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Abstract: We consider a two-sided market under incomplete preference lists with ties, where
the goal is to find a maximum size stable matching. The problem is APX-hard, and a
3/2-approximation was given by McDermid [1]. This algorithm has a non-linear running
time, and, more importantly needs global knowledge of all preference lists. We present
a very natural, economically reasonable, local, linear time algorithm with the same ratio,
using some ideas of Paluch [2]. In this algorithm every person make decisions using only
their own list, and some information asked from members of these lists (as in the case of
the famous algorithm of Gale and Shapley). Some consequences to the Hospitals/Residents
problem are also discussed.
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1. Introduction

In 1962, Gale and Shapley [3] gave their famous simple deferred acceptance algorithm, which always
finds stable matching in a two-sided market. If incomplete lists and ties are allowed in the preference
lists, their algorithm still works, and gives some stable matching. However, in this case, we are
usually interested in not only finding some stable matching, but one with maximum size. This problem
(usually called MAX-SMTI) is APX-hard, and probably cannot be approximated within a factor of 4/3.
McDermid [1] gave the first 3/2-approximation using our previous 3/2-approximation for the case,
when ties are only on one side of the market [4].
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In this paper, we give a much simpler algorithm than the one he gave, which is only a slight
modification of the historical algorithm of Gale and Shapley. It also gives 3/2-approximation, but in
linear time. The proof of the approximation ratio is uncomplicated, thus it serves as a good example for
teaching purposes.

We call a mechanism natural if participants need not make any difficult computation and are not
required to make illogical decisions. For several practice motivated models in Economics, natural
mechanisms are more efficient than “artificial” ones.

In this paper, we make difference between global and local algorithms. When we speak about a global
algorithm, we assume that there is a centralized decision mechanism, having all possible information
(here: the preference lists of all participants). A global algorithm is called linear time if the number of
steps it takes is some constant times the size of the input (usually the total length of the preference lists).

A local algorithm is quite restricted compared to a global algorithm. Here, every participant must
have his/her own decision mechanism without having any global information. Besides his/her own
information, a participant can only ask data from his/her acceptable partners. In real life, we have many
circumstances when this is true for the participants. Therefore, designing a local information mechanism
is an important goal. In this model, we assume everyone has his/her own list sorted at the beginning, and
a local algorithm is called linear time if the number of steps any participant needs is some constant times
the size of the input (length of the preference list) of that particular participant.

We will give both linear time global and linear time local algorithms for approximating the maximum
size stable marriage problem, moreover in our local algorithm every participant of the two-sided market
will make only very natural and rational decisions.

An instance of the stable marriage problem consists of a set U of men, a set W of women, and
a preference list for each person; that is, a weak linear order (ties are allowed) of some participants
(thus, in this paper, we are dealing with only the practical situation of incomplete lists) of the opposite
gender. If m ∈ U and w ∈ W , then a pair mw is called acceptable if m is on the list of w and w is
on the list of m. We model acceptable pairs with a bipartite graph G = (U,W,E), (where E is the set
of acceptable pairs; we may assume that if w is not on the list of m then m is also missing from the
list of w). Note, that total length of the lists is proportional to |E|. A matching in this graph consists of
mutually disjoint acceptable pairs.

We store the weak order of the lists as priorities. For an acceptable pair mw, let pri(w,m) be an
integer from 1 up to |U | representing the priority of m for w. We say that w ∈ W strictly prefers
m1 ∈ U to m2 ∈ U if both m1 and m2 are acceptable for w, and pri(w,m1) > pri(w, m2). Ties are
represented by equal priorities, e.g., if m1 and m2 are tied in w’s list, then pri(w, m1) = pri(w,m2).
We will later break up some ties, dividing the men in a tie into two groups, and we will say, that w prefers
one group to the other. So there will be a case that w prefers m1 to m2, but she does not strictly prefer
m1 to m2, and in this situation we mean that pri(w, m1) = pri(w,m2), but m1 is in the preferred group
and m2 is not. If both of them are in the same group then we say m1 and m2 are alike for w.

We define pri(m,w) similarly. Of course, pri(m, w) is not related to pri(w, m). We represent these
priorities in the figures by writing pri(m,w) and pri(w,m) close to the corresponding endvertex of edge
mw. For a man m we will modify his list in either of two ways. Sometimes we delete a woman from the
list. Sometimes (at a given point, when his list is empty) we will restore the original list of m. We mean
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by “favorite woman” of m, the most preferred woman still on m’s list; if there are more alike women on
the top of the list, we choose one of them arbitrarily.

Remark. The author apologizes that the text of this paper is not politically correct. Just like the one
of Gale and Shapley [3], or the phrases used in many other papers on this topic. It would indeed be
possible to change the terminology, but we find this approach pretty well-mannered.

Let M be a matching. If m is matched in M , or in other words, if m is engaged then we denote m’s
fiancée by M(m). Similarly we use M(w) for the fiancé of an engaged woman w.

Definition 1 A pair mw is blocking M , if mw ∈ E \ M (they are an acceptable pair and they are not
matched) and

• w is either not engaged or w strictly prefers m to her fiancé, and
• m is either not engaged or m strictly prefers w to his fiancée.

Definition 2 A matching is called stable if there is no blocking pair.

While there may be objections to the connotations of these words, for simplicity we use the term “lad”
to represent a man who still has some women on his list, whom he did not propose to so far, and we use
the term “old bachelor” to represent a man who was rejected by all acceptable women and decides to
become inactive forever. Moreover we use the term “maiden” to represent a woman who did not get any
proposal so far. Later we need to use some other similar terms, defined there.

It is well-known that every instance of the stable marriage problem has a stable matching, and it can
be found in linear time. The celebrated algorithm of Gale and Shapley [3] is the following. (We give
a precise definition of the algorithms, however in a rather informal format. We think that none the less
this style can be somewhat annoying for people studying algorithms regularly, for the other part of the
readers it helps understanding the essence of these simple algorithms).

A man can be either a lad or an old bachelor. A lad can be either active or engaged. A woman can
be either maiden or engaged. At the beginning every man is an active lad and every woman is a maiden.

Algorithm GS

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w rejects him, m deletes w from his list.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is
a maiden. She also accepts this proposal, if she prefers m to her current fiancé. Otherwise she
rejects m.
If w accepted m, then she rejects her previous fiancé, if there was one (breaks off her
engagement), and becomes engaged to m.
If a man m was engaged to a woman w, and later w rejects him, then m becomes active again,
and deletes w from his list.
If the list of m becomes empty, he will turn into an old bachelor and will remain inactive forever.

After Algorithm GS finishes, the engaged pairs make up the output matching M (we may imagine
that this time all the engaged pairs get married).
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Theorem 1 (Gale and Shapley [3]) Algorithm GS always ends in a stable matching M . This algorithm
runs in O(|E|) time.

An interesting problem, motivated by applications, is to find a stable matching of maximum size.
As the applications of this problem are important (see e.g., in [5,6], where detailed lists of known
and possible applications are given that motivate investigating refined approximations), researchers
started to develop good approximation algorithms in the past six years. We say that an algorithm is
r-approximating, if it gives a stable matching M with size |M | ≥ (1/r) · |Mopt|, where Mopt is a stable
matching of maximum size. Observe that after a run of GS no unmarried man and unmarried woman can
form an acceptable pair. Consequently Algorithm GS gives a 2-approximation, and for complete bipartite
graphs (every woman-man pair is acceptable), it gives the optimum. The first non-trivial approximation
algorithm was given by Halldórsson et al. [7], where they gave a 13/7-approximation if all ties are
of length two. The breakthrough was achieved by Iwama, Miyazaki and Yamauchi [8], who gave a
15/8-approximation (for any length of ties). This was later improved by Irving and Manlove [5] to a
5/3-approximation for the special case, where ties are allowed on one side only, and moreover only
at the ends of the lists. Their algorithm also applies to the Hospitals/Residents problem (see below)
if residents have strictly ordered lists. If, moreover, ties are of size 2, Halldórsson et al. [7] gave an
8/5-approximation and in [9] they described a randomized algorithm for this special case with expected
ratio of 10/7.

This problem is known to be NP-hard for even very restricted cases [10,11]. Moreover, it is
APX-hard [12] and, supposing P ̸= NP, it cannot be approximated within a factor of strictly less than
21/19, even if ties occur in the preference lists on one side only, furthermore, if every list is either totally
ordered or consists of a single tied pair [7]. Moreover, refining the ideas of [7], Yanagisawa [13] proved
that an approximation within a factor of 4/3− ε implies (2− ε′)-approximation of vertex cover, and
this result also applies to the case when each tie has length two. If, moreover, ties occur only in the
preference lists on one side only, it was proved in [7] that an approximation within a factor of 5/4−ε

has the same implication. We note that interestingly the minimization version (where we are looking for
a stable matching of minimum size) is also APX-hard [12].

We proposed a simple linear time 5/3-approximating algorithm (called GSA2) for the general case of
this problem, first presented at the first MATCH-UP workshop (see in [4,14,15]), and at the same time,
an even simpler 3/2-approximation (called GSA1) was given for the special case where ties are allowed
on one side only. For this algorithm, the proof was also very short, see Section 2. This is also valid for
the practically important ”Hospitals/Residents” problem, where the lists of the residents are strict, see
Section 5.

During the talks given at the first MATCH-UP workshop in Reykjavı́k and at ESA in Karlsruhe, we
posed several questions, conjectures and open problems. Many of them were answered in the meanwhile.

The conjecture stating that the performance ratio proved for GSA2 is sharp proved to be true by
Yanagisawa [16], who gave a simple example where GSA2 really gives a matching of size exactly
3
5
· |Mopt|.
Irving and Manlove [17] implemented a basic version of our algorithm for the one-sided-ties

Hospitals/Residents problem and gave a detailed comparison with their best heuristic (which is not
a local algorithm, and it needs some max-flow computation on an auxiliary graph). They tested the
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algorithms carefully with real-life and artificial data. They concluded that for the most cases their best
heuristic executed the best, but, on the average, our algorithm also gave a stable assignment of size at
least 99.41% of their best one. We do not know of too many other examples, where an algorithm with a
guaranteed approximation ratio is so close in practice to the best known heuristic.

For the one-sided-ties case, Iwama, Miyazaki, and Yanagisawa [18] gave a 25/17 ≈
1.47-approximation. They solved the relaxed version of an appropriate ILP formulation, and used the
fractional optimum to guide the tie-breaking process. Besides this, their algorithm is similar to GSA1,
but the analysis is much deeper. Of course, as they have to solve an LP, it gives non-linear running
time, and needs global information, so does not yield a local algorithm. However we consider this result
important, because they broke the 3/2-approximation factor barrier.

We had a conjecture given forth in Reykjavı́k [4], stating that a simple modification and repetition of
GSA2 gives 3/2-approximation for the general problem. It was (partially) answered by McDermid [1],
who gave the first 3/2-approximation for the general case. He used GSA1 (and not GSA2), but not with
simple repetitions, at some points he stopped the main algorithm, constructed an auxiliary graph, and
solved a maximum matching problem on it. In short, he used novel and rather complicated techniques,
and so his algorithm needs O(n

√
n|E|) running time (where n = |U | + |W |), and his algorithm also

needs global information, so it cannot be converted to a local algorithm.
Recently, Paluch, [2] gave a new 3/2-approximation algorithm for the general case, claiming a linear

running time. Her algorithm was still quite complicated, used many concepts, and the analysis was
also lengthy. It was not shown that her algorithm is local, but it can be converted to a linear time local
algorithm with some more efforts, like what was done in Section 4. (Parallel to this work, she also made
significant simplifications, and after releasing the technical report version [19] of our algorithm, she
made some further changes and improvements, see the newest version of Paluch’s algorithm in [20].)

In Section 2 we reformulate Algorithm GSA1 of [4,14,15], then in Section 3 we give a simple linear
time 3/2-approximation, with a simple proof of correctness. We lean on two important ideas of Paluch.
Our new algorithm is a slightly modified version of GSA1 given in the next section, thus it is also
very reminiscent of the traditional Algorithm GS. In Section 4 we detail how our new algorithm can be
implemented to run in linear time, both for the global and the local version. Finally, in Section 5 we
reformulate this algorithm for the Hospitals/Residents problem.

2. Men Have Strictly Ordered Lists

In this section we suppose that the lists of men are strictly ordered. From now on a man can be a
lad, a bachelor or an old bachelor, where we use the term ”bachelor” for a man who was rejected by all
acceptable women once, but in this setup he remains active and starts again to propose every woman on
his recovered list. If there are two men, m1 and m2 with the same priority on a woman w’s list, and m1

is a lad but m2 is a bachelor, then w prefers bachelor m2 to lad m1. In the description of the algorithm,
differences from Algorithm GS are set in boldface.



Algorithms 2013, 6 476

Algorithm GSA1

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w rejects him, m deletes w from his list.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is
a maiden. She also accepts this new proposal, if she prefers m to her current fiancé. Otherwise
she rejects m.
If w accepted m, then she rejects her previous fiancé, if there was one (breaks off her
engagement), and becomes engaged to m.
If m was engaged to a woman w and later w rejects him, then m becomes active again, and
deletes w from his list.
If the list of m becomes empty for the first time, he turns into a bachelor, his original list is
recovered, and he reactivates himself. If the list of m becomes empty for the second time,
he will turn into an old bachelor and will remain inactive forever.

This simple algorithm runs in O(|E|) time, as there are at most 2|E| proposals altogether (however
see Section 4 for the details). It is easy to see that Algorithm GSA1 gives a stable matching M .

Theorem 2 (2008) If men have strictly ordered preference lists, M is the output of Algorithm GSA1 and
Mopt is a maximum size stable matching then |Mopt| ≤ 3

2
· |M |.

Proof. Take the union of M and Mopt. We consider common edges as a two-cycle. Each component
of M ∪ Mopt is either an alternating cycle (of even length) or an alternating path. An alternating path
component is called augmenting path if both end-edges are in Mopt. An augmenting path is called short,
if it consists of 3 edges (see Figure 1). It is enough to prove that in each component there are at most
3/2 times as many Mopt-edges as M -edges. This is clearly true for each component except for a short
augmenting path.

Figure 1. A short augmenting path.
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We claim that a short augmenting path cannot exist. Suppose that M(m) = w, Mopt(m) = w′ ̸= w,
Mopt(w) = m′ ̸= m and that m′ and w′ are single in M . Observe first that w′ is a maiden, thus she
never got a proposal during Algorithm GSA1. Consequently m is a lad, who prefers w to w′. As the
algorithm finished, m′ is an old bachelor, so he proposed to w also as a bachelor (see Figure 1), but w

preferred m to m′. Consequently w strictly prefers m to m′. However, in this case edge mw blocks
Mopt, a contradiction. 2
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3. The New Algorithm for General Stable Marriage

For the new algorithm we use the following terms, most of which are familiar to the reader. A man
can be either a lad, or a bachelor, or an old bachelor. A lad or a bachelor can be either active or
engaged. If women w1 and w2 have the same priority on m’s list, and w1 is maiden but w2 is engaged,
then m prefers maiden w1 to engaged w2. An engaged lad is uncertain, if his list contains a woman he
prefers to his actual fiancée (this can happen, if there were two maidens with the same highest priority on
m’s list, and m became engaged to one of them).

A woman can be either maiden or engaged. An engaged woman is flighty, if her fiancé is uncertain.
If there are two men, m1 and m2 with the same priority on a woman w’s list, and m1 is a lad, but m2 is
a bachelor, then w prefers bachelor m2 to lad m1.

At the beginning every man is a lad and every woman is a maiden. In the description of the algorithm,
differences from GSA1 are set in boldface.

New Algorithm

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w rejects him, m deletes w from his list.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is
a maiden or a flighty woman. She also accepts this proposal, if she prefers m to her current
fiancé. Otherwise she rejects m.
If w accepted m, then she rejects her previous fiancé, if there was one (breaks off her
engagement), and becomes engaged to m.
If m was engaged to a woman w and later w rejects him, then m becomes active again, and
deletes w from his list, except if m is uncertain, in this case m keeps w on the list.
If the list of m becomes empty for the first time, he turns into a bachelor, his original list is
recovered, and he reactivates himself. If the list of m becomes empty for the second time, he
will turn into an old bachelor and will remain inactive forever.

After the algorithm finishes, the engaged pairs get married and form matching M .

Lemma 1 When a woman receives the first proposal, she becomes engaged, and will never become a
maiden again. A woman can become flighty only after the first proposal she receives. After the second
proposal a woman can never be flighty. If a woman changes her fiancé, then she always prefers the new
fiancé to the previous one, except if she was flighty, when she may reject a preferred man, but in this case
she remains on the rejected man’s list.

Proof. The only statement that needs a proof is that after getting the second proposal a woman w cannot
be flighty. However starting with the second proposal she gets every proposal as an engaged woman,
so either she keeps her previous fiancé, consequently she is not flighty, or her new fiancé m cannot be
uncertain. (If there is a maiden w′ on the list of m with the same priority as w, then m would prefer
w′ to w, so he would propose to w′ first.) 2

Lemma 2 The matching M given by the new algorithm is stable.
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Proof. Suppose mw is a blocking pair. If w is maiden then she did not get any proposals, so m did
not reach her when he processed his list, consequently he is engaged to a preferred woman w′ (though
it can be the case that w′ is flighty and now m would prefer w to w′, but he does not strictly prefer her,
so pair mw cannot be blocking).

If m is not married then he is an old bachelor, consequently he proposed to w at least twice.
By the previous lemma the priority of the fiancé of woman w is monotonically increasing after the
second proposal she got. So the husband of w cannot be strictly less preferred than m.

Finally suppose both m and w are married, the wife of m is w′, and the husband of w is m′. As pair
mw is blocking, m strictly prefers w to w′, so m also proposed to w and she rejected him. If at the time
of this rejection w was not flighty, then she got finally a husband not worse than m. If she was flighty
that time, then she remained on the list of m, so m proposed to her again before w′. In all cases we came
to a contradiction. 2

Lemma 3 There is no short augmenting path.

Proof. Suppose m′wmw′ is a short augmenting path (see Figure 1). The algorithm finished, so m′ is an
old bachelor and w′ is a maiden, consequently m never proposed to her, so m is a lad and pri(m, w′) ≤
pri(m,w).

First we claim that pri(m,w′) < pri(m,w). If w and w′ have the same priority at m then when m

proposed to w, she was a maiden, so m′ did not propose to her before, and at this moment (after getting
the proposal from m) she became flighty. However surely w could not remain flighty till the end, as she
got some other proposals (e.g., at least two from m′), thus she rejected m at some point. At this point
m preferred w′ to w, so he proposed to w′ before proposing again to w, a contradiction.

Next we claim that pri(w, m′) < pri(w, m). First observe that w got at least three proposals (one
from m and two from m′), so by Lemma 1 she kept the best proposal (not counting the first one).
Consequently, the proposal from bachelor m′ is not better for her than the finally kept proposal from
lad m.

The two claims together contradict to the fact that Mopt is a stable matching. 2

These lemmas together with the next section give:

Theorem 3 The new algorithm always gives a stable matching in linear time for the general problem,
and is 3/2-approximating.

4. Implementation and Running Time

If the reader is not interested in implementation details and having truly linear time algorithms, it is
advised to skip this section.

The original Algorithm GS is thought to be a linear time local algorithm by its definition, but that
is not obvious at all, as when getting a proposal from a man m, a woman w must look up in some
dictionary, what is the value of pri(w,m). In order to implement Algorithm GS as a linear time local
algorithm, we first assume that the lists of men are sorted (this assumption can be weakened to requiring
that the priorities are natural numbers not exceeding the length of the list, because in this case a man
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can do bucket (or counting) sort in linear time), and moreover we have to make any one of following
assumptions.

• The system is “wired” along acceptable pairs, which means here that when a man m sends a
proposal to a woman w, she sees on which wire this call is coming in, and the priority pri(m, w)

is written on that wire. Or, equivalently, better fitting to our mobile phone centralized world, there
are no wires, but when an accessible man m calls woman w, then not only his phone number (his
index in U ) is shown, but also his position in the phone-book of w, such that his index in w’s array.

• Women can throw dice, and so they can use the perfect hashing approach of [21].

• Women has a black-box procedure, which on input m outputs in constant time pri(w, m).

• Men has some extra knowledge, for each acceptable woman w they know their own position in the
list of w, such as their index in w’s array.

Remark. Gusfield and Irving in [22] made a stronger assumption, the existence of ranking arrays.
For complete preference lists it is still equivalent to the above assumptions.

Here we may assume any of these assumptions, but we will concentrate (and use) the fourth one,
because that fits the best in our description of the algorithm. To make the new algorithm linear time and
local, we must define the communication between acceptable pairs, as well as the data structure needed
for the participants. In our local implementation of the new algorithm all men run the same algorithm,
as well as all women.

First we describe the algorithm of an arbitrary woman w. She stores 3 non-changing arrays, her own
status (maiden or engaged), and if she is engaged then she also stores the name, priority and status of
her fiancé. The first array Uw contains all the acceptable men in arbitrary order of priorities. The second
array PRw contains the corresponding priorities at w. The third array Iw stores the relative positions,
such that if w is in the ith position in the list of man Uw(j) then Iw(j) = i (this list is initialized at the
beginning with accepting messages from men).

Woman w gets proposals in the form (m, i, status(m)), where status(m) can be one of lad or bachelor,
and i is the index in w’s array Uw where she stores m. If w is maiden and gets a proposal from man m

then she changes her status to engaged, she stores (m, pri(w, m), status(m)), and she tells all the men in
her list about her new status (engaged), together with her index stored in Iw. If she later gets a proposal
from man m′ then she first asks his fiancé m, whether he is uncertain. Now she has all the information
needed to make a decision, she stores the name, priority and status of the new fiancé, and she sends the
message ”rejected” to the non-preferred man.

An algorithm of a man m is slightly more complicated due to continuous reordering needed in his
list, and the fact that he must always know whether he is uncertain. He stores 3 non-changing arrays
(see bellow), a changing Boolean array Bm, a dequeue (double-ended queue), two pointers, the number
Pm of preferred women (relative to his fiancée, such that the number of maidens who are within the same
tie with his fiancée), and his status (originally lad). The first array Wm contains all the acceptable women
in non-increasing order of priorities. The second array PRm contains the corresponding priorities at m.
The third array Im stores the relative positions, such that if m is in the ith position in the list of woman
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Wm(j) then Im(j) = i (by our assumption these are known at the beginning). He keeps Bm(j) =TRUE,
if Wm(j) is a maiden, and FALSE otherwise. This array is initialized to all-TRUE, and an item is changed
to FALSE, when he gets the corresponding message from a woman.

The first pointer fm points to the first woman of the current tie, and the second one nm points to the
first woman on m’s list, who has strictly lower priority than the woman pointed by fm. At the beginning,
for all acceptable women w = Wm(j), man m sends a message (m, i, j) to w, where i = Im(j)

(and woman w stores Iw(i) = j). At the beginning m is a lad, and he considers the first woman on
his list, fm points to her (such that fm = 1), and remember her priority p. He scans his list until finding
a woman with lower priority than p, and changes nm pointing to this woman (if he reaches the end of
the list then he defines nm = ∞). While scanning he checks every woman w whether she is a maiden.
If yes then he puts w in front of his dequeue, else (if w is engaged) he puts w at the end of his dequeue.
Meanwhile he counts the maidens in the dequeue and stores this number in Pm. Whenever he gets a
message “engaged” and has to change the corresponding value of Bm, he also checks whether the sender
is in the dequeue (such that for her index j we have fm ≤ j < nm), and if yes, then he decreases Pm.
Whenever he is asked whether he is uncertain, he returns yes, if and only if Pm > 0. Then he takes the
first element out of the dequeue, and proposes to this woman.

Whenever man m gets a rejection from w, he first checks whether w is flighty (this is equivalent to
check whether Pm > 0), if yes, he puts back w at the end of the dequeue. Then he takes the first element
out of the dequeue and checks whether she is a maiden. If this is not the case then he puts back this
woman at the end of his dequeue, and takes the next one from the front. Otherwise he proposes to this
woman.

Otherwise, if Pm = 0 then he checks whether the dequeue is empty. If not then he simply takes the
first woman from the dequeue and proposes to her.

When the dequeue is empty, he rather proceeds as follows. He first changes fm to nm. If fm = ∞ at
the first time then he changes his status to bachelor, and reset fm to 1. If fm = ∞ at the second time then
he changes his status to old bachelor, and finishes. Starting from this new fm he makes a new dequeue
the same way as above (calculating Pm meanwhile), and adjust his pointer nm. Then he processes the
new dequeue as before.

¿From this local algorithm the linear time global algorithm also follows easily, only we have to get
rid of our assumptions. This can be done using the famous linear time radix sort, as follows. First we
sort triplets of form (pri(m,w),m,w) for all acceptable pairs mw (this set of triplets can be collected
from men). After sorting we scan this list, and build up the sorted arrays Wm of men easily.

Next every woman w subscribe each quadruplet (m, w, 0, i) to the central authority, where i is the
index of man m in w’s list. And every man m subscribe each quadruplet (m,w, j, 0) to the central
authority, where j is the index of woman w in m’s list. The central authority sorts these quadruplets and
fuses neighboring pairs getting a list of quadruplets (m,w, j, i), and stores Im(j) = i.

After these detailed descriptions it is obvious that both the local and the global algorithms run in
linear time.

5. Generalizations to the Hospitals/Residents Problem
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It is well-known that algorithms for the one-to-one model can be easily converted to corresponding
algorithms (for example, by cloning) for the many-to-one problems (see e.g., [15]). We detail the
many-to-one case, because of the great importance and many practical usage of this model.

In the Hospitals/Residents problem, (also called Colleges/Students problem, and by many other
names) the roles of women are played by hospitals and the roles of men are played by residents.
Moreover, each hospital w has a positive integer capacity c(w), the number of free positions. Instead
of matchings, we consider assignments, that is a subgraph F of G, such that all residents have degree
at most one in F , and each hospital w has degree at most c(w) in F . For a resident m who is assigned,
F (m) denotes the corresponding hospital. For a hospital w, F (w) denotes the set of residents assigned
to it. We say that hospital w is full if |F (w)| = c(w), and otherwise under-subscribed. Here a pair mw

is blocking, if mw ∈ E \ F (they are an acceptable pair and they are not assigned to each other) and

• m is either unassigned or pri(m,w) > pri(m,F (m)), and
• w is either under-subscribed or pri(w,m) > pri(w, m′) for at least one resident m′ ∈ F (w).

An assignment is stable if there is no blocking pair.
First, we consider the case when ties can only reside on hospitals lists. In [4,14,15] it was shown

that if the preference lists of residents are strictly ordered, then an easy modification of GSA1 (called
HRGSA1) gives a 3/2-approximation in linear time. If we consider the resident-proposal version of
the new algorithm, we can observe that as there are no ties on the resident’s side, no uncertain resident
exists, consequently the new algorithm runs equivalently to HRGSA1. This algorithm is the same as
that of Gale and Shapley with only one modification: if a resident is rejected by all hospitals for the first
time, he/she gets an extra score of a half point (raising the priority by one half at every hospital; the same
effect as when a man becomes a bachelor), the list is recovered, reactivates himself/herself and starts
making applications from the beginning of his/her list.

However, the new algorithm makes it possible to run the hospital-proposal version as well. It will
also give now a 3/2 approximation, and expectedly it results in a stable assignment that is better for
the hospitals than the result of the resident-proposal scheme. This statement should be tested by some
empirical future work.

¿From now on we change the roles: hospitals play the role of men (as they will propose), and residents
play the role of women. For avoiding any confusion, from this point hospitals will be denoted by m and
residents will be denoted by w. We detail the generalization of this hospital-proposal algorithm below,
where we also allow ties on the residents lists. This also may have several applications (for example,
when residents have no preferences, only do have a list of acceptable hospitals).

At the beginning all hospitals have the sorted list of its applicants. A hospital m prefers resident w

to resident w′, if w has strictly higher priority, or they have the same priority (pri(m,w) = pri(m,w′))
and w′ has got some offer, but w has not. A hospital m is active, if it is under-subscribed and its list
is non-empty.

An active hospital makes an offer to the favorite resident on its list. A hospital m is uncertain about
the offer for w, if it is full, it is not an advantaged hospital, and moreover there is a resident w′ still on
its list, whom it prefers to w.

When the list of a hospital is empty the first time, it becomes to an advantaged hospital, and starts
proposing from its recovered list. When its list gets empty the second time, it remains inactive.
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A resident w is either unoffered or offered, if offered, he/she is called precarious, if his/her
current offer is uncertain. A resident w prefers hospital m to m′ if either pri(w, m) > pri(w, m′),
or pri(w,m) = pri(w,m′) and m is an advantaged hospital, while m′ is not. A resident always accepts
a new offer, if either he/she is unoffered, or he/she is precarious. Otherwise he/she accepts, if the new
offer is better for him/her than the previous one.

Hospital-proposing Algorithm

While there exists an active hospital m, it offers to its favorite resident w. If w immediately
rejects this offer, m deletes w from its list.
When a resident w gets a new offer from hospital m, he/she always accepts this offer, if he/she
is unoffered or precarious. He/she also accepts this offer, if he/she prefers m to the hospital
he/she is actually assigned. Otherwise he/she rejects m.
If resident w accepted m, then he/she rejects his/her previous offer, if there was one.
If hospital m had offered to resident w and later w rejects it, then m deletes w from its list,
except if w was precarious, in this case m keeps w on the list.
If the list of hospital m becomes empty the first time, it becomes to an advantaged hospital, and
starts proposing from its recovered list (keeping its actually assigned residents). However, it
reactivates itself only if it is under-subscribed. When its list gets empty the second time then it
remains inactive forever.

After the algorithm finishes, the assignment is made along the non-rejected offers.
Similarly to Section 4, this algorithm can also be implemented as a linear time local or global

algorithm. First observe that our assumption is practically satisfied in this model, as hospitals usually
get the extra information for each of theirs applicant about their place in his/her list. Residents may use
the data structures of women without any modification, and hospital m will use data structures of men,
with some additional values. It also stores pm, the priority of the last assigned resident, and value ϕm of
free places (capacity minus actually assigned residents, this quantity determines whether it is active or
not) is also stored. This value ϕm is easy to maintain: originally it is m’s capacity; if m makes a new
offer, which is accepted, then it decreases ϕm, and if it gets a rejection from previously offered resident
then it increases ϕm. An active hospital makes an offer as men do (for the first element of its dequeue).
The main point is to be able to answer queries from a resident w about uncertainty of an offer made to
him/her. Hospital m should answer yes, if the following three conditions hold: ϕm = 0 and Pm > 0 and
pri(m,w) = pm.

A strange situation can happen, if hospital m gets advantaged while resident w is assigned to it.
After recovering its list, it can make a new proposal to the same resident w as an advantaged hospital.
Remember that residents store the status of the hospital which made the current offer. In the situation
described above he/she formally accept first the new offer (as it comes from a hospital with the same
priority, but which is advantaged), and then w should reject the first offer. This needs only one extra bit
of communication.

Unfortunately these algorithms do not give better approximation ratio than HRGSA1. We think that
no linear time local algorithm can give better approximation ratio than 3/2.
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7. Halldórsson, M.M.; Iwama, K.; Miyazaki, S.; Yanagisawa, H. Improved approximation results for
the stable marriage problem. ACM Trans. Algorithms 2007, 3, Article 30.

8. Iwama, K.; Miyazaki, S.; Yamauchi, N. A 1.875-approximation Algorithm for the Stable
Marriage Problem. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, New Orleans, LA, USA, 7–9 January 2007; pp. 288–297.
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12. Halldórsson, M.M.; Irving, R.W.; Iwama, K.; Manlove, D.F.; Miyazaki, S.; Morita, Y.; Scott, S.
Approximability results for stable marriage problems with ties Theor. Comput. Sci. 2003, 306,
431–447.



Algorithms 2013, 6 484

13. Yanagisawa, H. Approximation Algorithms for Stable Marriage Problems. Ph.D. Thesis,
Kyoto University, Kyoto, Japan, 2007.

14. Király, Z. Better and Simpler Approximation Algorithms for the Stable Marriage Problem. In
Proceedings of the 16th Annual European Symposium, ESA 2008, Karlsruhe, Germany, 15–17
September 2008; LNCS 5193, pp. 623–634.
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