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Abstract: Motivated by the observation that most companies are more likely to consider
job applicants referred by their employees than those who applied on their own, Arcaute and
Vassilvitskii modeled a job market that integrates social networks into stable matchings in an
interesting way. We call their model HR+SN because an instance of their model is an ordered
pair (I,G) where I is a typical instance of the Hospital/Residents problem (HR) and G is a
graph that describes the social network (SN) of the residents in I . A matching µ of hospitals
and residents has a local blocking pair (h, r) if (h, r) is a blocking pair of µ, and there is a
resident r′ such that r′ is simultaneously an employee of h in the matching and a neighbor
of r in G. Such a pair is likely to compromise the matching because the participants have
access to each other through r′: r can give her resume to r′ who can then forward it to h.
A locally stable matching is a matching with no local blocking pairs. The cardinality of the
locally stable matchings of I can vary. This paper presents a variety of results on computing
a locally stable matching with maximum cardinality.
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1. Introduction

Motivated by the observation that most companies are more likely to consider job applicants suggested
by their employees than those who apply on their own, Arcaute and Vassilvitskii [1] modeled a job
market that integrates social networks into stable matchings. Formally, an instance of their model
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consists of a set of firms F , a set of workers W , and a social network graph G of the workers. Each
member of F ∪W has a preference list that ranks members of the opposite group that it or she finds
acceptable in some linear order. Each firm f has a capacity qf , the maximum number of workers it can
employ. A firm-worker pair is acceptable if they appear in each other’s preference lists. A (many-to-one)
matching µ of F and W is a set of acceptable firm-worker pairs where each firm f is part of at most qf
pairs and each worker is part of at most one pair. It has a blocking pair (f, w) if (i) (f, w) is an acceptable
pair; (ii)f has an opening or f prefers w to its worst employee under µ; and (iii) w is unemployed or
w prefers f to her employer under µ. This blocking pair is local if additionally f and w have access to
each other—i.e., f has an employee that is also a neighbor of w in G. In two-sided matching theory, a
common goal is to find stable matchings, which are matchings with no blocking pairs. In this model, the
matchings of interest are locally stable matchings, which are matchings with no local blocking pairs.

We emphasize that a locally stable matching can contain blocking pairs, but these blocking pairs are
unlikely to compromise the matching. This may seem odd—if f still has an opening or prefers w over
its worst employee, why f cannot just make a job offer to w? If w is unemployed or prefers f over
her current employer, why she cannot just apply to f? In the job market context, we can think of the
preference lists of f and w as being constructed in an online fashion. In particular, w can be included in
f ’s list only after f has seen w’s resume. However, for f to consider w, some employee of f who is also
a friend of w must forward w’s resume to f . Similarly, f can be included in w’s list only after w has
gained some reliable information about f . For this to happen, w must have a friend who works at f . This
friend of w that is also an employee of f is a point of contact between f and w. The main assumption in
this model is that a blocking pair of a matching cannot affect the matching if the firm-worker pair has no
points of contact. Note, however, that although a firm-worker pair (f, w) may exist such that w has no
social ties with any of f ’s other acceptable partners, (f, w) can still be involved in a matching.

The first part of Arcaute and Vassilvitskii’s paper [1] explores the combinatorial differences between
stable matchings and locally stable matchings. Among others, they show that there are instances whose
set of locally stable matchings do not form a distributive lattice under the standard ordering relation used
for stable matchings. There are also instances whose locally stable matchings vastly outnumber its stable
matchings. The second part of their paper examines the evolution of the job market. They consider a
decentralized version of Gale and Shapley’s algorithm and show that for a specific case the algorithm
converges to a locally stable matching under weak stochastic conditions. They then go on to analyze the
goodness of the resulting locally stable matching. The recent work of Hoefer [2] expands on the latter
line of inquiry significantly.

Our Contribution. In this paper, we continue the study of locally stable matchings, focusing on those
with maximum cardinality. We call them the maximum locally stable matchings. In our opinion, not only
are the locally stable matchings inherently interesting but they are also an intriguing alternative to stable
matchings. In some applications, requiring a matching to be stable can be too strong a requirement. It
can also unnecessarily limit the size of the matching. This has led researchers to suggest other kinds of
matchings that still take participants’ preferences into consideration. They include popular matchings [3]
and its many variants (e.g., [4–6], etc.), rank maximal matchings [7], and “almost stable” maximum
matchings—which are maximum matchings with few blocking pairs [8]. In the job market context,
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locally stable matchings may not only be larger than stable matchings, they may be just as robust since
participants are unlikely to leave their assignments. Here are our main contributions:

• First, we present families of instances where the problem of finding a maximum locally stable
matchings is computationally easy. For one family of instances, every stable matching of the
instance is a maximum locally stable matching. This family includes the case when G, the social
network of the workers, is a complete graph. For the other family of instances, every maximum
matching of the firms and workers is a maximum locally stable matching. This family includes the
case when G is an empty graph.
• Next, we show that when Ḡ, the complement of G, has a maximum matching of size r, the size

of a maximum locally stable matching of the instance is at most r more than the size of a stable
matching of the instance. Thus, when G is almost a complete graph, a stable matching of the
instance is a good approximation to its maximum locally stable matching. On the other hand, we
show that when G has a constant number of edges—i.e., G is almost an empty graph—finding a
maximum locally stable matching can still be done in polynomial time.
• Finally, in spite of the results above, we show that finding a maximum locally stable matching is

computationally hard in general. In particular, we prove that finding a locally stable matching of a
certain size is NP-complete and that approximating the size of a maximum locally stable matching
within 21/19 − δ is NP-hard. Recently, Hoefer and Wagner [9] have shown that this problem
cannot be approximated within 1.5 − ε under the Unique Games Conjecture. Hence, our result
differs from theirs as we require only the weaker assumption that P 6= NP .

The rest of the paper is organized as follows. In Section 2, we state facts and preliminary results. We
present the first two results in Section 3, and the last result in Section 4. We conclude in Section 5.

2. Preliminaries

In the stable matchings literature, the problem of finding a stable matching in the Arcaute–Vassilvitskii
model sans the social network is often referred to as the Hospital/Residents problem (HR). The firms
correspond to the hospitals while the workers correspond to the residents. In their seminal paper on
stable matchings [10], Gale and Shapley presented an algorithm that finds a stable matching for every
HR instance I . It can be implemented in O(|I|) time where |I| is the number of acceptable pairs in I .
In general, I can have many stable matchings. Nonetheless, Gale and Sotomayor [11] showed that every
stable matching of I has the same size and matches exactly the same set of residents. Throughout this
paper, we shall assume that every HR instance we can consider has the property that a resident r is in a
hospital h’s preference list if and only if h is also in r’s preference list.

An example. In the following instance, let the hospitals be h1, h2, h3 whose capacities are 2, 2, 4

respectively. Let the set of residents be r1, r2, r3, r4, r5, r6, r7, r8. Here are their preference lists:

h1: r1 r2 r5 r6 r1: h1 h3 r5: h1

h2: r3 r4 r7 r8 r2: h1 h3 r6: h1

h3: r1 r2 r3 r4 r3: h2 h3 r7: h2

r4: h2 h3 r8: h2
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It is not difficult to see that µ = {(h1, r1), (h1, r2), (h2, r3), (h2, r4)} is a stable matching of the
instance. It is, however, smaller than σ = {(h1, r5), (h1, r6), (h2, r7), (h2, r8), (h3, r1), (h3, r2), (h3, r3),

(h3, r4)}, which is a maximum matching of the instance.
For HR instance I , let B[I] denote the bipartite graph where the hospitals are the vertices on one side,

and the residents on the other side. A pair (h, r) is an edge if and only if they form an acceptable pair.
Thus, every matching of I is a subgraph of B[I]. Finding a maximum matching of I can be done by
solving a maximum flow problem with B[I] as the “base graph”: Create a source s and a directed edge
from s to every hospital h, and set its capacity to qh. Direct all edges {h, r} in B[I] from h to r and
set its capacity to 1. Finally, create a sink t and a directed edge from every resident r to t, and set its
capacity to 1. There is a one-to-one correspondence between the maximum flows of this network and
the maximum matchings of B[I].

Let us suppose that all hospitals in I have capacity 1, and we wish to compare two of its matchings µ
and σ. In this case, it is useful to consider their symmetric difference µ

⊕
σ. In B[I], it is made up of

what are called alternating paths and cycles—i.e., paths and cycles whose edges alternately belong to µ
and σ. In cycles and even-length alternating paths, the number of µ-edges and the number of σ-edges are
the same; in odd-length alternating paths, the numbers differ by 1. Additionally, when |σ| > |µ|, there
is at least one odd-length alternating path with one more σ-edge than µ-edge. We shall call such a path
a σ-alternating path.

When not all hospitals in I have capacity 1, we can transform I to another instance where this is the
case. Here is a standard trick [12]. Denote by I(1) the instance obtained from I by doing the following:
for each hospital hi of I with capacity qhi

, replace hi by qhi
clones of hi: hi,1, hi,2, . . . , hi,qhi

. Let their
capacities be 1, and let their preference lists be exactly the same as that of hi. Then for each resident rj

that has hi in her preference list, replace hi with the linear order (hi,1, hi,2, . . . , hi,qhi
). By transforming

I to I(1), the many-to-one matchings of I can now be viewed as one-to-one matchings of I(1). Let µ be a
matching of I . Create the corresponding matching µ(1) of I(1) as follows: when hi is matched to residents
rj1 , rj2 , . . . , rjk

in µ and these residents are arranged according to its preference, let hi,1, hi,2, . . . , hi,k be
matched to rj1 , rj2 , . . . , rjk

respectively in µ(1). Notice that µ and µ(1) have the same size. Moreover, it
is easy to verify that this mapping is a bijection from the set of stable matchings of I to the set of stable
matchings of I(1). Now, suppose we want to compare µ with another matching σ of I . The task becomes
equivalent to comparing µ(1) and σ(1) in I(1), and the symmetric difference technique described in the
previous paragraph can now be applied.

Proposition 1. In the HR instance I , let µ be a stable matching and σ be a maximum matching of I .
Then |µ| ≤ |σ| ≤ 2|µ|.

Proof. By definition, |µ| ≤ |σ|. Now, construct I(1) and the matchings µ(1) and σ(1) from I , µ and σ
respectively. Since |µ| = |µ(1)| and |σ| = |σ(1)|, |µ(1)| ≤ |σ(1)|. This means that in µ(1)

⊕
σ(1) there is a

σ(1)-alternating path. However, there cannot be a σ(1)-alternating path that simply consists of one edge
(h, r) from σ(1) because this means that h and r are acceptable to each other in I(1) but are unmatched
in µ(1)—i.e., µ(1) is not a stable matching of I(1) since (h, r) is a blocking pair. This contradicts the fact
that µ(1) was constructed from µ, a stable matching of I . Thus, in every σ(1)-alternating path, the ratio
of edges belonging to σ(1) to those belonging to µ(1) is at most 2 : 1. Hence, |σ(1)| ≤ 2|µ(1)|. It follows
that |σ| ≤ 2|µ|.
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The previous example shows that the bound in Proposition 1 is tight.

2.1. HR+SN and Max-HR+SN

Following the above terminology, we shall call the problem of finding a locally stable matching and
a maximum locally stable matching in the Arcaute–Vassilvitskii’s model HR+SN and max-HR+SN
respectively, where SN stands for social network. We will, however, revert back to the original context
and use firms in place of hospitals and workers in place of residents. An instance of HR+SN is an
ordered pair (I,G) where I is an HR instance and G is a social network of the workers.

Example continued. In the previous example, suppose G consists of two cliques, one containing
r1, r2, r3, r4 and another containing r5, r6, r7, r8. Then σ is a maximum locally stable matching of
(I,G). It has several blocking pairs—(h1, r1), (h1, r2), (h2, r3), (h2, r4)—but none of the pairs have
a point of contact.

Proposition 2. If µ is a locally stable matching in the HR+SN instance (I,G), then µ(1) is a locally
stable matching in the HR+SN instance (I(1), G).

Proof. Assume µ(1) is not a locally stable matching of (I(1), G) so it has a local blocking pair (fik, wj).
Thus, fik and wj have a point of contact, say w′, who is also the only employee of fik in µ(1). If wj is
unmatched or is employed by a firm that is not a clone of fi in µ(1), then (fi, wj) is a local blocking pair
of µ with w′ as a point of contact—a contradiction. If wj is employed by a clone of fi in µ(1), say fik′ ,
then the fact that wj prefers fik over fik′ means that k < k′. On the other hand, fik prefers wj over its
only employee w′ means that fi prefers wj over w′. However, this contradicts the way µ(1) is constructed
because fi should prefer the worker matched to fik over the worker matched to fik′ . Hence, we have
shown that all cases lead to a contradiction. Therefore, µ(1) is a locally stable matching of (I(1), G).

We note though that the converse of Proposition 2 is not always true as shown by this simple instance
(I(1), G) where

f11: w1 w2 w1 : f11 f12

f12: w1 w2 w2 : f11 f12

and G consists of the edge w1w2. Consider µ(1) = {(f11, w1}. It has a blocking pair (f12, w2) but f12

and w2 have no points of contact because f12 has no employee. Hence, µ(1) is a locally stable matching
of (I(1), G). Now, I(1) corresponds to the instance I where f1 has a capacity of two, f1 has the same
preference list as f11 and f12 and both w1 and w2 have a preference list with only f1 in it. Thus, µ(1)

corresponds to the matching µ = {(f1, w1)}. The latter though is not a locally stable matching of (I,G)

because (f1, w2) is a local blocking pair with w1 as a point of contact.
In the next proposition, we provide a bound similar to Proposition 1.

Proposition 3. In the HR+SN instance (I,G), let µ be a stable matching and µ̂ be a maximum locally
stable matching. Then |µ| ≤ |µ̂| ≤ 2|µ|.

Proof. Let σ be a maximum matching of I . By definition, |µ| ≤ |µ̂| ≤ |σ|. According to Proposition 1,
|σ| ≤ 2|µ|. Hence, |µ̂| ≤ 2|µ|.
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When we appended our running example with the social network consisting of a clique containing
r1, r2, r3, r4 and another clique containing r5, r6, r7, r8, σ is a maximum locally stable matching. Its size
is twice that of µ. This shows that the bound of Proposition 3 is tight. The next proposition describes the
interaction between the preference lists in I and the edges in G.

Proposition 4. Let (I,G) be an HR instance. Suppose two workers w1 and w2 do not have a firm in
common in their preference list or, equivalently, there is no firm that has w1 and w2 in its preference list.
Let e = {w1, w2}. Then (I,G−e) and (I,G+e) have the same set of locally stable matchings as (I,G).

Proof. Without loss of generality, assume e is an edge ofG. It is easy to verify that whenG′ is a subgraph
of G, every locally stable matching of (I,G) is also a locally stable matching of (I,G′). Thus, to prove
the proposition, we simply have to show that every locally stable matching of (I,G− e) is also a locally
stable matching of (I,G).

Suppose µ is a locally stable matching of (I,G − e) but has a local blocking pair (f, w) in (I,G).
Let f and w’s point of contact be w′. Hence, both w and w′ have f in their preference lists; that is,
{w,w′} 6= {w1, w2}. Thus, the edge {w,w′} is in G− e so that (f, w) is also a local blocking pair of µ
in (I,G− e), a contradiction. It follows that µ has no blocking pairs in (I,G).

We have shown that µ is a locally stable matching of (I,G) if and only if it is also a locally stable
matching of (I,G−e). The same argument holds for the locally stable matchings of (I,G) and (I,G+e)

when e is not an edge of G.

In Section 4, we shall consider max-HR+SN. Given an HR+SN instance (I,G), let A be an algorithm
that outputs a locally stable matching of (I,G), which we denote as A(I,G). Then A is an
f(N)-approximation algorithm of max-HR+SN if for all instances (I,G) of size N ,
|µ∗(I,G)|/|A(I,G)| ≤ f(N) where µ∗(I,G) is a maximum locally stable matching of (I,G).
Thus, according to Proposition 3, the Gale–Shapley algorithm is a 2-approximation algorithm of
max-HR+SN. The problem max-HR+SN is NP-hard to approximate within f(N) if the existence of an
efficient f(N)-approximation algorithm implies P = NP.

3. The Easy Cases

In this section, we present a family of HR+SN instances where finding a maximum locally stable
matching can be solved in polynomial time.

Theorem 1. Let (I,G) be an HR+SN instance. Suppose that whenever two workers have a firm in
common in their preference lists, the two workers also share an edge in G. Then every stable matching
of I is a maximum locally stable matching of (I,G). Consequently, when G is the complete graph, every
stable matching of I is a maximum locally stable matching of (I,G).

Proof. For now, assume that all firms in I have capacity 1. Suppose (I,G) has a locally stable matching
σ that is larger than the stable matchings of I . Let µ be one of these stable matchings. Then σ

⊕
µ has

a σ-alternating path of the form f1, w1, f2, w2, . . . , fk, wk such that (fi, wi) ∈ σ for i = 1, . . . , k and
(fi+1, wi) ∈ µ for i = 1, . . . , k − 1. Since f1 is unmatched in µ, w1 must prefer f2 over f1; otherwise,
(f1, w1) is a blocking pair of µ. Now w1 and w2 both have f2 in their preference lists so they share an
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edge in G. It must be the case then that f2 prefers w2 over w1; otherwise, (f2, w1) is a local blocking
pair of σ. Continuing in this fashion, we have that for i = 1, . . . , k − 1, wi prefers fi+1 over fi because
µ is a stable matching of I while fi+1 prefers wi+1 over wi because wi and wi+1 are adjacent in G and
σ is a locally stable matching of (I,G). Consequently, fk must prefer wk over wk−1. However, wk is
unmatched in µ so this implies that (fk, wk) is a blocking pair of µ—a contradiction. Hence, σ cannot
exist, and µ is a maximum locally stable matching of (I,G).

So suppose some firms in I have capacity greater than 1. Construct the HR+SN instance (I(1), G)

from (I,G). Notice that the property “whenever two workers have a firm in common in their preference
lists, the two workers also share an edge in G” is preserved in (I(1), G). Let σ be a locally stable
matching of (I,G), and let µ be a stable matching of I . Consider their corresponding matchings σ(1)

and µ(1). From Proposition 2, σ(1) is also a locally stable matching of (I(1), G). We also know that µ(1)

is a stable matching of I(1). If |σ| > |µ|, |σ(1)| > |µ(1)|. However, all firms in I(1) have capacity 1,
and according to the previous paragraph µ(1) is a maximum locally stable matching of (I(1), G). Hence,
|σ| ≤ |µ|, and µ is a maximum locally stable matching of (I,G). It is easy to see that, as a consequence
of Proposition 4, if G is extended to a complete graph, the result still holds.

The next theorem provides a bound that is different from the one presented in Proposition 3. It shows
that when G is almost a complete graph, a stable matching of I and a maximum locally stable matching
of (I,G) will almost have the same size.

Theorem 2. Let (I,G) be an HR+SN instance. Suppose that the size of the largest matching in Ḡ, the
complement of G, is r. Let µ̂ be a maximum locally stable matching of (I,G) and µ be a stable matching
of I . Then |µ̂| ≤ |µ|+ r.

Proof. Once again, let us begin the proof by assuming that all firms in I have capacity 1. First, notice that
|µ̂|−|µ| is bounded above by the number of µ̂-alternating paths in µ̂

⊕
µ. Furthermore, the µ̂-alternating

paths are vertex-disjoint. Now, in the proof of Theorem 1, we argued that when f1, w1, f2, w2, . . . , fk, wk

forms a µ̂-alternating path and w1, w2, . . . , wk is a path in G, a contradiction arises. Thus, at least one of
the edges w1w2, w2w3, . . . , wk−1wk must be missing from G and therefore present in Ḡ. If µ̂

⊕
µ has x

µ̂-alternating paths, Ḡ has at least x pairwise vertex-disjoint edges. Since x ≤ r, |µ̂| − |µ| ≤ r.
Now suppose some firms in I have capacity greater than 1. Again, construct the HR+SN instance

(I(1), G) from (I,G). Since µ̂ is a maximum locally stable matching of (I,G), µ̂(1) is a locally stable
matching of (I(1), G), but it may not be the largest such matching. Let τ be a maximum locally stable
matching of (I(1), G). Thus, |µ̂| − |µ| = |µ̂(1)| − |µ(1)| ≤ |τ | − |µ(1)|. From the previous paragraph, the
latter is bounded by r. Hence, |µ̂| − |µ| ≤ r.

We now consider the opposite case of Theorem 1.

Theorem 3. Let (I,G) be an HR+SN instance. Suppose that whenever two workers have a firm in
common in their preference lists, the two workers do not share an edge in G. Then the matchings of I
are exactly the locally stable matchings of (I,G). Hence, every maximum matching of I is a maximum
locally stable matching of (I,G). Consequently, when G is the empty graph, the matchings of I are
exactly the locally stable matchings of (I,G), and every maximum matching of I is a maximum locally
stable matching of (I,G).
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Proof. Let µ be an arbitrary matching of I . Suppose µ is not stable and contains a blocking pair (f, w).
In order for (f, w) to be a local blocking pair, f and w must have a point of contact w′; i.e., both w and
w′ have f in their preference lists, and both are neighbors in G. However, by our assumption on G, this
cannot be the case. Hence, all blocking pairs of µ are not local so µ is a locally stable matching of (I,G).
Thus, every matching of I is a locally stable matching of (I,G). Since every locally stable matching of
(I,G) is also a matching of I , it follows that the matchings of I are exactly the locally stable matchings
of (I,G). The rest of the theorem follows.

In this next theorem, we consider the case when G is almost an empty graph.

Theorem 4. Suppose that in the HR+SN instance (I,G), G has a constant number of edges. Then a
maximum locally stable matching of (I,G) can be found in time polynomial in |I|.

Proof. Let W1 ⊆ W be the smallest set of workers whose induced subgraph G1 in G contains all the r
edges of G. Let W2 = W −W1, and let G2 be the subgraph induced by W2, which in this case is an
empty graph. Thus, G = G1 ∪ G2. Furthermore, every matching µ of I can be expressed as µ1 ∪ µ2

where each µi is a matching involving the workers in Wi, for i = 1, 2. Let I1 be the HR instance derived
from I by restricting the set of workers to W1. With some abuse in notation, let I − µ1 be the HR
instance obtained from I by removing the workers matched in µ1 and decreasing the capacities of the
firms according to the number of matches they received in µ1. Thus, µ1 is a matching of I1 and µ2 is a
matching of I − µ1. Conversely, if µ1 is a matching of I1 and µ2 is a matching of I − µ1, putting them
together as µ = µ1 ∪ µ2 results in a matching of I .

It is also straightforward to verify that when µ is a locally stable matching of (I,G), µ1 and µ2

are locally stable matchings of (I1, G1) and (I − µ1, G2) respectively. Let us now argue the converse.
Suppose µ1 and µ2 are locally stable matchings of (I1, G1) and (I−µ1, G2) respectively but µ has a local
blocking pair (f, w) whose point of contact is w1. Thus, in µ, f has an opening or prefers w over its
worst employee w2, and that w is either unmatched or prefers f over her current employer. Furthermore,
since G2 is an empty graph, w and w1 must both be in W1 and neighbors in G1. If f has an opening in µ
or w2 is in W2, then f has an opening after the matching µ1 so (f, w) is a local blocking pair of µ1. On
the other hand, if w2 is in W1, then f prefers w to its worst employee w2 in µ1 so that (f, w) is again a
local blocking pair of µ1. All cases lead to a contradiction. Thus, µ must be a locally stable matching
of (I,G).

To find a maximum locally stable matching of (I,G), we do what is essentially a brute force method.
We consider all possible matchings of I1. For each such matching µ1, we check to see if µ1 is a locally
stable matching of (I1, G1). If it is, we construct I − µ1 and then find a maximum matching µ2 of the
instance. According to Theorem 3, µ2 is a maximum locally stable matching of (I − µ1, G2) since G2 is
an empty graph. If µ = µ1 ∪ µ2 is currently the largest locally stable matching of (I,G) we have seen,
we store µ; otherwise, we move on to the next matching of I1.

There are at most 2r workers in W1. Each one is either unmatched or employed by one of the |F |
firms. Thus, the number of possible matchings of I1 is O((|F | + 1)2r). Verifying if a matching µ1 of I1
is locally stable in (I1, G1), constructing I−µ1, and finding a maximum matching of the instance can all
be done in O(poly(|F |, |W |)) time. Hence, finding a maximum locally stable matching of (I,G) takes
O((|F |+ 1)2rpoly(|F |, |W |)) time, which is polynomial in |F | and |W | when r is a constant.
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4. Hardness Results

An SMI (Stable Marriage with Incomplete Lists) instance is just like an HR instance, only that all
firms have capacity 1. Hence, all of its stable matchings have the same size. An SMTI (Stable Marriage
with Ties and Incomplete Lists) instance is an SMI instance except that the participants’ preference lists
are allowed to contain ties. For this problem, a pair (f, w) is a blocking pair of matching µ if (i) (f, w)

is an acceptable pair; (ii) f has an opening or f strictly prefers w to its only employee under µ; and (iii)
w is unemployed or w strictly prefers f to her employer under µ. Once again, a matching is (weakly)
stable if it has no blocking pairs. Unlike SMI instances, the stable matchings of an SMTI instance can
have different sizes. In this section, we will show that certain kinds of SMTI instances can be encoded
as HR+SN instances. This will allow us to translate hardness results known for max-SMTI, the problem
of computing a maximum (cardinality) stable matching of an SMTI instance, to max-HR+SN.

Let I be an SMTI instance. Suppose the ties in the preference lists of I are broken arbitrarily to create
the SMI instance I ′. Clearly, every stable matching of I ′ is also a stable matching of I . The converse,
however, is not true. Let us say that the ties in I are consistent if for every pair of participants q and q′,
whenever q and q′ appear in the preference lists of p and p′, q and q′ are in a tie in the preference list of
p if and only if they are also in a tie in the preference list of p′. In the next theorem, we show that when
only the firms’ preference lists contain ties and these ties are consistent, then the stable matchings of I
can be retrieved from I ′ by considering the locally stable matchings of (I ′, G), where G is constructed
appropriately.

Theorem 5. Let I be an SMTI instance where only the firms’ preference lists contain ties, and the ties are
consistent. Let I ′ be the SMI instance obtained by breaking the ties in the preference lists of I arbitrarily.
Let G be a graph such that whenever two workers w and w′ appear together in some firm’s preference
list in I , w and w′ are adjacent if and only if they are not in a tie. Then the following are true:

(i) Every stable matching of I is also a locally stable matching of (I ′, G).
(ii) Every locally stable matching µ′ of (I ′, G) can be transformed into a stable matching µ of I such
that |µ| ≥ |µ′| in time polynomial in the size of I . Consequently, every maximum locally stable matching
of (I ′, G) can be transformed into a maximum stable matching of I of the same size in time polynomial
in |I|.

Proof. For (i), let µ be a stable matching of I . Suppose µ is not a locally stable matching of (I ′, G), and
(f, w) is one of its local blocking pairs with w′ as a point of contact. Since f has capacity 1, w′ is the
only employee of f and f prefers w over w′. In order for (f, w) to not to be a blocking pair of µ in I ,
w and w′ must be in a tie in f ’s preference list in I . However, this cannot be the case—w and w′ are
adjacent in G and ties are consistent in I . Hence, µ cannot have a local blocking pair in (I ′, G) and must
therefore be a locally stable matching of the instance.

For (ii), suppose µ′ is a locally stable matching of (I ′, G). Let (f, w) be a blocking pair of µ′ in I .
Without loss of generality, assume that w is the worker that f prefers the most among those that form a
blocking pair with f . First, we note that f cannot be matched in µ′. Otherwise, if it is matched to some
worker w1 then f must strictly prefer w over w1 so that w and w1 are adjacent in G. In (I ′, G), (f, w)

has w1 as a point of contact, implying that µ′ cannot be a locally stable matching because (f, w) is a
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local blocking pair. Since this is a contradiction, f has to be unmatched in µ′. Next, if w is unmatched
in µ′, let µ′′ = µ′ ∪ {(f, w)}; otherwise, let µ′′ = µ′ − {(µ′(w), w)} ∪ {(f, w)}. If µ′′ has a local
blocking pair, it will involve either f or w. By our choice of w, no worker will form a local blocking pair
with f . If (f1, w) is a local blocking pair of µ′′, then (f1, w) must be a local blocking pair of µ′ too—a
contradiction. Hence, µ′′ is still a locally stable matching of (I ′, G).

What we have shown is that as long as a locally stable matching of (I ′, G) has a blocking pair with
respect to I , the matching can be modified to a new matching (which no longer admits that blocking pair
with respect to I) such that (i) its size stays the same or is larger by 1; and (ii) the modified matching is
still a locally stable matching of (I ′, G) where one worker’s employer improved while everyone else’s
stayed the same. If we keep applying this modification, at some point there will be no more worker
whose employer can be improved. The locally stable matching of (I ′, G) obtained after this process will
also be a stable matching of I .

Checking whether µ′ is a stable matching of I , finding a blocking pair of µ′ if it is not, and finding
a worker that f prefers the most among those that form a blocking pair with f can be done in time
polynomial in the size of I . Since the number of modifications cannot be more than |F |× |W |, it follows
that starting at a locally stable matching µ′ of (I ′, G), we can arrive at a stable matching µ of I such that
|µ| ≥ |µ′| in time polynomial in the size of I .

Finally, we note from (i) that a maximum locally stable matching of (I ′, G) is at least as large as a
maximum stable matching of I . Hence, if a maximum locally stable matching of (I ′, G) is also a stable
matching of I , it must be a maximum stable matching of I . Our argument in the previous paragraphs
shows that the last part of (ii) is true.

In the statement of Theorem 5, we simply described what edges should be in G: whenever two
workers w and w′ appear together in some firm’s preference list in I , w and w′ are adjacent if and only
if they are not in a tie. That is, we are ambivalent about edges formed by workers that do not appear
together in a firm’s preference list in I since according to Proposition 4, the absence or presence of these
edges in G have no effect on the set of locally stable matchings of (I,G).

Consistent ties arise naturally when firms and/or workers derive their preference lists from a master
list [13]. A master list of workers LW is an ordering of all the workers that may or may not contain ties.
Each firm’s preference list contains all the workers acceptable to it and ranked in accordance with the
master list. Thus, when w and w′ is part of the preference list of a firm f , they are in a tie in f ’s list
if and only if they are in a tie in LW . A master list of firms LF is defined similarly, and each worker’s
preference list is obtained in the same way. Let SMTI-2ML denote the SMTI problem where both
groups of participants derived their preference lists from a master list. The following result is known
about SMTI -2ML.

Fact 1. (Irving et al. [13]) Suppose that in the SMTI-2ML instance I , there are n firms and n workers.
Determining if (I,G) has a stable matching of size n is NP-complete even if the ties occur in one master
list only. The result holds even when (i) there is only one tie in that master list or (ii) all the ties are of
length 2.

We now translate this result to HR+SN.
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Theorem 6. Suppose that in the HR+SN instance (I,G), there are n firms and n workers, and each firm
has capacity 1. Let Kz denote the complete graph on z vertices. Determining if I has a locally stable
matching of size n is NP-complete, even when G ∼= Kn−Kn′ where n′ < n or G ∼= Kn−F where F is
a matching in Kn.

Proof. Let I ′ be an SMTI-2ML instance with n firms and n workers, and the ties occur in one master
list only. Without loss of generality, assume that it is the firms’ master list of workers that contains
the ties. Create the HR+SN instance (I ′′, G) according to Theorem 5. If there is an efficient algorithm
for determining if (I ′′, G) has a locally stable matching of size n, which is clearly a maximum locally
stable matching of (I ′′, G), then there is also an efficient algorithm for determining if I ′ has a stable
matching of size n. However, Fact 1 states that the latter is an NP-complete problem. It follows that
determining if (I ′′, G) has a locally stable matching of size n is also NP-complete. The form of G is
based on Proposition 4, Fact 1 and Theorem 5.

Next, we argue that max-HR+SN is NP-hard to approximate by appealing to the details of the
following result of Halldórsson et al. [14] with regards to approximating max-SMTI.

Fact 2. (Halldórsson et al. [14]) It is NP-hard to approximate max-SMTI within a factor of 21/19 − δ
for any constant δ > 0.

Theorem 7. It is NP-hard to approximate max-HR+SN within a factor of 21/19 − δ for any constant
δ > 0.

Proof. To prove Fact 2, Halldórsson et al. [14] relied on a result of Dinur and Safra [15] about
approximating a minimum vertex cover of a graph. Given a graph H = (V,E), we now describe how
they constructed the SMTI instance IH . Note that we shall use firms in place of men and workers in place
of women. For each vertex vi of H , create three firms vA

i , v
B
i , v

C
i , and three workers va

i , v
a
i , v

c
i . Thus,

there are a total of 3|V | firms and 3|V | workers. Suppose vi is adjacent to d vertices vi1 , vi2 , . . . , vid .
Here are the preference lists of the firms and workers corresponding to vi:

vA
i : va

i va
i : vB

i vC
i1
· · · vC

id
vA

i

vB
i : (va

i vb
i ) vb

i : vB
i vC

i

vC
i : vb

i va
i1
· · · va

id
vc

i vc
i : vC

i

Clearly, IH can be constructed from H in time polynomial in the size of H . Also, notice that the ties
in IH are consistent since va

i and vb
i appear together in vB

i ’s preference list only. Using the reduction
in Theorem 5, let (I ′H , G) be the HR+SN instance that corresponds to IH . Let s+(IH) and s+(I ′H , G)

denote the sizes of a maximum stable matching in IH and a maximum locally stable matching in (I ′H , G)

respectively. According to Theorem 5, s+(IH) = s+(I ′H , G). Let β−(H) denote the size of a minimum
vertex cover ofH . They showed that s+(IH) = 3|V |−β−(H). Since β−(H) is NP-hard to approximate,
it follows that s+(IH) is also NP-hard to approximate. Since s+(IH) = s+(I ′H , G), and HR+SN instance
(I ′H , G) can be constructed from IH in polynomial time, we also have that s+(I ′H , G) is NP-hard to
approximate. We refer readers to [14] for the derivation of the factor 21/19− δ.
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5. Final Remarks

Theorem 7 provides a lower bound while Proposition 3 provides an upper bound to the factor of
the best approximation algorithm for max-HR+SN. Can this gap be narrowed? We suspect that the
answer is yes since the source of our hardness results, max-SMTI, has a number of 3/2-approximation
algorithms [16–18]. An important strategy in these algorithms is to come up with a stable matching µ
such that if µ∗ is a maximum stable matching of the instance, there is no length-3 µ∗-alternating path in
µ∗

⊕
µ. In other words, in all µ∗-alternating paths in µ∗

⊕
µ, the ratio of the number of µ∗-edges to the

number of µ-edges is at most 3 : 2. We end with the theorem below, which shows that for some HR+SN
instances, choosing µ to be equal to a stable matching of the instance yields such a result.

Theorem 8. In the HR+SN instance (I,G), let W ′ be the set of workers that get matched in every stable
matching of I . Suppose that in graphG, whenever w1 ∈ W ′ and w2 ∈ W−W ′ have a firm in common in
their preference lists, w1 and w2 are adjacent in G. Let µ be a stable matching of I and µ̂ be a maximum
locally stable matching of (I,G). Then |µ̂| ≤ 3

2
|µ|.

Proof. Recall the proof of Theorem 1. For now, assume all firms in I have capacity 1. Consider µ̂
⊕

µ.
Suppose it has a length-3 µ̂-alternating path: f1, w1, f2, w2. This means that f1 is unmatched in µ so w1

must prefer f2 over f1. Similarly, w2 is unmatched in µ so f2 must prefer w1 over w2. Thus, (f2, w1)

is a blocking pair of µ̂. Furthermore, w1 ∈ W ′ and w2 ∈ W −W ′ are adjacent in G so w2 is a point
of contact between f2 and w1 and (f2, w1) is a local blocking pair of µ̂—a contradiction. It follows that
µ̂

⊕
µ has no length-3 µ̂-alternating paths.

Now, suppose some firms in I have capacity greater than 1. Once more, construct (I(1), G) from
(I,G). Let τ be a maximum locally stable matching of (I(1), G). From the previous paragraph, |τ | ≤
3
2
|µ(1)|. Thus, |µ̂|/|µ| = |µ̂(1)|/|µ(1)| ≤ |τ |/|µ(1)| ≤ 3/2.
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