
Algorithms 2013, 6, 396-406; doi:10.3390/a6030396
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

New Heuristics for Rooted Triplet Consistency †
Soheil Jahangiri Tazehkand 1,2,∗, Seyed Naser Hashemi 1 and Hadi Poormohammadi 3

1 Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran; E-Mail:
nhashemi@aut.ac.ir

2 Bioinformatics Group, School of Computer Science, Institute for Research in Fundamental Sciences
(IPM), Niavaran, Tehran, Iran

3 Shahid Beheshti University, Evin, Tehran 19839-63113, Iran; E-Mail: poormohammadi@ipm.ir

† An extended abstract of this article has appeared in the proceedings of the Annual International
Conference on Bioinformatics and Computational Biology (BICB 2011) in Singapore.

* Author to whom correspondence should be addressed; E-Mail: s.jahangiri@aut.ac.ir;
Tel.: +98-936-9220139.

Received: 14 April 2013; in revised form: 26 June 2013 / Accepted: 26 June 2013 /
Published: 11 July 2013

Abstract: Rooted triplets are becoming one of the most important types of input for
reconstructing rooted phylogenies. A rooted triplet is a phylogenetic tree on three leaves
and shows the evolutionary relationship of the corresponding three species. In this paper,
we investigate the problem of inferring the maximum consensus evolutionary tree from
a set of rooted triplets. This problem is known to be APX-hard. We present two new
heuristic algorithms. For a given set of m triplets on n species, the FastTree algorithm runs
in O(m + α(n)n2) time, where α(n) is the functional inverse of Ackermann’s function.
This is faster than any other previously known algorithms, although the outcome is less
satisfactory. The Best Pair Merge with Total Reconstruction (BPMTR) algorithm runs in
O(mn3) time and, on average, performs better than any other previously known algorithms
for this problem.

Keywords: phylogenetic tree; rooted triplet; consensus tree; approximation algorithm

1. Introduction

Algorithms 2013, 6 397

After the publication of Charles Darwin’s book On the Origin of Species by Means of Natural
Selection, the theory of evolution was widely accepted. Since then, remarkable developments
in evolutionary studies brought scientists to phylogenetics, a field that studies the biological or
morphological data of species to output a mathematical model, such as a tree or a network,
representing the evolutionary interrelationship of species and the process of their evolution. Interestingly,
phylogenetics is not only limited to biology, but may also arise anywhere that the concept of evolution
appears. For example, a recent study in evolutionary linguistics employs a phylogeny inference to clarify
the origin of the Indo-European language family [1]. Several approaches have been introduced to infer
evolutionary relationships [2]. Among those, well-known approaches are character-based methods (e.g.,
maximum parsimony), distance-based methods (e.g., neighbor joining and UPGMA) and quartet-based
methods (e.g., QNet). Recently, rather new approaches, namely, triplet-based methods, have been
introduced. Triplet-based methods output rooted trees and networks, due to the rooted nature of triplets.
A rooted triplet is a rooted unordered leaf-labeled binary tree on three leaves and shows the evolutionary
relationship of the corresponding three species. Triplets can be obtained accurately using a maximum
likelihood method, such as the one introduced by Chor et al. [3], or the Sibley-Ahlquist-style DNA-DNA
hybridization experiments [4]. Indeed, we expect highly accurate results from triplet-based methods.
However, sometimes, due to experimental errors or some biological events, such as hybridization
(recombination) or horizontal gene transfer, it is not possible to reconstruct a tree that satisfies all of
the input constraints (triplets). There are two ways to overcome this problem. The first approach is to
employ a more complex model, such as a network, which is the proper approach when the mentioned
biological events have actually happened. The second approach tries to reconstruct a tree satisfying
as many input triplets as possible. This approach is more useful when the input data contains errors.
The latter approach forms the subject of this paper. In the next section, we will provide necessary
definitions and notations. Section 3 contains an overview of previous results. We will present our
algorithms and experimental results in Section 4. Finally, in Section 5, open problems and ideas for
further improvements are discussed.

2. Preliminaries

An evolutionary tree (phylogenetic tree) on a set, S, of n species, |S| = n, is a
rooted binary (More precisely, an evolutionary tree can also be unrooted; however, triplet-
based methods output rooted phylogenies)unordered tree in which leaves are distinctly la-
beled by members of S (see Figure 1(a)). A rooted triplet is a phylogenetic tree with
three leaves. The unique triplet of leaves, x, y, z, is denoted by ((x, y), z) or xy|z,
if the lowest common ancestor of x and y is a proper descendant of the lowest common ancestor of
x and z or, equivalently, if the lowest common ancestor of x and y is a proper descendant of the lowest
common ancestor of y and z (see Figure 1(b)). A triplet, t (e.g., xy|z) is consistent with a tree, T, or,
equivalently, T is consistent with t) if t is an embedded subtree of T. This means that t can be obtained
from T by a series of edge contractions (i.e., if in T, the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of x and z). We also say T satisfies t, if T is consistent with t.
The tree in Figure 1(a) is consistent with the triplet in Figure 1(b). A phylogenetic tree, T, is consistent

Algorithms 2013, 6 398

with a set of rooted triplets if it is consistent with every triplet in the set. We call two leaves siblings or a
cherry if they share the same parent. For example, {x, y} in Figure 1(a) form a cherry.

Figure 1. Example of a phylogenetic tree and a consistent triplet. (a) A phylogenetic tree;
(b) the triplet xy|z.

(a) (b)

A set of triplets, R, is called dense if for each set of three species, {x, y, z}, R, contains at least
one of three possible triplets, xy|z, xz|y or yz|x. If R contains exactly one triplet for each set of three
species, it is called minimally dense, and if it contains every possible triplet, it is called maximally
dense. Now, we can define the problem of reconstructing an evolutionary tree from a set of rooted
triplets. Suppose S is a finite set of species of cardinality, n, and R is a finite set of rooted triplets of
cardinality, m, on S. The problem is to find an evolutionary tree leaf-labeled by members of S, which is
consistent with the maximum number of rooted triplets in R. This problem is called the Maximum Rooted
Triplets Consistency (MaxRTC) problem [5] or the Maximum Inferred Local Consensus Tree (MILCT)
problem [6]. This problem is NP-hard (see Section 3), which means no polynomial-time algorithm
can be found to solve the problem optimally unless P= NP. For this and similar problems, one might
search for polynomial-time algorithms that produce approximate solutions. We call an algorithm an
approximation algorithm if its solution is guaranteed to be within some factor of optimum solution. In
contrast, heuristics may produce good solutions, but do not come with a guarantee on their quality of
solution. An algorithm for a maximization problem is called an α−approximation algorithm, for some
α > 1, if for any input, the output of the algorithm is at most α-times worse than the optimum solution.
The factor, α, is called the approximation factor or approximation ratio.

3. Related Works

Aho et al. [7] investigated the problem of constructing a tree consistent with a set of rooted triplets
for the first time. They designed a simple recursive algorithm, which runs in O(mn) time and returns a
tree consistent with all of the given triplets, if at least one tree exists. Otherwise, it returns null. Later,
Henzinger et al. [8] improved Aho et al.’s algorithm to run inmin{O(n+mn1/2), O(m+n2logn)} time.
The time complexity of this algorithm was further improved to min{O(n+mlog2n), O(m+ n2logn)}
by Jansson et al. [9] using more recent data structures introduced by Holm et al. [10]. MaxRTC is
proven to be NP-hard [6,11,12]. Byrka et al. [13] reported that this proof is an L-reduction from an

Algorithms 2013, 6 399

APX-hard problem, meaning that the problem is APX-hard, in general (non-dense case). Later, Van
Iersel et al. [14] proved that MaxRTC is NP-hard, even if the input triplet set is dense.

Several heuristics and approximation algorithms have been presented for the so-called MaxRTC
problem, each performing better in practice on different input triplet sets. Gasieniec et al.
[15] proposed two algorithms by modifying Aho et al.’s algorithm. Their first algorithm,
which is referred to as One-Leaf-Split [5] runs in O((m + n)logn) time, and the second
one, which is referred to as Min-Cut-Split [5], runs in min{O(mn2 + n3logn), O(n4)}
time. The tree generated by the first algorithm is guaranteed to be consistent with at least
one third of the input triplet set. This gives a lower bound for the problem. In another
study, Wu [11] introduced a bottom-up heuristic approach called BPMF (Best Pair Merge
First), which runs in O(mn3) time. In the same study, he proposed an exact exponential
algorithm for the problem, which runs in O((m + n2)3n) time and O(2n) space. According to the
results of Wu [11], BPMF seems to perform well on average on randomly generated data. Later,
Maemura et al. [16] presented a modified version of BPMF, called BPMR (Best Pair Merge with
Reconstruction), which employs the same approach, but with a little bit different of a reconstruction
routine. BPMR runs in O(mn3) time and, according to Maemura et al.’s experiments, outperforms
BPMF. Byrka et al. [13] designed a modified version of BPMF to achieve an approximation ratio of
three. They also investigated how MinRTI (Minimum Rooted Triplet Inconsistency) can be used to
approximate MaxRTC and proved that MaxRTC admits a polynomial-time, (3− 2

n−2
)−, approximation.

4. Algorithms and Experimental Results

In this Section, we present two new heuristic algorithms for the MaxRTC problem.

4.1. FastTree

The first heuristic algorithm has a bottom-up greedy approach, which is faster than the other
previously known algorithms employing a simple data structure.

Let R(T) denote the set of all triplets consistent with a given tree, T. R(T) is called the reflective triplet
set of T. It forms a minimally dense triplet set and represents T uniquely [17]. Now, we define the
closeness of the pair, {i,j}. The closeness of the pair, {i,j}, Ci,j , is defined as the number of triplets of
the form, ij|k, in a triplet set. Clearly, for any arbitrary tree, T, the closeness of a cherry species equals
n− 2, which is maximum in R(T). The reason is that every cherry species has a triplet with every other
species. Now, suppose we contract every cherry species of the form, {i,j}, to their parents, pij , and then
update R(T) as follows. For each contracted cherry species, {i,j}, we remove triplets of the form, ij|k,
from R(T) and replace i and j with pij within the remaining triplets. The updated set, R′(T ′), would
be the reflective triplet set for the new tree, T ′. Observe that, for cherries of the form, {pij, k}, in T ′,
Ci,k and Cj,k would equal n-3 in R(T). Similarly, for cherries of the form, {pij, pkl}, in T ′, Ci,k, Cj,k,
Ci,l and Cj,l would equal n-4 in R(T). This forms the main idea of the first heuristic algorithm. We first
compute the closeness of pairs of species by visiting triplets. Furthermore, sorting the pairs according
to their closeness gives us the reconstruction order of the tree. This routine outputs the unique tree, T,
for any given reflective triplet set, R(T). Yet, we have to consider that the input triplet set is not always

Algorithms 2013, 6 400

a reflective triplet set. Consequently, the reconstruction order produced by sorting may not be the right
order. However, if the loss of triplets admits a uniform distribution, it will not affect the reconstruction
order. An approximate solution for this problem is refining the closeness. This can be done by reducing
the closeness of the pairs, {i,k} and {j,k}, for any visited triplet of the form, ij|k. Thus, if the pair, {i,j},
is actually cherries, then the probability of choosing the pairs, {i,k} or {j,k}, before choosing the pair,
{i,j}, due to triplet loss, will be reduced. We call this algorithm FastTree. See Algorithm 1 for the whole
algorithm.

Algorithm 1 FastTree
1: Initialize a forest, F, consisting of n one-node trees labeled by species.
2: for each triplet of the form ij|k do
3: Ci,j: = Ci,j+1
4: Ci,k: = Ci,k−1
5: Cj,k: = Cj,k−1
6: end for
7: Create a list, L, of pairs of species.
8: Sort L according to the refined closeness of pairs with a linear-time sorting algorithm.
9: while |L|>0 do

10: Remove the pair, {i,j}, with maximum, Ci,j .
11: if i and j are not in the same tree then
12: Add a new node and connect it to roots of trees containing i and j.
13: end if
14: end while
15: if F has more than one tree then
16: Merge trees in any order, until there would be only one tree.
17: end if
18: return the tree in F

Theorem 1. FastTree runs in O(m+ α(n)n2) time.

Proof. Initializing a forest in Step 1 takes O(n) time. Steps 2–6 take O(m) time. We know that
the closeness is an integer value between 0 and n − 2. Thus, we can employ a linear-time sorting
algorithm [18]. There are O(n2) possible pairs; therefore, Step 8 takes O(n2) time. Similarly, the while
loop in Step 9 takes O(n2) time. Each removal in Step 10 can be done in O(1) time. By employing
optimal data structures, which are used for disjoint-set unions [18], the amortized time complexity of
Steps 11 and 12 will be O(α(n)), where α(n) is the inverse of the function, f(x) = A(n, n), and A is
the well-known fast-growing Ackermann function. Furthermore, Step 16 takes O(nα(n)) time. Hence,
the running time of FastTree would be O(m+ α(n)n2).

SinceA(4, 4) = 22265536 , α(n) is less than four for any practical input size, n. In comparison to the fast
version of Aho et al.’s algorithm, FastTree employs a simpler data structure and, in comparison to Aho
et al.’s original algorithm, it has lower time complexity. Yet, the most important advantage of FastTree

Algorithms 2013, 6 401

to Aho et al.’s algorithm is that it will not stick if there is not a consistent tree with the input triplets, and
it will output a proper tree in such a way that the clusters are very similar to that of the real network.
The tree in Figure 2 is the output of FastTree on a dense set of triplets based on the yeast, Cryptococcus
gattii, data. There is no consistent tree with the whole triplet set; however, Van Iersel et al. [19] presented
a level-2 network consistent with the set (see Figure 3). This set is available online [20]. In comparison
to BPMR and BPMF, FastTree runs much faster for large sets of triplets and species. However, for highly
sparse triplet sets, the output of FastTree may satisfy considerably less triplets than the tree constructed
by BPMF or BPMR.

Figure 2. Output of FastTree for a dense triplet set of the yeast, Cryptococcus gattii, data.

4.2. BPMTR

Before explaining the second heuristic algorithm, we need to review BPMF [11] and BPMR [16].
BPMF utilizes a bottom-up approach similar to hierarchical clustering. Initially, there are n trees, each
containing a single node representing one of n given species. In each iteration, the algorithm computes a
function, called e score, for each combination of two trees. Furthermore, two trees with the maximum
e score are merged into a single tree by adding a new node as the common parent of the selected trees.
Wu [11] introduced six alternatives for computing the e score using combinations of w, p and t. (see
Table 1). However, in each run, one of the six alternatives must be used. In the function, e score(C1, C2),
w is the number of triplets satisfied by merging C1 and C2, which is the number of triplets of the form
ij|k, in which i is in C1, j is in C2 and k is neither in C1 nor in C2. The value of p is the number of
triplets that are in conflict with merging C1 and C2. It is the number of triplets of the form, ij|k, in which
i is in C1, k is in C2 and j is neither in C1 nor in C2. The value of t is the total number of triplets of
the form, ij|k, in which i is in C1and j is C2. Wu compared the BPMF with One-Leaf-Split and
Min-Cut-Split and showed that BPMF works better on randomly generated triplet sets. He also
pointed out that none of the six alternatives of e score is significantly better than the other.

Algorithms 2013, 6 402

Figure 3. A Level-2 network for a dense triplet set of the yeast, Cryptococcus gattii, data.

Table 1. The six alternatives of e score.

If-Penalty Ratio Type

False w w/(w + p) w/t
True w − p (w − p)/(w + p) (w − p)/t

Maemura et al. [16] introduced a modified version of BPMF, called BPMR, that outperforms the
results of BPMF. BPMR works very similarly in comparison to BPMF, except for a reconstruction step
used in BPMR. Suppose Tx and Ty are two trees having the maximum, e score, at some iteration and
are selected to merge into a new tree. By merging Tx and Ty, some triplets will be satisfied, but some
other triplets will be in conflict. Without loss of generality, suppose Tx has two subtrees, namely the left
subtree and the right subtree. In addition, suppose a triplet, ij|k, in which i is in the left subtree of Tx,
k is in the right subtree of Tx and j is in Ty. Observe that by merging Tx and Ty, the mentioned triplet
becomes inconsistent. However, swapping Ty with the right subtree of the Tx satisfies this triplet, while
some other triplets become inconsistent. It is possible that the resulting tree of this swap satisfies more
triplets than the primary tree. This is the main idea behind the BPMR. In BPMR, in addition to the
regular merging of Tx and Ty, Ty is swapped with the left and the right subtree of Tx, and also, Tx is
swapped with the left and the right tree of Ty. Finally, among these five topologies, we choose the one
that satisfies the most triplets.

Suppose the left subtree of the Tx also has two subtrees. Swapping Ty with one of these subtrees would
probably satisfy new triplets, while some old ones would become inconsistent. There are examples in
which this swap results in a tree that satisfies more triplets. This forms our second heuristic idea that
swapping of Ty with every subtree of Tx should be checked. Tx should also be swapped with every

Algorithms 2013, 6 403

subtree of Ty. At every iteration of BPMF after choosing two trees maximizing the , the algorithm tests
every possible swapping of these two trees with subtrees of each other and, then, chooses the tree with
the maximum consistency of the triplets. We call this algorithm BPMTR (Best Pair Merge with Total
Reconstruction). See Algorithm 2 for details of the BPMTR.

Algorithm 2 BPMTR
1: Initialize a set, T, consisting of n one-node trees labeled by species.
2: while |T|>1 do
3: Find and remove two trees, Tx, Ty, with maximum e score.
4: Create a new tree, Tmerge, by adding a common parent to Tx and Ty

5: Tbest : = Tmerge

6: for each subtree Tsub of Tx do
7: Let Tswapped be the tree constructed by swapping Tsub with Ty

8: if the number of consistent triplets with Tswapped was larger than the number of triplets
consistent with Tbest then

9: Tbest : = Tswapped

10: end if
11: end for
12: for each subtree Tsub of Ty do
13: Let Tswapped be the tree constructed by swapping Tsub with Tx

14: if the number of consistent triplets with Tswapped was larger than the number of triplets
consistent with Tbest then

15: Tbest : = Tswapped

16: end if
17: end for
18: Add Tbest to T.
19: end while
20: return the tree in T

Theorem 2. BPMTR runs in O(mn3) time.

Proof. Step 1 takes O(n) time. In Step 2, initially, T contains n clusters, but in each iteration, two
clusters merge into a cluster. Hence, the while loop in Step 2 takes O(n) time. In Step 3, e score is
computed for every subset of T of size two. By applying Bender and Farach-Colton’s preprocessing
algorithm [21], which runs in O(n) time for a tree with n nodes, every LCAquery can be answered in
O(1) time. Therefore, the consistency of a triplet with a cluster can be checked in O(1) time. Since there
are m triplets, Step 3 takes

(|T |
2

)
O(m) time. In Steps 5, 9 and 15, Tbest is a pointer that stores the best

topology found so far during each iteration of the while loop in O(1) time. The complexity analysis of
the loops in Steps 6–11 and 12–17 are similar, and it is enough to consider one. Every rooted binary tree
with n leaves has O(n) internal nodes, so the total number of swaps in Step 7 for any two clusters will be
at most O(n− |T |). In Step 8, computing the number of consistent triplets with Tswapped takes no more

Algorithms 2013, 6 404

than O(m) time. Steps 4, 7 and 18 are implementable in O(1) time. Accordingly, the running time of
Steps 2–19 would be:

n∑
|T |=2

[
m

(
|T |
2

)
+O(n− |T |) +m)

]
= O(mn3) (1)

Step 20 takes O(1) time. Hence, the time complexity of BPMTR is O(mn3).

We tested BPMTR over randomly generated triplet sets with n = 15, 20 species and m = 500,
1,000 triplets. We experimented hundreds of times for each combination of n and m. The results in
Table 2 indicate that BPMTR outperforms BPMR. However, in these hundreds of tests, there were a few
examples of BPMR performing better than BPMTR. For n = 30 and m = 1,000, in 62 triplet sets out of
a hundred randomly generated triplet sets, BPMTR satisfied more triplets. In 34 triplet sets, BPMR and
BPMTR had the same results, and in four triplet sets, BPMR satisfied more triplets.

Table 2. Performance results of Best Pair Merge with Total Reconstruction (BPMTR) in
comparison to Best Pair Merge with Reconstruction (BPMR).

No. of species and triplets % better results % worse results

n = 20, m = 500 %29 %0.0
n = 20, m = 1000 %37 %1
n = 30, m = 500 %61 %3
n = 30, m = 1000 %62 %4

5. Conclusion and Unsolved Problems

In this paper, we presented two new algorithms for the so-called MaxRTC problem. For a given set
of m triplets on n species, the FastTree algorithm runs in O(m + α(n)n2) time, which is faster than
any other previously known algorithm, although the outcome can be less satisfactory for highly sparse
triplet sets. The BPMTR algorithm runs in O(mn3) time and, on average, performs better than any other
previously known approximation algorithm for this problem. There is nonetheless still more room for
improvement of the described algorithms.

1. In the FastTree algorithm, in order to compute the closeness of pairs of species, we check triplets,
and for each triplet of the form, ij|k, we add a weight, w, to Ci,j and subtract a penalty, p, from Ci,k and
Cj,k. In this paper, we set w = p = 1. If one assigns different values for w and p, the closeness of the
pairs of species will be changed, and the reconstruction order will be affected. It would be interesting to
check for which values of w and p FastTree performs better.

2. Wu [11] introduced six alternatives for e score, each of which performs better for different input
triplet sets. It would be interesting to find a new function that can outperform all the alternatives for any
input triplet set.

3. The best-known approximation factor for the MaxRTC problem is three [13]. This is the
approximation ratio of BPMF. Since MaxRTC is APX-hard, a PTASis unattainable, unless P = NP.
However, [5] suggests that an approximation ratio in the region of 1.2 might be possible. Finding an
α−approximation algorithm for MaxRTC with α < 3 is still open.

Algorithms 2013, 6 405

4. It would also be interesting to find the approximation ratio of FastTree, in general, and for reflective
triplet sets.

Acknowledgments

The authors are grateful to Jesper Jansson and Fatemeh Zareh for reviewing this article, providing
useful comments and answering our endless questions.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Bouckaert, R.; Lemey, P.; Dunn, M.; Greenhill, S.J.; Alekseyenko, A.V.; Drummond, A.J.;
Gray, R.D.; Suchard, M.A.; Atkinson, Q.D. Mapping the origins and expansion of the
Indo-European language family. Science 2012, 337, 957–960.

2. Felsenstein, J. Inferring Phylogenies; Sinauer Associates: Sunderland, MA, USA, 2004.
3. Chor, B.; Hendy, M.; Penny, D. Analytic Solutions for Three-Taxon MLMC Trees with Variable

Rates Across Sites. In Algorithms in Bioinformatics; Gascuel, O., Moret, B., Eds.; Springer: Berlin,
Germany, 2001; Lecture Notes in Computer Science, Volume 2149, pp. 204–213.

4. Kannan, S.K.; Lawler, E.L.; Warnow, T.J. Determining the evolutionary tree using experiments.
J. Algorithms 1996, 21, 26–50.

5. Byrka, J.; Gawrychowski, P.; Huber, K.T.; Kelk, S. Worst-case optimal approximation algorithms
for maximizing triplet consistency within phylogenetic networks. J. Discret. Algorithms 2010,
8, 65–75.

6. Jansson, J. On the complexity of inferring rooted evolutionary trees. Electron. Notes Discret.
Math. 2001, 7, 50–53.

7. Aho, A.V.; Sagiv, Y.; Szymanski, T.G.; Ullman, J.D. Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions. SIAM J. Comput. 1981, 10,
405–421.

8. Henzinger, M.R.; King, V.; Warnow, T. Constructing a tree from homeomorphic subtrees, with
applications to computational evolutionary biology. Algorithmica 1999, 24, 1–13.

9. Jansson, J.; Ng, J.H.K.; Sadakane, K.; Sung, W.K. Rooted Maximum Agreement Supertrees.
Algorithmica 2005, 43, 293–307.

10. Holm, J.; de Lichtenberg, K.; Thorup, M. Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 2001, 48, 723–760.

11. Wu, B.Y. Constructing the maximum consensus tree from rooted triples. J. Comb. Optim. 2004,
8, 29–39.

12. Bryant, D. Building Trees, Hunting for Trees, and Comparing Trees—Theory and Methods in
Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

Algorithms 2013, 6 406

13. Byrka, J.; Guillemot, S.; Jansson, J. New Results on Optimizing Rooted Triplets Consistency. In
Algorithms and Computation; Hong, S.H., Nagamochi, H., Fukunaga, T., Eds.; Springer: Berlin,
Germany, 2008; Lecture Notes in Computer Science, Volume 5369, pp. 484–495.

14. Van Iersel, L.; Kelk, S.; Mnich, M. Uniqueness, intractability and exact algorithms: Reflections on
level-k phylogenetic networks. J. Bioinform. Comput. Biol. 2009, 7, 597–623.

15. Gasieniec, L.; Jansson, J.; Lingas, A.; Ostlin, A. On the complexity of constructing evolutionary
trees. J. Comb. Optim. 1999, 3, 183–197.

16. Maemura, K.; Jansson, J. Ono, H.; Sadakane, K.; Yamashita, M. Approximation Algorithms for
Constructing Evolutionary Trees from Rooted Triplets. In Proceedings of 10th Korea-Japan Joint
Workshop on Algorithms and Computation, Gwangju, Korea, 9-10 August 2007.

17. Jansson, J.; Sung, W.K. Inferring a level-1 phylogenetic network from a dense set of rooted triplets.
Theor. Comput. Sci. 2006, 363, 60–68.

18. Cormen, T.T.; Leiserson, C.E.; Rivest, R.L. Introduction to Algorithms; MIT Press: Cambridge,
MA, USA, 1990.

19. Van Iersel, L.; Keijsper, J.; Kelk, S.; Stougie, L.; Hagen, F.; Boekhout, T. Constructing
Level-2 Phylogenetic Networks from Triplets. In Research in Computational Molecular Biology;
Vingron, M., Wong, L., Eds.; Springer: Berlin, Germany, 2008; Lecture Notes in Computer Science,
Volume 4955, pp. 450–462.

20. Kelk, S. LEVEL2: A fast algorithm for constructing level-2 phylogenetic networks from dense sets
of rooted triplets, 2008.

21. Bender, M.A.; Farach-Colton, M. The LCA Problem Revisited. In LATIN 2000: Theoretical
Informatics; Gonnet, G.; Viola, A., Eds.; Springer: Berlin, Germany, 2000; Lecture Notes in
Computer Science, Volume 1776, pp. 88–94.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Preliminaries
	Related Works
	Algorithms and Experimental Results
	FastTree
	BPMTR

	Conclusion and Unsolved Problems
	Acknowledgments
	Conflict of Interest

