below M(m) in m’s preference list, delete w from m’s list and m

from w’s list. The resulting preference lists are called the woman-oriented reduced lists with respect to
I and M , denoted RLI,M . (We may simply call them the reduced lists if there is no ambiguity). Note
that for each woman w, M(w) lies at the top of w’s reduced list since M is stable. For each woman
w, let nextI,M(w) be the man at the second position of w’s reduced list (if any). The woman-oriented
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rotation digraph with respect to I and M (or simply the rotation digraph) is a digraph DI,M = (V, A)

where V is the set of men and A includes an arc (M(w), nextI,M(w)) (i.e., a directed edge from M(w)

to nextI,M(w)) for each woman w such that nextI,M(w) exists. Suppose that there is a directed cycle
m0,m1, . . . , mr−1 (r ≥ 2) in DI,M , and let wi = M(mi) for all i (0 ≤ i ≤ r − 1). Then we call an
ordered list of pairs ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) a rotation exposed in M . If we modify
M by removing the pairs of rotation ρ and adding (mi, wi−1 mod r) for each i, then the resulting matching
is also stable [2]. In this case we say that the new matching is obtained by eliminating the rotation ρ

from M . Note that by eliminating a rotation, every man in the rotation obtains a better partner, while
every woman in the rotation obtains a worse partner. It is also known that M is the man-optimal stable
matching of I if and only if there is no rotation exposed in M (or equivalently, DI,M has no directed
cycle) [2].

3. Changing One Man’s Preference List

3.1. Optimization Variant

Let I be a given instance and M0 be its man-optimal stable matching. Let us fix a man m whose
preference list is to be changed. The following proposition, due to Huang [3], is useful for our purpose.
Recall that a preference list is ordered from left to right in increasing order of the rank.

Proposition 3.1 [3] Let PL(m) M0(m) PR(m) be m’s preference list in I , where PL(m) (PR(m))
denotes the left (right) part of M0(m) in m’s list. Let I ′ be an instance constructed in the following way:
Take any number of women from PL(m), move them to the right of M0(m), and arbitrarily permute each
of the (new) left and right parts of M0(m). Let M ′

0 be the man-optimal stable matching for I ′. Then in
M ′

0 no man is worse off than in M0 (with respect to preference order of I).

Then we can claim that there is an optimal solution in which M0(m) lies at the top of m’s list for the
following reason: Note that m cannot be matched with a woman worse than M0(m) by the requirement
of the problem. On the other hand, it is shown in [2] (page 56, Theorem 1.7.1) that m cannot get a better
man-optimal partner by falsifying his preference list. Hence, in any feasible solution, m must be matched
with M0(m). If M0(m) is not at the top of m’s list in some feasible solution, we can move women on
the left of M0(m) to the right of M0(m) without increasing the man-optimal score, by Proposition 3.1.
Hence our claim holds. Since m is matched with M0(m) in a feasible solution, the order of women other
than M0(m) in m’s list is not important. Hence all we need to do is to move M0(m) to the top of m’s
list, which implies the following simple Algorithm 1.

Example. We give an example of the execution of Algorithm 1 for instance I given in Figure 1. The
man-optimal stable matching M0 is given in Figure 1 and MO(I) = 21. At line 2, we first consider m1.
At line 3, we construct an instance Im1 by moving w5 to the top of m1’s list. By applying GS, we find that
the man-optimal stable matching of Im1 is Mm1 = {(m1, w5), (m2, w2), (m3, w3), (m4, w4), (m5, w1)}
and MOI(Im1) = 9. Next, we consider m2. The instance Im2 is constructed by moving w1 to the top of
m2’s list. The man-optimal stable matching of Im2 is also M0 and MOI(Im2) = 21. By continuing this,
we can find that MOI(Im3) = MOI(Im4) = MOI(Im5) = 21. Hence, Algorithm 1 outputs Im1 since
MOI(Im1) is the smallest.
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Algorithm 1
1: Find the man-optimal stable matching M0 of I .
2: for each man m do
3: Modify I by moving M0(m) to the top of m’s list. Let Im be the resulting instance.
4: Apply GS to Im and find its man-optimal stable matching Mm.
5: end for
6: Let m∗ be a man such that the score of Mm∗ is minimum.
7: Output Im∗ .

Since GS runs in time O(n2), line 1 and the body of the for loop can be executed in time O(n2). Since
there are n men, the overall time complexity of Algorithm 1 is O(n3).

Theorem 3.2 MMI(1) can be solved in O(n3) time.

3.2. Decision Variant

Note that a direct application of Algorithm 1 solves PMI(1) in O(n3) time. We improve this to O(n2)

using a structural property of stable matchings. Let I be an input. From the discussion in Section 3.1, it
suffices to consider the instance Im for each man m (see the description of Algorithm 1 for the definition
of Im.) It is not hard to see that the man-optimal stable matching M0 of I is also stable in Im for any
m. Hence, if M0 is not the man-optimal stable matching of Im for some m, then the man-optimal stable
matching of Im is better than M0, so the answer is “yes”; otherwise, the answer is “no”. To check whether
M0 is the man-optimal stable matching of Im or not in time O(n) per man, we use the woman-oriented
rotation digraphs defined in Section 2.2.

Given I , we construct the rotation digraph DI,M0 with respect to the man-optimal stable matching
M0. Clearly it is acyclic. For a man m, we construct the instance Im (defined before) and the rotation
digraph DIm,M0 (recall that M0 is stable in Im and hence DIm,M0 is defined). From the discussion in
Section 2.2, we know that M0 is the man-optimal stable matching of Im if and only if DIm,M0 contains
no cycle. Hence our task can be reduced to checking if DIm,M0 contains a cycle. The pseudocode of our
algorithm is given as Algorithm 2:

Algorithm 2
1: Find the man-optimal stable matching M0 of I .
2: Construct DI,M0 .
3: for each man m do
4: Modify I by moving M0(m) to the top of m’s list. Let Im be the resulting instance.
5: Construct DIm,M0 .
6: if DIm,M0 contains a cycle then
7: Output “yes” and terminate.
8: end if
9: end for

10: Output “no”.
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Example. We give an example of the execution of Algorithm 2 for instance I of Figure 1. The
man-optimal stable matching M0 is depicted in Figure 1. In constructing the reduced lists RLI,M0 ,
we delete w5 from m2,m3,m4, and m5’s lists, and m2,m3,m4, and m5 from w5’s list. Hence RLI,M0 is
as follows:

m1: w1 w2 w3 w4 w5 w1: m2 m3 m4 m5 m1

m2: w2 w3 w4 w1 w2: m3 m4 m5 m1 m2

m3: w3 w4 w1 w2 w3: m4 m5 m1 m2 m3

m4: w4 w1 w2 w3 w4: m5 m1 m2 m3 m4

m5: w1 w2 w3 w4 w5: m1

The rotation digraph DI,M0 has four arcs (m2,m3), (m3,m4), (m4,m5), and (m5, m1), as illustrated
in Figure 2(a).

Figure 2. Rotation digraphs.

m1

m2

m3m4

m5

m4

m5

(a) (b)

m1

m2

m3

m1

m2

m3m4

m5

(b) (c)

For a better exposition, let us first choose m5 at line 3. To construct Im5 , we move w4 to the top of
m5’s list. We then delete w1, w2, and w3 from m5’s list and m5 from w1, w2, and w3’s lists in RLI,M0 ,
and we obtain the following RLIm5 ,M0 :

m1: w1 w2 w3 w4 w5 w1: m2 m3 m4 m1

m2: w2 w3 w4 w1 w2: m3 m4 m1 m2

m3: w3 w4 w1 w2 w3: m4 m1 m2 m3

m4: w4 w1 w2 w3 w4: m5 m1 m2 m3 m4

m5: w4 w5: m1

To construct the rotation digraph DIm5 ,M0 , we remove an arc (m4,m5) from DI,M0 and add (m4,m1)

because nextI,M0(w3) = m5 but nextIm5 ,M0(w3) = m1. The resulting DIm5 ,M0 is depicted in Figure 2(b).
This digraph DIm5 ,M0 contains no cycle and hence we proceed to the next man.

Next, suppose that we choose m1 at line 3. Then RLIm1 ,M0 is as follows:

m1: w5 w1: m2 m3 m4 m5

m2: w2 w3 w4 w1 w2: m3 m4 m5 m2

m3: w3 w4 w1 w2 w3: m4 m5 m2 m3

m4: w4 w1 w2 w3 w4: m5 m2 m3 m4

m5: w1 w2 w3 w4 w5: m1
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To construct the rotation digraph DIm1 ,M0 , we remove an arc (m5,m1) from DI,M0 and add (m5,m2)

and obtain DIm1 ,M0 in Figure 2(c). Since DIm1 ,M0 contains a cycle, Algorithm 2 outputs “yes”
and terminates.

Lines 1 and 2 can be performed in time O(n2). Checking whether DIm,M0 contains a directed cycle
or not can be done by a standard topological sorting algorithm in time linear in the size of DIm,M0 . Since
each vertex of DIm,M0 has outdegree at most one, the size of DIm,M0 is O(n) and line 6 can be done in
O(n) time. Shortly, we show that DIm,M0 can be constructed from DI,M0 in time O(n). Then the overall
time complexity of Algorithm 2 is O(n2).

Note that the reduced lists RLIm,M0 can be constructed from RLI,M0 by deleting each woman w who
precedes M0(m) from m’s preference list, and correspondingly m from w’s list. If m is not nextI,M0(w),
then nextIm,M0(w) = nextI,M0(w). Otherwise, i.e., if nextI,M0(w) = m, then the man (say, m′) at the
third position of RLI,M0 (if any) will be at the second position of RLIm,M0 , i.e., nextIm,M0(w) = m′.
Accordingly we must replace the directed edge (M0(w),m) by (M0(w),m′). By doing this for every
such w, we can obtain DIm,M0 in time O(n).

Theorem 3.3 PMI(1) can be solved in O(n2) time.

4. Changing k Men’s Preference Lists

4.1. Hardness Result

In this section, we show W[1]-hardness of MMI(k). This hardness implies that MMI(k) probably
does not admit an FPT algorithm with parameter k, i.e., an O(f(k) ·p(n))-time algorithm where f is any
function and p is a polynomial.

Theorem 4.1 MMI(k) with parameter k is W[1]-hard.

Proof. The Densest k Subgraph problem (DkS) [4] is the following problem. We are given a graph
G and a positive integer k. The task is to find an induced subgraph of G with k vertices that contains
the maximum number of edges. It is known that DkS is W[1]-hard with parameter k [5]. We give an
FPT-reduction from DkS to MMI(k).

Given an instance (G, k1) of DkS, we construct an instance (I, k2) of MMI(k) as follows. First, we
let k2 = k1. Next, we construct I from G = (V,E). For each vertex vi ∈ V , we construct a man mi

and a woman wi. For each edge (vi, vj) ∈ E, we construct two men mi,j and m′
i,j and two women wi,j

and w′
i,j . For a vertex vi ∈ V , let Ei ⊆ E be the set of edges incident to vi and Wi be the set of women

wi,j corresponding to Ei. Each person’s preference list is constructed as follows, where L(Wi) is an
arbitrarily ordered list of women in Wi and “· · ·” means an arbitrarily ordered list of those people who
do not appear explicitly in the list.

mi: L(Wi) wi · · · (1 ≤ i ≤ |V |) wi: mi · · · (1 ≤ i ≤ |V |)
mi,j: w′

i,j wi,j · · · ((i, j) ∈ E) wi,j: mi,j mi mj m′
i,j · · · ((i, j) ∈ E)

m′
i,j: wi,j w′

i,j · · · ((i, j) ∈ E) w′
i,j: m′

i,j mi,j · · · ((i, j) ∈ E)
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It is not hard to see that the man-optimal stable matching M0 of I consists of pairs (mi, wi) for
1 ≤ i ≤ |V | and (mi,j, wi,j) and (m′

i,j, w
′
i,j) for (i, j) ∈ E. Note that if we ignore the “· · ·” part in the

above preference lists, each man is matched with the last woman and each woman is matched with the
first man in M0. Hence these are the woman-oriented reduced lists with respect to I and M0, i.e., RLI,M0 .

Clearly, the reduction can be performed in time polynomial in |G|. To complete the proof, we show
that G has an induced subgraph with k1 vertices and at least s edges if and only if there is a proper
k2-neighbor Ĩ of I such that MO(I) − MOI(Ĩ) ≥ 2s. Since k1 = k2, in the following we use k to
denote k1 and k2 just for simplicity. First, suppose that G has an induced subgraph with k vertices and
at least s edges, and let S(⊆ V ) be the set of those k vertices. Then, for each vi ∈ S, we modify mi’s
preference list by moving his man-optimal partner wi to the top of the list, and let Ĩ be the resulting
instance. We will show that, by doing this, mi,j and m′

i,j’s scores in the man-optimal stable matching of
Ĩ are decreased by one respectively, if vi, vj ∈ S and (vi, vj) ∈ E. Since there are at least s such edges,
the score is decreased by at least 2s in total.

Recall that wi,j’s reduced list in RLI,M0 is “mi,j mi mj m′
i,j”. Since vi, vj ∈ S and mi and mj’s

preference lists are modified as mentioned above, wi,j’s reduced list in RLĨ,M0
becomes “mi,j m′

i,j”, i.e.,
nextĨ,M0

(wi,j) = m′
i,j . Note that w′

i,j’s reduced list “m′
i,j mi,j” is unchanged. Then we have a directed

cycle mi,j m′
i,j of length two in DĨ,M0

and if we eliminate this rotation, the scores of mi,j and m′
i,j will

each be decreased by one. Note that we can repeat this argument independently for each edge.
Next, suppose that there is a proper k-neighbor Ĩ of I such that MO(I) − MOI(Ĩ) ≥ 2s and let M̃0

be the man-optimal stable matching of Ĩ . First, note that in M̃0, each man is matched with a woman
on the reduced lists RLI,M0 because by the condition of the problem, no man can be worse off in M̃0

than in M0. Since M̃0 is a perfect matching, we know that M̃0(mi) = wi for each i (1 ≤ i ≤ |V |) and
either “M̃0(mi,j) = wi,j and M̃0(m

′
i,j) = w′

i,j” or “M̃0(mi,j) = w′
i,j and M̃0(m

′
i,j) = wi,j” for each

(vi, vj) ∈ E. Therefore, only the case of “M̃0(mi,j) = w′
i,j and M̃0(m

′
i,j) = wi,j”, the scores of mi,j

and m′
i,j will each be decreased by one. This can happen only when m′

i,j becomes nextĨ,M0
(wi,j), that

is, mi and mj are removed from wi,j’s reduced list. This implies that wi precedes wi,j in mi’s reduced
list and wj precedes wi,j in mj’s reduced list. Therefore, both mi and mj’s lists are modified in Ĩ . Since
MO(I) − MOI(Ĩ) ≥ 2s, there are at least s such pairs (i, j). Let S be the set of vertices vi such that
mi’s preference list is modified in constructing Ĩ . Then |S| ≤ k and by the above discussion, S induces
at least s edges, which completes the proof.

4.2. Optimization Variant

From the discussion in Section 3.1, it seems that it would suffice to choose k men whose preference
lists are to be modified, and move their man-optimal partners to the top of their respective preference lists.
If this is true, we obtain an O(nk+2)-time algorithm since there are O(nk) combinations of selecting k

men and for each of them, we run GS whose time complexity is O(n2). However, the following example
(Figure 3) shows that this is not true.

Nevertheless, the following lemma allows the search space to be bounded.
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Figure 3. A counter example for the naive algorithm where k = 2. Man-optimal partners
are underlined. An optimal solution is obtained by moving w4 and w5 to the top in m4’s and
m5’s preference lists respectively, as a result of which the score decreases by seven. Any
choice of two men and moving their man-optimal partners to the top decreases the score by
at most five.

m1: w2 w1 w3 w5 w4 w1: m4 m5 m1 m3 m2

m2: w3 w2 w4 w1 w5 w2: m3 m2 m4 m1 m5

m3: w1 w3 w2 w4 w5 w3: m1 m3 m2 m5 m4

m4: w2 w4 w1 w5 w3 w4: m2 m1 m5 m4 m3

m5: w1 w5 w2 w3 w4 w5: m1 m2 m3 m4 m5

Lemma 4.2 For an instance I , let Iopt be an optimal solution and Mopt be the man-optimal stable
matching of Iopt. Let S (|S| ≤ k) be the set of men whose preference lists are modified in Iopt. Let Ĩ be
the instance obtained from I by moving Mopt(m) to the top of m’s list for each m ∈ S. Then Mopt is
stable, and in fact man-optimal stable, for Ĩ .

Proof. Suppose that Mopt has a blocking pair in Ĩ . Each m ∈ S cannot be a part of a blocking pair
because Mopt(m) lies at the top of m’s list. But men not in S and all the women have the same preference
list in Iopt and Ĩ , so if (m′, w′) is a blocking pair for Mopt in Ĩ , then (m′, w′) is also a blocking pair for
Mopt in Iopt, a contradiction. Hence Mopt is stable for Ĩ .

Now suppose that Mopt is not man-optimal for Ĩ and let M ′( ̸= Mopt) be the man-optimal stable
matching for Ĩ . Since Mopt matches every man in S to his top choice in Ĩ , so does M ′. Thus some of the
men not in S (whose preference lists are the same in I and Ĩ) obtain better partners in M ′ than in Mopt.
This means that MOI(Ĩ) < MOI(Iopt), which contradicts the optimality of Iopt.

By the definition of the problem, each man is matched in Mopt to the woman M0(m) or a woman
preceding M0(m). Hence by Lemma 4.2, if we fix the set of ℓ men whose preference lists are to be
modified, it suffices to bring, for each selected man m, M0(m) or a woman preceding M0(m) to the top.
Furthermore, we know that there is no stable matching for Iopt in which every man in S is matched to
a woman strictly better than his man-optimal partner in M0 [2]. Hence for at least one man m∗ in S,
Mopt(m

∗) = M0(m
∗).

Putting these observations together, we have the following Algorithm 3. Let X be the set of men in a
given instance.

Note that the operation of line 6 includes the case of leaving mi’s preference list unchanged. Therefore
at least one execution of Algorithm 3, i.e., an execution for which m∗ in the above discussion is selected
in line 2 as m and the rest of the ℓ− 1 men in S are selected in line 4, creates Ĩ in Lemma 4.2 and hence
finds an optimal solution. The overall running time of Algorithm 3 is O(n2 + n ·

(
n−1
k−1

)
· nk−1 · n2) =

O(n2k+1).

Theorem 4.3 MMI(k) can be solved in O(n2k+1) time.
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Algorithm 3
1: Find the man-optimal stable matching M0 of I .
2: for each man m do
3: Move M0(m) to the top of m’s list.
4: for each choice of k − 1 men (m1, . . . ,mk−1) from X − {m} do
5: for each combination of k − 1 women (w1, . . . , wk−1) such that each wi is M0(mi) or precedes

M0(mi) in mi’s list of I do
6: Move wi to the top of mi’s preference list.
7: end for
8: Apply GS to the current instance and find its man-optimal stable matching.
9: end for

10: end for
11: Output the instance that minimizes the man-optimal score.

4.3. Decision Variant

A straightforward extension of Sections 3.2 and 4.2 is as follows. We first find the man-optimal
stable matching M0 and construct the reduced list RLI,M0 and the rotation digraph DI,M0 using O(n2)

time. For each of the O(n2k−1) possible modifications of preference lists, we modify DI,M0 in time
O(kn) and check if the resulting graph contains a directed cycle in time O(n). If at least one execution
creates a directed cycle, then the answer is “yes”, otherwise “no”. This results in the time complexity of
O(n2 + n2k−1(kn + n)) = O(kn2k).

We can reduce the search space significantly using the following idea. Suppose that input I is a
“yes”-instance of PMI(k), and let Iopt be its optimal solution (when I is viewed as an MMI(k) instance).
Let S (|S| ≤ k) be the set of men whose preference lists are modified in Iopt. From the discussion in
Section 4.2, we can assume that in the preference list of one man m∗, M0(m

∗) is moved to the top in Iopt,
and in the preference list of other men m(∈ S −{m∗}), M0(m) or a woman preceding M0(m) is moved
to the top. Clearly, the rotation digraph DIopt,M0 must contain a directed cycle. Now, define S ′(⊆ S) as
S ′ = {m | M0(m) is moved to the top of m’s list in Iopt} and consider the instance Ī constructed from
I by moving M0(m) to the top of m’s list for each m ∈ S ′ (and leaving m’s preference list for each
m /∈ S ′ unchanged). By the construction of reduced lists and rotation digraphs, it is not hard to see that
DĪ,M0

is identical to DIopt,M0 and hence DĪ,M0
contains a directed cycle. (This can be seen as follows: If

a man m is in S ′ or not in S, then m’s preference list is the same in Iopt and Ī . If a man m is in S − S ′,
then the set of women preceding M0(m) in m’s preference list is the same in Iopt and Ī .) Therefore, it
suffices, for each combination of choosing i(≤ k) men, to move their man-optimal partners to the top of
the lists, to modify the rotation digraph accordingly in O(in) time, and to check if the resulting digraph
contains a directed cycle in O(n) time. The overall time complexity is

O(n2 +
k∑

i=1

(

(
n

i

)
(in + n))) = O(

k∑
i=1

n!

(n − i)!i!
· in)
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= O(
k∑

i=1

(

(
n − 1

i − 1

)
n2))

= O(nk+1).

Theorem 4.4 PMI(k) can be solved in O(nk+1) time.

5. Changing n Men’s Preference Lists

In this section, we show that MMI(k) and PMI(k) become easy if we are allowed to change any
number of men’s preference lists. We first consider the optimization variant. Consider an instance I and
its man-optimal stable matching M0. By the requirement of the problem, in a new matching each man
m should be matched with the woman M0(m) or a woman preceding M0(m) in m’s list in I; in other
words, each man should be matched with a woman on the reduced lists RLI,M0 . Let M∗ be a minimum
score perfect matching with this property. If we move M∗(m) to the top of m’s list for each m, we are
done because M∗ is clearly the man-optimal stable matching of the resulting instance.

It is easy to find M∗: We construct the edge-weighted bipartite graph G = (V, U,E) where V and U

are the sets of men and women respectively, and (m,w) ∈ E if and only if w appears on m’s reduced
list in RLI,M0 . The weight of (m,w) is the rank of w in m’s list in I , that is, rm(w). We can obtain
M∗ by finding a minimum cost perfect matching in G, which can be done in O(n2.5 log n) time [6,7].
Since finding M0 and constructing RLI,M0 can be done in O(n2) time, the overall time complexity is
O(n2.5 log n).

Theorem 5.1 MMI(n) can be solved in O(n2.5 log n) time.

As for the decision variant, we do not need to find a minimum cost perfect matching but it suffices
to check if M0 can be Pareto improved. We can do this by constructing the digraph G = (V, A), where
each vertex of G corresponds to a woman in a given instance I . For each man m, we include an arc
from M0(m) to each woman preceding M0(m) in m’s preference list. It is not hard to see that M0 can
be Pareto improved if and only if G contains a directed cycle. As mentioned in the analysis of the time
complexity of Algorithm 2 in Section 3.2, we can check whether G contains a directed cycle or not by a
topological sorting algorithm in time linear in the size of G. Since the size of G is O(n2), it is not hard
to see that the overall time complexity is O(n2).

Theorem 5.2 PMI(n) can be solved in O(n2) time.

6. Conclusions

In this paper we considered the problem of changing at most k men’s preference lists to improve
man-optimal stable matchings. We have proved that the problem is W[1]-hard with the parameter k.
We also presented O(n2k+1)-time and O(nk+1)-time exact algorithms for the optimization and decision
variants, respectively. Finally, we have presented O(n2.5 log n)-time and O(n2)-time algorithms for the
optimization and decision variants, respectively, when k = n. Since the problem is important when k

is small, it is interesting future work to reduce the time complexity of MMI(1) from O(n3) to o(n3).
Another future work is to determine whether PMI(k) is NP-complete or not.
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