
Algorithms 2013, 6, 485-493; doi:10.3390/a6030485
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Simple Algorithm for Solving for the Generalized Longest
Common Subsequence (LCS) Problem with a Substring
Exclusion Constraint
Daxin Zhu 1 and Xiaodong Wang 1,2,*

1 Faculty of Mathematics & Computer Science, Quanzhou Normal University, Quanzhou 362000,
China; E-Mail: dex@qztc.edu.cn

2 Faculty of Mathematics & Computer Science, Fuzhou University, Fuzhou 350108, China

* Author to whom correspondence should be addressed; E-Mail: wangxiaodong@qztc.edu.cn;
Tel.: +86-595-22916878; Fax: +86-595-22796091.

Received: 14 June 2013; in revised form: 15 July 2013 / Accepted: 24 July 2013 /
Published: 15 August 2013

Abstract: This paper studies the string-excluding (STR-EC)-constrained longest common
subsequence (LCS) problem, a generalized LCS problem. For the two input sequences, X
and Y , of lengths n andm and a constraint string, P , of length r, the goal is to find the longest
common subsequence, Z, of X and Y that excludes P as a substring. The problem and its
solution were first proposed by Chen and Chao, but we found that their algorithm cannot
solve the problem correctly. A new dynamic programming solution for the STR-EC-LCS
problem is then presented in this paper, and the correctness of the new algorithm is proven.
The time complexity of the new algorithm is O(nmr).

Keywords: constrained LCS; string-excluding; dynamic programming

1. Introduction

In this paper, we consider a generalized longest common subsequence problem. The longest common
subsequence (LCS) problem is a well-known measurement for computing the similarity of two strings.
This problem can be widely applied in diverse areas, such as file comparison, pattern matching and
computational biology [1].

Algorithms 2013, 6 486

A sequence is an ordered list of characters over an alphabet,
∑

. A subsequence of a sequence, X ,
is obtained by deleting zero or more characters (not necessarily contiguous) from X . A substring of a
sequence, X , is a subsequence of successive characters within X .

For a given sequence, X = x1x2 · · ·xn, of length n, the ith character of X is denoted, xi ∈
∑

, for
any i = 1, · · · , n. A substring of X from position i to j can be denoted as X[i : j] = xixi+1 · · ·xj .
A substring, X[i : j], is called a prefix of X if i = 1 and a suffix of X if j = n.

Given two sequences, X and Y , the LCS problem is finding a subsequence of X and Y whose length
is the longest among all common subsequences of the two given sequences.

For some biological applications, some constraints must be applied to the LCS problem. These types
of variants of the LCS problem are called constrained LCS (CLCS) problems [2].

A recent variant of the LCS problem, which was first addressed in [2], has received considerable
attention. The most cited algorithms solve the CLCS problem based on dynamic programming
algorithms. Some improved algorithms have also been proposed in [3,4]. The LCS and CLCS
problems on indeterminate strings were also discussed in [4]. A bit-parallel algorithm for solving the
CLCS problem was proposed in [3]. The problem was extended to have weighted constraints, a more
generalized problem, in [5]. A variant of the CLCS problem with multiple constraints, the restricted LCS
problem, which excludes the given constraint as a subsequence of the answer, was proposed in [6]. This
restricted LCS problem becomes non-deterministic polynomial-time hard (NP-hard) when the number
of constraints is not fixed [6].

Recently, Chen and Chao [7] proposed a more generalized form of the CLCS problem, the
generalized-constrained-LCS (GC-LCS) problem. For the two input sequences, X and Y , of lengths
n and m, respectively, and a constraint string, P , of length r, the GC-LCS problem is a set of four
problems that find the LCS of X and Y that includes/excludes P as a subsequence/substring. The four
generalized constrained LCSs are summarized in Table 1 [7].

Table 1. The generalized-constrained-longest common subsequence (GC-LCS) problems.
STR-EC, string-excluding.

Problem Input Output

SEQ-IC-LCS X , Y , and P The LCS of X and Y that includes P as a subsequence
STR-IC-LCS X , Y , and P The LCS of X and Y that includes P as a substring
SEQ-EC-LCS X , Y , and P The LCS of X and Y that includes P as a subsequence
STR-EC-LCS X , Y , and P The LCS of X and Y that includes P as a substring

We will discuss the STR-EC-LCS problem in this paper. We found that a previously proposed
dynamic programming algorithm for the STR-EC-LCS problem [7] cannot correctly solve the problem.
Let L(i, j, k) denote the length of an LCS of X[1 : i] and Y [1 : j], excluding P [1 : k] as a substring.
Chen and Chao gave a recursive Formula (1) for computing L(i, j, k) as follows.

L(i, j, k) =

L(i− 1, j − 1, k) if k = 1 and xi = yj = pk,

1 + max{L(i− 1, j − 1, k − 1), L(i− 1, j − 1, k)} if k ≥ 2 and xi = yj = pk,

1 + L(i− 1, j − 1, k) if xi = yj and (k > 0 and xi 6= pk),
max {L(i− 1, j, k), L(i, j − 1, k)} if xi 6= yj

(1)

Algorithms 2013, 6 487

The boundary conditions of this recursive formula are L(i, 0, k) = L(0, j, k) = 0 for any 0 ≤ i ≤ n,

0 ≤ j ≤ m and 0 ≤ k ≤ r.
The algorithm presented in [7] was stated without strict proof. Thus, the correctness of the proposed

algorithm cannot be guaranteed. For example, if X = abbb, Y = aab and P = ab, the values of
L(i, j, k), 1 ≤ i ≤ 4, 1 ≤ j ≤ 3, 0 ≤ k ≤ 2 computed by recursive Formula (1) are listed in Table 2.

Table 2. L(i, j, k) computed by recursive Formula (1).

k = 0 k = 1 k = 2

i = 1 1 1 1 0 0 0 1 1 1
i = 2 1 1 2 0 0 1 1 1 2
i = 3 1 1 2 0 0 1 1 1 2
i = 4 1 1 2 0 0 1 1 1 2

From Table 2, we know that the final answer is L(4, 3, 2) = 2, which is computed by the formula,
L(4, 3, 2) = 1 + L(3, 2, 2), since, in this case, k ≥ 2 and a4 = b3 = p2 =′ b′. However, this is a wrong
answer, since the correct answer should be one.

A new dynamic solution for the STR-EC-LCS problem is presented in this paper, and the correctness
of the new algorithm is proven. The time complexity of the new algorithm is O(nmr).

The organization of the paper is as follows.
In the following three sections, we describe our dynamic programming algorithm for the

STR-EC-LCS problem.
In Section 2, we present a new dynamic programming solution for the STR-EC-LCS problem with

time complexity, O(nmr), from a novel perspective. In Section 3, we discuss the issues involved in
implementing the algorithm efficiently. Some concluding remarks are provided in Section 4.

2. A Simple Dynamic Programming Solution

For the two input sequences, X = x1x2 · · ·xn and Y = y1y2 · · · ym, of lengths n and m, respectively,
and a constraint string, P = p1p2 · · · pr, of length r, we want to find an LCS of X and Y that excludes
P as a substring.

In the description of our new algorithm, a function, σ, will be mentioned frequently. For any string, S,
and a fixed constraint string, P , the length of the longest suffix of S that is also a prefix of P is denoted
by the function, σ(S).

The function, σ, refers to both P and S. Because the string, S, is a variable and the constraint string,
P , is fixed, the notation, σ(S), will not cause confusion, even though it does not reflect its dependence
on P .

The symbol, ⊕, is also used to denote string concatenation.
For example, if P = aaba and S = aabaaab, then substring aab is the longest suffix of S that is also

a prefix of P ; therefore, σ(S) = 3.
It is readily seen that S ⊕ P = aabaaabaaba.

Algorithms 2013, 6 488

Let Z(i, j, k) denote the set of all LCSs of X[i : n] and Y [j : m] that exclude P as a substring of
P [1 : k] ⊕ z for each z ∈ Z(i, j, k), 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r. P [1 : k] is an empty string if
k = 0. The length of an LCS in Z(i, j, k) is denoted f(i, j, k).

If we can compute f(i, j, k) for any 1 ≤ i ≤ n, 1 ≤ j ≤ m and 0 ≤ k < r efficiently, then the length
of an LCS of X and Y that excludes P as a substring must be f(1, 1, 0).

We can obtain a recursive formula for computing f(i, j, k) with the following theorem.

Theorem 1 For the two input sequences, X = x1x2 · · ·xn and Y = y1y2 · · · ym, of lengths n and m,
respectively, and a constraint string, P = p1p2 · · · pr, of length r, let Z(i, j, k) denote the set of all LCSs
of X[i : n] and Y [j : m] that exclude P as a substring of P [1 : k]⊕ z for each z ∈ Z(i, j, k).

The length of an LCS in Z(i, j, k) is denoted, f(i, j, k).
For any 1 ≤ i ≤ n, 1 ≤ j ≤ m and 0 ≤ k < r, f(i, j, k) can be computed with the following

recursive Formula (2):

f(i, j, k) =

{
max {f(i+ 1, j + 1, k), 1 + f(i+ 1, j + 1, q)} if xi = yj and q < r

max {f(i+ 1, j, k), f(i, j + 1, k)} otherwise
(2)

where q = σ(P [1 : k] ⊕ xi), and the boundary conditions are f(i,m + 1, k) = f(n + 1, j, k) = 0 for
any 1 ≤ i ≤ n, 1 ≤ j ≤ m and 0 ≤ k ≤ r.

Proof. For any 1 ≤ i ≤ n, 1 ≤ j ≤ m and 0 ≤ k < r, suppose f(i, j, k) = t and z = z1, · · · ,
zt ∈ Z(i, j, k).

First, we note that for each pair, (i′, j′), 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ m, such that i′ ≥ i and j′ ≥ j, we have
f(i′, j′, k) ≤ f(i, j, k), because a common subsequence, z, of X[i′ : n] and Y [j′ : m] that excludes P as
a substring of P [1 : k]⊕ z is also a common subsequence of X[i : n] and Y [j : m] that excludes P as a
substring of P [1 : k]⊕ z.

(1) When xi 6= yj , we have xi 6= z1 or yj 6= z1.

(1.1) If xi 6= z1, then z = z1, · · · , zt is a common subsequence of X[i + 1 : n] and Y [j : m] that
excludes P as a substring of P [1 : k]⊕z; thus, f(i+1, j, k) ≥ t. In contrast, f(i+1, j, k) ≤ f(i, j, k) = t.
Therefore, in this case, we have f(i, j, k) = f(i+ 1, j, k).

(1.2) If yj 6= z1, then in a similar manner, we can prove that f(i, j, k) = f(i, j + 1, k) in this case.
Combining the two subcases, we conclude that when xi 6= yj , we have

f(i, j, k) = max {f(i+ 1, j, k), f(i, j + 1, k)}

(2) When xi = yj and q < r, there are also two subcases to be distinguished.

(2.1) If xi = yj 6= z1, then z = z1, · · · , zt is also a common subsequence of X[i + 1 : n] and
Y [j + 1 : m] that excludes P as a substring of P [1 : k]⊕ z and, thus, f(i+ 1, j + 1, k) ≥ t. In contrast,
f(i+ 1, j + 1, k) ≤ f(i, j, k) = t. Therefore, we have f(i, j, k) = f(i+ 1, j + 1, k) in this case.

(2.2) If xi = yj = z1, then f(i, j, k) = t > 0 and z = z1, · · · , zt is an LCS of X[i : n] and Y [j : m]

that excludes P as a substring of P [1 : k] ⊕ z, and thus, z′ = z2, · · · , zt is a common subsequence of
X[i+ 1 : n] and Y [j + 1 : m] that excludes P as a substring of P [1 : k]⊕ xi ⊕ z′.

Algorithms 2013, 6 489

If q = σ(P [1 : k] ⊕ xi), then P [1 : q] is the longest suffix of P [1 : k] ⊕ xi that is also a prefix of
P . It follows that P [1 : q] ⊕ z′ is a suffix of P [1 : k] ⊕ xi ⊕ z′. Therefore, a sequence that excludes P
as a substring of P [1 : k] ⊕ xi ⊕ z′ is also a sequence that excludes P as a substring of P [1 : q] ⊕ z′.
It follows from the fact that z′ = z2, · · · , zt is a common subsequence of X[i + 1 : n] and Y [j + 1 : m]

that excludes P as a substring of P [1 : k]⊕xi⊕ z′ that z′ = z2, · · · , zt is also a common subsequence of
X[i+ 1 : n] and Y [j + 1 : m] that excludes P as a substring of P [1 : q]⊕ z′. In other words:

f(i+ 1, j + 1, q) ≥ t− 1 = f(i, j, k)− 1 (3)

In contrast, if P [1 : q] is the longest suffix of P [1 : k] ⊕ xi, f(i + 1, j + 1, q) = s and v = v1, · · · ,
vs ∈ Z(i+ 1, j + 1, q), then v is an LCS of X[i+ 1 : n] and Y [j + 1 : m] that excludes P as a substring
of P [1 : q] ⊕ v. In this case, v′ = xi ⊕ v is a common subsequence of X[i : n] and Y [j : m] that
excludes P as a substring of P [1 : k]⊕ xi⊕ v′, because P [1 : q] is the longest suffix of P [1 : k]⊕ xi and
q < r. Therefore:

f(i, j, k) ≥ s+ 1 = f(i+ 1, j + 1, q) + 1 (4)

Combining (3) and (4), we have:

f(i, j, k) = 1 + f(i+ 1, j + 1, q) (5)

Combining the two subcases, where xi = yj and q < r, we conclude that the recursive Formula (2) is
correct for this case.

(3) When xi = yj and q = r, we must have xi = yj 6= z1; otherwise, P [1 : k] ⊕ z will include the
string, P [1 : k]⊕ xi = P . Similar to Subcase (2.1), we can conclude that in this case,

f(i, j, k) = f(i+ 1, j + 1, k) = max{f(i+ 1, j, k), f(i, j + 1, k)}

The proof is complete. �

3. Implementation of the Algorithm

According to Theorem 1, our new algorithm for computing f(i, j, k) is a standard dynamic
programming algorithm. With the recursive Formula (2), the new dynamic programming algorithm
for computing f(i, j, k) can be implemented as the following Algorithm 1.

To implement our new algorithm efficiently, it is important to compute σ(P [1 : k] ⊕ xi) for each
0 ≤ k < r and xi, where 1 ≤ i ≤ n efficiently in line 8.

It is clear that σ(P [1 : k] ⊕ xi) = k + 1 when xi = pk+1. It will be more complex to compute
σ(P [1 : k] ⊕ xi) when xi 6= pk+1. In this case, the length of the matched prefix of P must be
shortened to the largest t < k, such that pk−t+1 · · · pk = p1 · · · pt and xi = pt+1. Therefore, in this case,
σ(P [1 : k]⊕ xi) = t+ 1.

This computation is very similar to the computation of the prefix function in the
Knuth-CMorris-CPratt string searching algorithm (KMP algorithm) for solving the string matching
problem [8].

Algorithms 2013, 6 490

Algorithm 1 STR-EC-LCS.
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths n and m, respectively, and a constraint string,
P = p1 · · · pr, of lengths r
Output: The length of an LCS of X and Y that excludes P as a substring

1: for all i, j, k , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k ≤ r do
2: f(i,m+ 1, k)← 0, f(n+ 1, j, k)← 0 {boundary condition}
3: end for
4: for i = n down to 1 do
5: for j = m down to 1 do
6: for k = 0 to r − 1 do
7: f(i, j, k)← max{f(i+ 1, j, k), f(i, j + 1, k)}
8: q ← σ(P [1 : k]⊕ xi)

9: if xi = yj q < r then
10: f(i, j, k)← max{f(i+ 1, j + 1, k), 1 + f(i+ 1, j + 1, q)}
11: end if
12: end for
13: end for
14: end for
15: return f(1, 1, 0)

For a given string, S = s1 · · · sn, the prefix function, kmp(i), denotes the length of the longest
prefix of s1 · · · si−1 that matches a suffix of s1 · · · si. For example, if S = ababaa, then kmp(1), · · · ,
kmp(6) = 0, 0, 1, 2, 3, 1.

For the constraint string, P = p1 · · · pr, of length r, its prefix function, kmp, can be pre-computed in
O(r) time by Algorithm 2.

Algorithm 2 Prefix Function.
Input: String P = p1 · · · pr

Output: The prefix function kmp of P

1: kmp(0)← −1

2: for i = 2 to r do
3: k ← 0

4: while k ≥ 0 pk+1 6= pi do
5: k ← kmp(k)

6: end while
7: k ← k + 1

8: kmp(i)← k

9: end for

With this pre-computed prefix function, kmp, the function, σ(P [1 : k] ⊕ ch), for each character,
ch ∈

∑
and 1 ≤ k ≤ r, can be described as Algorithm 3.

Algorithms 2013, 6 491

To accelerate the processing, we can pre-compute a table, λ(k, ch), of the function, σ(P [1 : k]⊕ ch),
for each character, ch ∈

∑
and 1 ≤ k ≤ r. It is clear that λ(k − 1, P [k]) = k for each 1 ≤ k ≤ r.

The other values of the table, λ, can be computed by using the prefix function, kmp, in the following
recursive Algorithm 4.

Algorithm 3 σ(k, ch).
Input: String P = p1 · · · pr, integer k and character ch
Output: σ(P [1 : k]⊕ ch)

1: while k ≥ 0 pk+1 6= ch do
2: k ← kmp(k)

3: end while
4: return k + 1

Algorithm 4 λ(k, ch).
Input: Integer k, character ch
Output: Value of λ(k, ch)

1: if k > 0 λ(k, ch) = 0 then
2: λ(k, ch)← λ(kmp(k), ch)

3: end if
4: return λ(k, ch)

The time cost of the above preprocessing algorithm is clearly O(r|Σ|). By using this pre-computed
table, λ, the value of function σ(P [1 : k] ⊕ ch) for each character, ch ∈

∑
and 1 ≤ k < r, can be

computed readily in O(1) time.
With this pre-computed table, λ, the loop body of the above Algorithm 1 requires only O(1) time,

because λ(k, xi) can be computed in O(1) time for each xi, 1 ≤ i ≤ n and any 0 ≤ k < r. Therefore,
our new algorithm for computing the length of an LCS ofX and Y that excludes P as a substring requires
O(nmr) time and O(r|Σ|) preprocessing time.

If we want to obtain the actual LCS of X and Y that excludes P as a substring, not only its length,
we can also present a simple recursive back-tracing algorithm for this purpose as Algorithm 5.

At the end of our new algorithm, a function call, back(1, 1, 0), will produce the resultant
LCS accordingly.

Because the cost of the computation of λ(k, xi) is O(1), the algorithm, back(i, j, k), will cost
O(n+m) in the worst case.

Finally, we summarize our results in the following theorem:

Theorem 2 Algorithm 1 solves the STR-EC-LCS problem correctly inO(nmr) time andO(nmr) space,
with preprocessing time O(r|Σ|).

Algorithms 2013, 6 492

Algorithm 5 back(i, j, k).
Comments: A recursive back tracing algorithm to construct the actual LCS.

1: if i > n j > m then
2: return
3: end if
4: if xi = yj f(i, j, k) = 1 + f(i+ 1, j + 1, λ(k, xi)) then
5: print xi

6: back(i+ 1, j + 1, λ(k, xi))

7: else if f(i+ 1, j, k) > f(i, j + 1, k) then
8: back(i+ 1, j, k)

9: else
10: back(i, j + 1, k)

11: end if

4. Conclusions

We have suggested a new dynamic programming solution for the STR-EC-LCS problem. The new
algorithm corrects a previously presented dynamic programming algorithm with the same time and
space complexities.

The STR-IC-LCS problem is another interesting GC-LCS, which is very similar to the
STR-EC-LCS problem.

The STR-IC-LCS problem, introduced in [7], is to find an LCS of two main sequences, in which a
constraining sequence of length r must be included as its substring. In [7], an O(nmr)-time algorithm
was presented to solve this problem. Almost immediately, the presented algorithm was improved to a
quadratic-time algorithm and to accept many main input sequences [9,10].

It is not clear whether the same improvement can be applied to our presented O(nmr)-time
algorithm for the STR-EC-LCS problem to achieve a quadratic-time algorithm. We will investigate
the problem further.

Acknowledgments

The authors acknowledge the financial support of the Natural Science Foundation of Fujian under
Grant No. 2013J0101 and the Haixi Project of Fujian under Grant No. A099.

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful
comments that improved this paper.

Conflict of Interest

The authors declare no conflict of interest.

Algorithms 2013, 6 493

References

1. Tang, C.Y.; Lu, C.L. Constrained multiple sequence alignment tool development and its application
to RNase family alignment. J. Bioinform. Comput. Biol. 2003, 1, 267–287.

2. Tsai, Y.T. The constrained longest common subsequence problem. Inf. Process. Lett. 2003, 88,
173–176.

3. Deorowicz, S.; Obstoj, J. Constrained longest common subsequence computing algorithms in
practice. Comput. Inf. 2010, 29, 427–445.

4. Iliopoulos, C.S.; Rahman, M.S. A new efficient algorithm for computing the longest common
subsequence. Theory Comput. Sci. 2009, 45, 355–371.

5. Peng, Y.H.; Yang, C.B.; Huang, K.S.; Tseng, K.T. An algorithm and applications to sequence
alignment with weighted constraints. Int. J. Found. Comput. Sci. 2010, 21, 51–59.

6. Gotthilf, Z.; Hermelin, D.; Landau, G.M.; Lewenstein, M. Restricted LCS. In Proceedings of
the 17th International Conference on String Processing and Information Retrieval, SPIRE’10,
Los Cabos, Mexico, 11–13 October 2010; pp. 250–257.

7. Chen, Y.C.; Chao, K.M. On the generalized constrained longest common subsequence problems.
J. Comb. Optim. 2011, 21, 383–392.

8. Knuth, D.E.; Morris, J.H., Jr.; Pratt, V. Fast pattern matching in strings. SIAM J. Comput. 1977, 6,
323–350.

9. Deorowicz, S. Quadratic-time algorithm for a string constrained LCS problem. Inf. Process. Lett.
2012, 112, 423–426.

10. Tseng, C.T.; Yang, C.B.; Ann, H.Y. Efficient algorithms for the longest common subsequence
problem with sequential substring constraints. J. Complex. 2013, 29, 44–52.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	A Simple Dynamic Programming Solution
	Implementation of the Algorithm
	Conclusions
	Acknowledgments
	Conflict of Interest

