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Abstract:

 Motivated by the observation that most companies are more likely to consider job applicants referred by their employees than those who applied on their own, Arcaute and Vassilvitskii modeled a job market that integrates social networks into stable matchings in an interesting way. We call their model HR+SN because an instance of their model is an ordered pair [image: there is no content] where I is a typical instance of the Hospital/Residents problem (HR) and G is a graph that describes the social network (SN) of the residents in I. A matching μ of hospitals and residents has a local blocking pair [image: there is no content] if [image: there is no content] is a blocking pair of μ, and there is a resident [image: there is no content] such that [image: there is no content] is simultaneously an employee of h in the matching and a neighbor of r in G. Such a pair is likely to compromise the matching because the participants have access to each other through [image: there is no content]: r can give her resume to [image: there is no content] who can then forward it to h. A locally stable matching is a matching with no local blocking pairs. The cardinality of the locally stable matchings of I can vary. This paper presents a variety of results on computing a locally stable matching with maximum cardinality.
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1. Introduction

Motivated by the observation that most companies are more likely to consider job applicants suggested by their employees than those who apply on their own, Arcaute and Vassilvitskii [1] modeled a job market that integrates social networks into stable matchings. Formally, an instance of their model consists of a set of firms F, a set of workers W, and a social network graph G of the workers. Each member of [image: there is no content] has a preference list that ranks members of the opposite group that it or she finds acceptable in some linear order. Each firm f has a capacity [image: there is no content], the maximum number of workers it can employ. A firm-worker pair is acceptable if they appear in each other’s preference lists. A (many-to-one) matching μ of F and W is a set of acceptable firm-worker pairs where each firm f is part of at most [image: there is no content] pairs and each worker is part of at most one pair. It has a blocking pair [image: there is no content] if (i) [image: there is no content] is an acceptable pair; (ii) f has an opening or f prefers w to its worst employee under μ; and (iii) w is unemployed or w prefers f to her employer under μ. This blocking pair is local if additionally f and w have access to each other—i.e., f has an employee that is also a neighbor of w in G. In two-sided matching theory, a common goal is to find stable matchings, which are matchings with no blocking pairs. In this model, the matchings of interest are locally stable matchings, which are matchings with no local blocking pairs.

We emphasize that a locally stable matching can contain blocking pairs, but these blocking pairs are unlikely to compromise the matching. This may seem odd—if f still has an opening or prefers w over its worst employee, why f cannot just make a job offer to w? If w is unemployed or prefers f over her current employer, why she cannot just apply to f? In the job market context, we can think of the preference lists of f and w as being constructed in an online fashion. In particular, w can be included in f’s list only after f has seen w’s resume. However, for f to consider w, some employee of f who is also a friend of w must forward w’s resume to f. Similarly, f can be included in w’s list only after w has gained some reliable information about f. For this to happen, w must have a friend who works at f. This friend of w that is also an employee of f is a point of contact between f and w. The main assumption in this model is that a blocking pair of a matching cannot affect the matching if the firm-worker pair has no points of contact. Note, however, that although a firm-worker pair [image: there is no content] may exist such that w has no social ties with any of f’s other acceptable partners, [image: there is no content] can still be involved in a matching.

The first part of Arcaute and Vassilvitskii’s paper [1] explores the combinatorial differences between stable matchings and locally stable matchings. Among others, they show that there are instances whose set of locally stable matchings do not form a distributive lattice under the standard ordering relation used for stable matchings. There are also instances whose locally stable matchings vastly outnumber its stable matchings. The second part of their paper examines the evolution of the job market. They consider a decentralized version of Gale and Shapley’s algorithm and show that for a specific case the algorithm converges to a locally stable matching under weak stochastic conditions. They then go on to analyze the goodness of the resulting locally stable matching. The recent work of Hoefer [2] expands on the latter line of inquiry significantly.

Our Contribution. In this paper, we continue the study of locally stable matchings, focusing on those with maximum cardinality. We call them the maximum locally stable matchings. In our opinion, not only are the locally stable matchings inherently interesting but they are also an intriguing alternative to stable matchings. In some applications, requiring a matching to be stable can be too strong a requirement. It can also unnecessarily limit the size of the matching. This has led researchers to suggest other kinds of matchings that still take participants’ preferences into consideration. They include popular matchings [3] and its many variants (e.g., [4,5,6], etc.), rank maximal matchings [7], and “almost stable" maximum matchings—which are maximum matchings with few blocking pairs [8]. In the job market context, locally stable matchings may not only be larger than stable matchings, they may be just as robust since participants are unlikely to leave their assignments. Here are our main contributions:


	First, we present families of instances where the problem of finding a maximum locally stable matchings is computationally easy. For one family of instances, every stable matching of the instance is a maximum locally stable matching. This family includes the case when G, the social network of the workers, is a complete graph. For the other family of instances, every maximum matching of the firms and workers is a maximum locally stable matching. This family includes the case when G is an empty graph.


	Next, we show that when [image: there is no content], the complement of G, has a maximum matching of size r, the size of a maximum locally stable matching of the instance is at most r more than the size of a stable matching of the instance. Thus, when G is almost a complete graph, a stable matching of the instance is a good approximation to its maximum locally stable matching. On the other hand, we show that when G has a constant number of edges—i.e., G is almost an empty graph—finding a maximum locally stable matching can still be done in polynomial time.


	Finally, in spite of the results above, we show that finding a maximum locally stable matching is computationally hard in general. In particular, we prove that finding a locally stable matching of a certain size is NP-complete and that approximating the size of a maximum locally stable matching within [image: there is no content] is NP-hard. Recently, Hoefer and Wagner [9] have shown that this problem cannot be approximated within [image: there is no content] under the Unique Games Conjecture. Hence, our result differs from theirs as we require only the weaker assumption that [image: there is no content].




The rest of the paper is organized as follows. In Section 2, we state facts and preliminary results. We present the first two results in Section 3, and the last result in Section 4. We conclude in Section 5.



2. Preliminaries

In the stable matchings literature, the problem of finding a stable matching in the Arcaute–Vassilvitskii model sans the social network is often referred to as the Hospital/Residents problem (HR). The firms correspond to the hospitals while the workers correspond to the residents. In their seminal paper on stable matchings [10], Gale and Shapley presented an algorithm that finds a stable matching for every HR instance I. It can be implemented in [image: there is no content] time where [image: there is no content] is the number of acceptable pairs in I. In general, I can have many stable matchings. Nonetheless, Gale and Sotomayor [11] showed that every stable matching of I has the same size and matches exactly the same set of residents. Throughout this paper, we shall assume that every HR instance we can consider has the property that a resident r is in a hospital h’s preference list if and only if h is also in r’s preference list.

An example. In the following instance, let the hospitals be [image: there is no content] whose capacities are [image: there is no content] respectively. Let the set of residents be [image: there is no content]. Here are their preference lists:



 [image: Algorithms 06 00383 i001]








It is not difficult to see that [image: there is no content] is a stable matching of the instance. It is, however, smaller than [image: there is no content][image: there is no content][image: there is no content], which is a maximum matching of the instance.

For HR instance I, let [image: there is no content] denote the bipartite graph where the hospitals are the vertices on one side, and the residents on the other side. A pair [image: there is no content] is an edge if and only if they form an acceptable pair. Thus, every matching of I is a subgraph of [image: there is no content]. Finding a maximum matching of I can be done by solving a maximum flow problem with [image: there is no content] as the “base graph": Create a source s and a directed edge from s to every hospital h, and set its capacity to [image: there is no content]. Direct all edges [image: there is no content] in [image: there is no content] from h to r and set its capacity to 1. Finally, create a sink t and a directed edge from every resident r to t, and set its capacity to 1. There is a one-to-one correspondence between the maximum flows of this network and the maximum matchings of [image: there is no content].

Let us suppose that all hospitals in I have capacity 1, and we wish to compare two of its matchings μ and σ. In this case, it is useful to consider their symmetric difference [image: there is no content]. In [image: there is no content], it is made up of what are called alternating paths and cycles—i.e., paths and cycles whose edges alternately belong to μ and σ. In cycles and even-length alternating paths, the number of μ-edges and the number of σ-edges are the same; in odd-length alternating paths, the numbers differ by 1. Additionally, when [image: there is no content], there is at least one odd-length alternating path with one more σ-edge than μ-edge. We shall call such a path a σ-alternating path.

When not all hospitals in I have capacity 1, we can transform I to another instance where this is the case. Here is a standard trick [12]. Denote by [image: there is no content] the instance obtained from I by doing the following: for each hospital [image: there is no content] of I with capacity q[image: there is no content], replace [image: there is no content] by q[image: there is no content] clones of [image: there is no content]: hi,1,hi,2,⋯,hi,q[image: there is no content]. Let their capacities be 1, and let their preference lists be exactly the same as that of [image: there is no content]. Then for each resident [image: there is no content] that has [image: there is no content] in her preference list, replace [image: there is no content] with the linear order (hi,1,hi,2,⋯,hi,q[image: there is no content]). By transforming I to [image: there is no content], the many-to-one matchings of I can now be viewed as one-to-one matchings of [image: there is no content]. Let μ be a matching of I. Create the corresponding matching [image: there is no content] of [image: there is no content] as follows: when [image: there is no content] is matched to residents [image: there is no content] in μ and these residents are arranged according to its preference, let [image: there is no content] be matched to [image: there is no content] respectively in [image: there is no content]. Notice that μ and [image: there is no content] have the same size. Moreover, it is easy to verify that this mapping is a bijection from the set of stable matchings of I to the set of stable matchings of [image: there is no content]. Now, suppose we want to compare μ with another matching σ of I. The task becomes equivalent to comparing [image: there is no content] and [image: there is no content] in [image: there is no content], and the symmetric difference technique described in the previous paragraph can now be applied.

Proposition 1. In the HR instance I, let μ be a stable matching and σ be a maximum matching of I. Then [image: there is no content].

Proof. By definition, [image: there is no content]. Now, construct [image: there is no content] and the matchings [image: there is no content] and [image: there is no content] from I, μ and σ respectively. Since |μ|=|[image: there is no content]| and |σ|=|[image: there is no content]|, |[image: there is no content]|≤|[image: there is no content]|. This means that in [image: there is no content]⨁[image: there is no content] there is a [image: there is no content]-alternating path. However, there cannot be a [image: there is no content]-alternating path that simply consists of one edge [image: there is no content] from [image: there is no content] because this means that h and r are acceptable to each other in [image: there is no content] but are unmatched in [image: there is no content]—i.e., [image: there is no content] is not a stable matching of [image: there is no content] since [image: there is no content] is a blocking pair. This contradicts the fact that [image: there is no content] was constructed from μ, a stable matching of I. Thus, in every [image: there is no content]-alternating path, the ratio of edges belonging to [image: there is no content] to those belonging to [image: there is no content] is at most 2:1. Hence, |[image: there is no content]|≤2|[image: there is no content]|. It follows that [image: there is no content].

The previous example shows that the bound in Proposition 1 is tight.


2.1. HR+SN and Max-HR+SN

Following the above terminology, we shall call the problem of finding a locally stable matching and a maximum locally stable matching in the Arcaute–Vassilvitskii’s model HR+SN and max-HR+SN respectively, where SN stands for social network. We will, however, revert back to the original context and use firms in place of hospitals and workers in place of residents. An instance of HR+SN is an ordered pair [image: there is no content] where I is an HR instance and G is a social network of the workers.

Example continued. In the previous example, suppose G consists of two cliques, one containing [image: there is no content] and another containing [image: there is no content]. Then σ is a maximum locally stable matching of [image: there is no content]. It has several blocking pairs—[image: there is no content]—but none of the pairs have a point of contact.

Proposition 2. If μ is a locally stable matching in the HR+SN instance [image: there is no content], then [image: there is no content]is a locally stable matching in the HR+SN instance ([image: there is no content],G).

Proof. Assume [image: there is no content] is not a locally stable matching of ([image: there is no content],G) so it has a local blocking pair [image: there is no content]. Thus, [image: there is no content] and [image: there is no content] have a point of contact, say [image: there is no content], who is also the only employee of [image: there is no content] in [image: there is no content]. If [image: there is no content] is unmatched or is employed by a firm that is not a clone of [image: there is no content] in [image: there is no content], then ([image: there is no content],[image: there is no content]) is a local blocking pair of μ with [image: there is no content] as a point of contact—a contradiction. If [image: there is no content] is employed by a clone of [image: there is no content] in [image: there is no content], say [image: there is no content], then the fact that [image: there is no content] prefers [image: there is no content] over [image: there is no content] means that [image: there is no content]. On the other hand, [image: there is no content] prefers [image: there is no content] over its only employee [image: there is no content] means that [image: there is no content] prefers [image: there is no content] over [image: there is no content]. However, this contradicts the way [image: there is no content] is constructed because [image: there is no content] should prefer the worker matched to [image: there is no content] over the worker matched to [image: there is no content]. Hence, we have shown that all cases lead to a contradiction. Therefore, [image: there is no content] is a locally stable matching of ([image: there is no content],G).☐

We note though that the converse of Proposition 2 is not always true as shown by this simple instance ([image: there is no content],G) where



[image: there is no content]








and G consists of the edge [image: there is no content]. Consider [image: there is no content]={([image: there is no content],[image: there is no content]}. It has a blocking pair [image: there is no content] but [image: there is no content] and [image: there is no content] have no points of contact because [image: there is no content] has no employee. Hence, [image: there is no content] is a locally stable matching of ([image: there is no content],G). Now, [image: there is no content] corresponds to the instance I where [image: there is no content] has a capacity of two, [image: there is no content] has the same preference list as [image: there is no content] and [image: there is no content] and both [image: there is no content] and [image: there is no content] have a preference list with only [image: there is no content] in it. Thus, [image: there is no content] corresponds to the matching μ={([image: there is no content],[image: there is no content])}. The latter though is not a locally stable matching of [image: there is no content] because ([image: there is no content],[image: there is no content]) is a local blocking pair with [image: there is no content] as a point of contact.
In the next proposition, we provide a bound similar to Proposition 1.

Proposition 3. In the HR+SN instance [image: there is no content], let μ be a stable matching and [image: there is no content]be a maximum locally stable matching. Then |μ|≤|[image: there is no content]|≤2|μ|.

Proof. Let σ be a maximum matching of I. By definition, |μ|≤|[image: there is no content]|≤|σ|. According to Proposition 1, [image: there is no content]. Hence, |[image: there is no content]|≤2|μ|.☐

When we appended our running example with the social network consisting of a clique containing [image: there is no content] and another clique containing [image: there is no content], σ is a maximum locally stable matching. Its size is twice that of μ. This shows that the bound of Proposition 3 is tight. The next proposition describes the interaction between the preference lists in I and the edges in G.

Proposition 4. Let [image: there is no content]be an HR instance. Suppose two workers [image: there is no content]and [image: there is no content]do not have a firm in common in their preference list or, equivalently, there is no firm that has [image: there is no content]and [image: there is no content]in its preference list. Let e={[image: there is no content],[image: there is no content]}. Then [image: there is no content]and [image: there is no content]have the same set of locally stable matchings as [image: there is no content].

Proof. Without loss of generality, assume e is an edge of G. It is easy to verify that when [image: there is no content] is a subgraph of G, every locally stable matching of [image: there is no content] is also a locally stable matching of (I,[image: there is no content]). Thus, to prove the proposition, we simply have to show that every locally stable matching of [image: there is no content] is also a locally stable matching of [image: there is no content].

Suppose μ is a locally stable matching of [image: there is no content] but has a local blocking pair [image: there is no content] in [image: there is no content]. Let f and w’s point of contact be [image: there is no content]. Hence, both w and [image: there is no content] have f in their preference lists; that is, {w,[image: there is no content]}≠{[image: there is no content],[image: there is no content]}. Thus, the edge {w,[image: there is no content]} is in [image: there is no content] so that [image: there is no content] is also a local blocking pair of μ in [image: there is no content], a contradiction. It follows that μ has no blocking pairs in [image: there is no content].

We have shown that μ is a locally stable matching of [image: there is no content] if and only if it is also a locally stable matching of [image: there is no content]. The same argument holds for the locally stable matchings of [image: there is no content] and [image: there is no content] when e is not an edge of G.☐

In Section 4, we shall consider max-HR+SN. Given an HR+SN instance [image: there is no content], let A be an algorithm that outputs a locally stable matching of [image: there is no content], which we denote as [image: there is no content]. Then A is an [image: there is no content]-approximation algorithm of max-HR+SN if for all instances [image: there is no content] of size N, |[image: there is no content][image: there is no content]|/|A[image: there is no content]|≤f(N) where [image: there is no content][image: there is no content] is a maximum locally stable matching of [image: there is no content]. Thus, according to Proposition 3, the Gale–Shapley algorithm is a 2-approximation algorithm of max-HR+SN. The problem max-HR+SN is NP-hard to approximate within [image: there is no content] if the existence of an efficient [image: there is no content]-approximation algorithm implies P = NP.




3. The Easy Cases

In this section, we present a family of HR+SN instances where finding a maximum locally stable matching can be solved in polynomial time.

Theorem 1. Let [image: there is no content]be an HR+SN instance. Suppose that whenever two workers have a firm in common in their preference lists, the two workers also share an edge in G. Then every stable matching of I is a maximum locally stable matching of [image: there is no content]. Consequently, when G is the complete graph, every stable matching of I is a maximum locally stable matching of [image: there is no content].

Proof. For now, assume that all firms in I have capacity 1. Suppose [image: there is no content] has a locally stable matching σ that is larger than the stable matchings of I. Let μ be one of these stable matchings. Then [image: there is no content] has a σ-alternating path of the form [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],⋯,[image: there is no content],[image: there is no content] such that ([image: there is no content],[image: there is no content])∈σ for [image: there is no content] and [image: there is no content] for [image: there is no content]. Since [image: there is no content] is unmatched in μ, [image: there is no content] must prefer [image: there is no content] over [image: there is no content]; otherwise, ([image: there is no content],[image: there is no content]) is a blocking pair of μ. Now [image: there is no content] and [image: there is no content] both have [image: there is no content] in their preference lists so they share an edge in G. It must be the case then that [image: there is no content] prefers [image: there is no content] over [image: there is no content]; otherwise, ([image: there is no content],[image: there is no content]) is a local blocking pair of σ. Continuing in this fashion, we have that for [image: there is no content], [image: there is no content] prefers [image: there is no content] over [image: there is no content] because μ is a stable matching of I while [image: there is no content] prefers [image: there is no content] over [image: there is no content] because [image: there is no content] and [image: there is no content] are adjacent in G and σ is a locally stable matching of [image: there is no content]. Consequently, [image: there is no content] must prefer [image: there is no content] over [image: there is no content]. However, [image: there is no content] is unmatched in μ so this implies that ([image: there is no content],[image: there is no content]) is a blocking pair of μ—a contradiction. Hence, σ cannot exist, and μ is a maximum locally stable matching of [image: there is no content].

So suppose some firms in I have capacity greater than 1. Construct the HR+SN instance ([image: there is no content],G) from [image: there is no content]. Notice that the property “whenever two workers have a firm in common in their preference lists, the two workers also share an edge in G” is preserved in ([image: there is no content],G). Let σ be a locally stable matching of [image: there is no content], and let μ be a stable matching of I. Consider their corresponding matchings [image: there is no content] and [image: there is no content]. From Proposition 2, [image: there is no content] is also a locally stable matching of ([image: there is no content],G). We also know that [image: there is no content] is a stable matching of [image: there is no content]. If [image: there is no content], |[image: there is no content]|>|[image: there is no content]|. However, all firms in [image: there is no content] have capacity 1, and according to the previous paragraph [image: there is no content] is a maximum locally stable matching of ([image: there is no content],G). Hence, [image: there is no content], and μ is a maximum locally stable matching of [image: there is no content]. It is easy to see that, as a consequence of Proposition 4, if G is extended to a complete graph, the result still holds.☐

The next theorem provides a bound that is different from the one presented in Proposition 3. It shows that when G is almost a complete graph, a stable matching of I and a maximum locally stable matching of [image: there is no content] will almost have the same size.

Theorem 2. Let [image: there is no content]be an HR+SN instance. Suppose that the size of the largest matching in [image: there is no content], the complement of G, is r. Let [image: there is no content]be a maximum locally stable matching of [image: there is no content]and μ be a stable matching of I. Then |[image: there is no content]|≤|μ|+r.

Proof. Once again, let us begin the proof by assuming that all firms in I have capacity 1. First, notice that |[image: there is no content]|-|μ| is bounded above by the number of [image: there is no content]-alternating paths in [image: there is no content]⨁μ. Furthermore, the [image: there is no content]-alternating paths are vertex-disjoint. Now, in the proof of Theorem 1, we argued that when [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],⋯,[image: there is no content],[image: there is no content] forms a [image: there is no content]-alternating path and [image: there is no content],[image: there is no content],⋯,[image: there is no content] is a path in G, a contradiction arises. Thus, at least one of the edges [image: there is no content], [image: there is no content]w3,⋯,[image: there is no content][image: there is no content] must be missing from G and therefore present in [image: there is no content]. If [image: there is no content]⨁μ has x [image: there is no content]-alternating paths, [image: there is no content] has at least x pairwise vertex-disjoint edges. Since [image: there is no content], |[image: there is no content]|-|μ|≤r.

Now suppose some firms in I have capacity greater than 1. Again, construct the HR+SN instance ([image: there is no content],G) from [image: there is no content]. Since [image: there is no content] is a maximum locally stable matching of [image: there is no content], [image: there is no content](1) is a locally stable matching of ([image: there is no content],G), but it may not be the largest such matching. Let τ be a maximum locally stable matching of ([image: there is no content],G). Thus, |[image: there is no content]|-|μ|=|[image: there is no content](1)|-|[image: there is no content]|≤|τ|-|[image: there is no content]|. From the previous paragraph, the latter is bounded by r. Hence, |[image: there is no content]|-|μ|≤r.☐

We now consider the opposite case of Theorem 1.

Theorem 3. Let [image: there is no content]be an HR+SN instance. Suppose that whenever two workers have a firm in common in their preference lists, the two workers do not share an edge in G. Then the matchings of I are exactly the locally stable matchings of [image: there is no content]. Hence, every maximum matching of I is a maximum locally stable matching of [image: there is no content]. Consequently, when G is the empty graph, the matchings of I are exactly the locally stable matchings of [image: there is no content], and every maximum matching of I is a maximum locally stable matching of [image: there is no content].

Proof. Let μ be an arbitrary matching of I. Suppose μ is not stable and contains a blocking pair [image: there is no content]. In order for [image: there is no content] to be a local blocking pair, f and w must have a point of contact [image: there is no content]; i.e., both w and [image: there is no content] have f in their preference lists, and both are neighbors in G. However, by our assumption on G, this cannot be the case. Hence, all blocking pairs of μ are not local so μ is a locally stable matching of [image: there is no content]. Thus, every matching of I is a locally stable matching of [image: there is no content]. Since every locally stable matching of [image: there is no content] is also a matching of I, it follows that the matchings of I are exactly the locally stable matchings of [image: there is no content]. The rest of the theorem follows.☐

In this next theorem, we consider the case when G is almost an empty graph.

Theorem 4. Suppose that in the HR+SN instance [image: there is no content], G has a constant number of edges. Then a maximum locally stable matching of [image: there is no content]can be found in time polynomial in [image: there is no content].

Proof. Let [image: there is no content] be the smallest set of workers whose induced subgraph [image: there is no content] in G contains all the r edges of G. Let [image: there is no content], and let [image: there is no content] be the subgraph induced by [image: there is no content], which in this case is an empty graph. Thus, G=[image: there is no content]∪[image: there is no content]. Furthermore, every matching μ of I can be expressed as [image: there is no content] where each [image: there is no content] is a matching involving the workers in [image: there is no content], for [image: there is no content]. Let [image: there is no content] be the HR instance derived from I by restricting the set of workers to [image: there is no content]. With some abuse in notation, let [image: there is no content] be the HR instance obtained from I by removing the workers matched in [image: there is no content] and decreasing the capacities of the firms according to the number of matches they received in [image: there is no content]. Thus, [image: there is no content] is a matching of [image: there is no content] and [image: there is no content] is a matching of [image: there is no content]. Conversely, if [image: there is no content] is a matching of [image: there is no content] and [image: there is no content] is a matching of [image: there is no content], putting them together as μ=[image: there is no content]∪[image: there is no content] results in a matching of I.

It is also straightforward to verify that when μ is a locally stable matching of [image: there is no content], [image: there is no content] and [image: there is no content] are locally stable matchings of ([image: there is no content],[image: there is no content]) and (I-[image: there is no content],[image: there is no content]) respectively. Let us now argue the converse. Suppose [image: there is no content] and [image: there is no content] are locally stable matchings of ([image: there is no content],[image: there is no content]) and (I-[image: there is no content],[image: there is no content]) respectively but μ has a local blocking pair [image: there is no content] whose point of contact is [image: there is no content]. Thus, in μ, f has an opening or prefers w over its worst employee [image: there is no content], and that w is either unmatched or prefers f over her current employer. Furthermore, since [image: there is no content] is an empty graph, w and [image: there is no content] must both be in [image: there is no content] and neighbors in [image: there is no content]. If f has an opening in μ or [image: there is no content] is in [image: there is no content], then f has an opening after the matching [image: there is no content] so [image: there is no content] is a local blocking pair of [image: there is no content]. On the other hand, if [image: there is no content] is in [image: there is no content], then f prefers w to its worst employee [image: there is no content] in [image: there is no content] so that [image: there is no content] is again a local blocking pair of [image: there is no content]. All cases lead to a contradiction. Thus, μ must be a locally stable matching of [image: there is no content].

To find a maximum locally stable matching of [image: there is no content], we do what is essentially a brute force method. We consider all possible matchings of [image: there is no content]. For each such matching [image: there is no content], we check to see if [image: there is no content] is a locally stable matching of ([image: there is no content],[image: there is no content]). If it is, we construct [image: there is no content] and then find a maximum matching [image: there is no content] of the instance. According to Theorem 3, [image: there is no content] is a maximum locally stable matching of (I-[image: there is no content],[image: there is no content]) since [image: there is no content] is an empty graph. If μ=[image: there is no content]∪[image: there is no content] is currently the largest locally stable matching of [image: there is no content] we have seen, we store μ; otherwise, we move on to the next matching of [image: there is no content].

There are at most [image: there is no content] workers in [image: there is no content]. Each one is either unmatched or employed by one of the [image: there is no content] firms. Thus, the number of possible matchings of [image: there is no content] is O((|F|+1)[image: there is no content]). Verifying if a matching [image: there is no content] of [image: there is no content] is locally stable in ([image: there is no content],[image: there is no content]), constructing [image: there is no content], and finding a maximum matching of the instance can all be done in [image: there is no content] time. Hence, finding a maximum locally stable matching of [image: there is no content] takes O((|F|+1)[image: there is no content]poly(|F|,|W|)) time, which is polynomial in [image: there is no content] and [image: there is no content] when r is a constant.



4. Hardness Results

An SMI (Stable Marriage with Incomplete Lists) instance is just like an HR instance, only that all firms have capacity 1. Hence, all of its stable matchings have the same size. An SMTI (Stable Marriage with Ties and Incomplete Lists) instance is an SMI instance except that the participants’ preference lists are allowed to contain ties. For this problem, a pair [image: there is no content] is a blocking pair of matching μ if (i) [image: there is no content] is an acceptable pair; (ii) f has an opening or f strictly prefers w to its only employee under μ; and (iii) w is unemployed or w strictly prefers f to her employer under μ. Once again, a matching is (weakly) stable if it has no blocking pairs. Unlike SMI instances, the stable matchings of an SMTI instance can have different sizes. In this section, we will show that certain kinds of SMTI instances can be encoded as HR+SN instances. This will allow us to translate hardness results known for max-SMTI, the problem of computing a maximum (cardinality) stable matching of an SMTI instance, to max-HR+SN.

Let I be an SMTI instance. Suppose the ties in the preference lists of I are broken arbitrarily to create the SMI instance [image: there is no content]. Clearly, every stable matching of [image: there is no content] is also a stable matching of I. The converse, however, is not true. Let us say that the ties in I are consistent if for every pair of participants q and [image: there is no content], whenever q and [image: there is no content] appear in the preference lists of p and [image: there is no content], q and [image: there is no content] are in a tie in the preference list of p if and only if they are also in a tie in the preference list of [image: there is no content]. In the next theorem, we show that when only the firms’ preference lists contain ties and these ties are consistent, then the stable matchings of I can be retrieved from [image: there is no content] by considering the locally stable matchings of ([image: there is no content],G), where G is constructed appropriately.

Theorem 5. Let I be an SMTI instance where only the firms’ preference lists contain ties, and the ties are consistent. Let [image: there is no content]be the SMI instance obtained by breaking the ties in the preference lists of I arbitrarily. Let G be a graph such that whenever two workers w and [image: there is no content]appear together in some firm’s preference list in I, w and [image: there is no content]are adjacent if and only if they are not in a tie. Then the following are true:

(i) Every stable matching of I is also a locally stable matching of ([image: there is no content],G).

(ii) Every locally stable matching [image: there is no content]of ([image: there is no content],G)can be transformed into a stable matching μ of I such that |μ|≥|[image: there is no content]|in time polynomial in the size of I. Consequently, every maximum locally stable matching of ([image: there is no content],G)can be transformed into a maximum stable matching of I of the same size in time polynomial in [image: there is no content].

Proof. For (i), let μ be a stable matching of I. Suppose μ is not a locally stable matching of ([image: there is no content],G), and [image: there is no content] is one of its local blocking pairs with [image: there is no content] as a point of contact. Since f has capacity 1, [image: there is no content] is the only employee of f and f prefers w over [image: there is no content]. In order for [image: there is no content] to not to be a blocking pair of μ in I, w and [image: there is no content] must be in a tie in f’s preference list in I. However, this cannot be the case—w and [image: there is no content] are adjacent in G and ties are consistent in I. Hence, μ cannot have a local blocking pair in ([image: there is no content],G) and must therefore be a locally stable matching of the instance.

For (ii), suppose [image: there is no content] is a locally stable matching of ([image: there is no content],G). Let [image: there is no content] be a blocking pair of [image: there is no content] in I. Without loss of generality, assume that w is the worker that f prefers the most among those that form a blocking pair with f. First, we note that f cannot be matched in [image: there is no content]. Otherwise, if it is matched to some worker [image: there is no content] then f must strictly prefer w over [image: there is no content] so that w and [image: there is no content] are adjacent in G. In ([image: there is no content],G), [image: there is no content] has [image: there is no content] as a point of contact, implying that [image: there is no content] cannot be a locally stable matching because [image: there is no content] is a local blocking pair. Since this is a contradiction, f has to be unmatched in [image: there is no content]. Next, if w is unmatched in [image: there is no content], let [image: there is no content]=[image: there is no content]∪{[image: there is no content]}; otherwise, let [image: there is no content]=[image: there is no content]-{([image: there is no content](w),w)}∪{[image: there is no content]}. If [image: there is no content] has a local blocking pair, it will involve either f or w. By our choice of w, no worker will form a local blocking pair with f. If ([image: there is no content],w) is a local blocking pair of [image: there is no content], then ([image: there is no content],w) must be a local blocking pair of [image: there is no content] too—a contradiction. Hence, [image: there is no content] is still a locally stable matching of ([image: there is no content],G).

What we have shown is that as long as a locally stable matching of ([image: there is no content],G) has a blocking pair with respect to I, the matching can be modified to a new matching (which no longer admits that blocking pair with respect to I) such that (i) its size stays the same or is larger by 1; and (ii) the modified matching is still a locally stable matching of ([image: there is no content],G) where one worker’s employer improved while everyone else’s stayed the same. If we keep applying this modification, at some point there will be no more worker whose employer can be improved. The locally stable matching of ([image: there is no content],G) obtained after this process will also be a stable matching of I.

Checking whether [image: there is no content] is a stable matching of I, finding a blocking pair of [image: there is no content] if it is not, and finding a worker that f prefers the most among those that form a blocking pair with f can be done in time polynomial in the size of I. Since the number of modifications cannot be more than [image: there is no content], it follows that starting at a locally stable matching [image: there is no content] of ([image: there is no content],G), we can arrive at a stable matching μ of I such that |μ|≥|[image: there is no content]| in time polynomial in the size of I.

Finally, we note from (i) that a maximum locally stable matching of ([image: there is no content],G) is at least as large as a maximum stable matching of I. Hence, if a maximum locally stable matching of ([image: there is no content],G) is also a stable matching of I, it must be a maximum stable matching of I. Our argument in the previous paragraphs shows that the last part of (ii) is true.☐

In the statement of Theorem 5, we simply described what edges should be in G: whenever two workers w and [image: there is no content] appear together in some firm’s preference list in I, w and [image: there is no content] are adjacent if and only if they are not in a tie. That is, we are ambivalent about edges formed by workers that do not appear together in a firm’s preference list in I since according to Proposition 4, the absence or presence of these edges in G have no effect on the set of locally stable matchings of [image: there is no content].

Consistent ties arise naturally when firms and/or workers derive their preference lists from a master list [13]. A master list of workers [image: there is no content] is an ordering of all the workers that may or may not contain ties. Each firm’s preference list contains all the workers acceptable to it and ranked in accordance with the master list. Thus, when w and [image: there is no content] is part of the preference list of a firm f, they are in a tie in f’s list if and only if they are in a tie in [image: there is no content]. A master list of firms [image: there is no content] is defined similarly, and each worker’s preference list is obtained in the same way. Let SMTI-2ML denote the SMTI problem where both groups of participants derived their preference lists from a master list. The following result is known about SMTI -2ML.

Fact 1. (Irving et al. [13]) Suppose that in the SMTI-2ML instance I, there are n firms and n workers. Determining if [image: there is no content]has a stable matching of size n is NP-complete even if the ties occur in one master list only. The result holds even when (i) there is only one tie in that master list or (ii) all the ties are of length 2.

We now translate this result to HR+SN.

Theorem 6. Suppose that in the HR+SN instance [image: there is no content], there are n firms and n workers, and each firm has capacity 1. Let [image: there is no content]denote the complete graph on z vertices. Determining if I has a locally stable matching of size n is NP-complete, even when [image: there is no content]where [image: there is no content]or [image: there is no content]where F is a matching in [image: there is no content].

Proof. Let [image: there is no content] be an SMTI-2ML instance with n firms and n workers, and the ties occur in one master list only. Without loss of generality, assume that it is the firms’ master list of workers that contains the ties. Create the HR+SN instance [image: there is no content] according to Theorem 5. If there is an efficient algorithm for determining if [image: there is no content] has a locally stable matching of size n, which is clearly a maximum locally stable matching of [image: there is no content], then there is also an efficient algorithm for determining if [image: there is no content] has a stable matching of size n. However, Fact 1 states that the latter is an NP-complete problem. It follows that determining if [image: there is no content] has a locally stable matching of size n is also NP-complete. The form of G is based on Proposition 4, Fact 1 and Theorem 5.

Next, we argue that max-HR+SN is NP-hard to approximate by appealing to the details of the following result of Halldórsson et al. [14] with regards to approximating max-SMTI.

Fact 2. (Halldórsson et al. [14]) It is NP-hard to approximate max-SMTI within a factor of [image: there is no content]for any constant [image: there is no content].

Theorem 7. It is NP-hard to approximate max-HR+SN within a factor of [image: there is no content]for any constant [image: there is no content].

Proof. To prove Fact 2, Halldórsson et al. [14] relied on a result of Dinur and Safra [15] about approximating a minimum vertex cover of a graph. Given a graph [image: there is no content], we now describe how they constructed the SMTI instance [image: there is no content]. Note that we shall use firms in place of men and workers in place of women. For each vertex [image: there is no content] of H, create three firms [image: there is no content], and three workers [image: there is no content]. Thus, there are a total of [image: there is no content] firms and [image: there is no content] workers. Suppose [image: there is no content] is adjacent to d vertices [image: there is no content]. Here are the preference lists of the firms and workers corresponding to [image: there is no content]:



 [image: Algorithms 06 00383 i002]








Clearly, [image: there is no content] can be constructed from H in time polynomial in the size of H. Also, notice that the ties in [image: there is no content] are consistent since [image: there is no content] and [image: there is no content] appear together in [image: there is no content]’s preference list only. Using the reduction in Theorem 5, let [image: there is no content] be the HR+SN instance that corresponds to [image: there is no content]. Let s+([image: there is no content]) and s+[image: there is no content] denote the sizes of a maximum stable matching in [image: there is no content] and a maximum locally stable matching in [image: there is no content] respectively. According to Theorem 5, s+([image: there is no content])=s+[image: there is no content]. Let [image: there is no content] denote the size of a minimum vertex cover of H. They showed that s+([image: there is no content])=3|V|-β-(H). Since [image: there is no content] is NP-hard to approximate, it follows that s+([image: there is no content]) is also NP-hard to approximate. Since s+([image: there is no content])=s+[image: there is no content], and HR+SN instance [image: there is no content] can be constructed from [image: there is no content] in polynomial time, we also have that s+[image: there is no content] is NP-hard to approximate. We refer readers to [14] for the derivation of the factor [image: there is no content].☐



5. Final Remarks

Theorem 7 provides a lower bound while Proposition 3 provides an upper bound to the factor of the best approximation algorithm for max-HR+SN. Can this gap be narrowed? We suspect that the answer is yes since the source of our hardness results, max-SMTI, has a number of [image: there is no content]-approximation algorithms [16,17,18]. An important strategy in these algorithms is to come up with a stable matching μ such that if [image: there is no content] is a maximum stable matching of the instance, there is no length-3 [image: there is no content]-alternating path in [image: there is no content]⨁μ. In other words, in all [image: there is no content]-alternating paths in [image: there is no content]⨁μ, the ratio of the number of [image: there is no content]-edges to the number of μ-edges is at most [image: there is no content]. We end with the theorem below, which shows that for some HR+SN instances, choosing μ to be equal to a stable matching of the instance yields such a result.

Theorem 8. In the HR+SN instance [image: there is no content], let [image: there is no content]be the set of workers that get matched in every stable matching of I. Suppose that in graph G, whenever [image: there is no content]∈[image: there is no content]and [image: there is no content]∈W-[image: there is no content]have a firm in common in their preference lists, [image: there is no content]and [image: there is no content]are adjacent in G. Let μ be a stable matching of I and [image: there is no content]be a maximum locally stable matching of [image: there is no content]. Then |[image: there is no content]|≤32|μ|.

Proof. Recall the proof of Theorem 1. For now, assume all firms in I have capacity 1. Consider [image: there is no content]⨁μ. Suppose it has a length-3 [image: there is no content]-alternating path: [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]. This means that [image: there is no content] is unmatched in μ so [image: there is no content] must prefer [image: there is no content] over [image: there is no content]. Similarly, [image: there is no content] is unmatched in μ so [image: there is no content] must prefer [image: there is no content] over [image: there is no content]. Thus, ([image: there is no content],[image: there is no content]) is a blocking pair of [image: there is no content]. Furthermore, [image: there is no content]∈[image: there is no content] and [image: there is no content]∈W-[image: there is no content] are adjacent in G so [image: there is no content] is a point of contact between [image: there is no content] and [image: there is no content] and ([image: there is no content],[image: there is no content]) is a local blocking pair of [image: there is no content]—a contradiction. It follows that [image: there is no content]⨁μ has no length-3 [image: there is no content]-alternating paths.

Now, suppose some firms in I have capacity greater than 1. Once more, construct ([image: there is no content],G) from [image: there is no content]. Let τ be a maximum locally stable matching of ([image: there is no content],G). From the previous paragraph, |τ|≤32|[image: there is no content]|. Thus, |[image: there is no content]|/|μ|=|[image: there is no content](1)|/|[image: there is no content]|≤|τ|/|[image: there is no content]|≤3/2.
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