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Abstract: We present a threaded parallel adaptation of a state-of-the-art maximum clique
algorithm for dense, computationally challenging graphs. We show that near-linear speedups
are achievable in practice and that superlinear speedups are common. We include results for
several previously unsolved benchmark problems.
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1. Introduction

A clique in a graph is a set of vertices, each of which is adjacent to every other vertex in this
subset. Deciding whether a graph contains a clique of a given size is one of the archetypal NP-complete
problems [1]. We consider the optimisation variant—known as the maximum clique problem—and focus
upon dense, computationally challenging graphs [2]. Within computing science, applications include
computer vision and pattern recognition; beyond, they extend to mathematics, biology, biochemistry,
electrical engineering and communications [3,4].

Multi-core machines are now the norm [5]. Our goal is to adapt a state-of-the-art maximum clique
algorithm to make use of the multi-core parallelism offered by today’s processors. We look either to
produce a speedup or to allow the tackling of larger problems within a reasonable amount of time [6].
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1.1. Preliminaries

We represent a graph as a pair of finite sets, (V,E). The elements of V are known as vertices. The
elements of E are edges, represented as pairs, (v1, v2) ∈ V × V . We call vertices v1 and v2 adjacent if
(v1, v2) ∈ E. Throughout, we assume that our graphs are undirected, that is, (v1, v2) ∈ E ⇒ (v2, v1) ∈
E, and contain no loops, that is, for all (v1, v2) ∈ E, we have v1 6= v2.

The neighbourhood of a vertex, v, in a graph, G, is the set of vertices adjacent to v, denoted N(G, v).
The degree of a vertex is the size of its neighbourhood.

A graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. The
subgraph induced by V ′ is the subgraph with vertices, V ′, and all edges between those vertices. A graph
G = (V,E) is called complete if all its vertices are adjacent—that is, for every distinct pair of vertices,
v1 and v2, we have (v1, v2) ∈ E. A complete subgraph is known as a clique. We may represent a clique
by the vertex set that induces it, and we define the size of the clique to be the size of this vertex set. A
clique is maximum if there is no clique with a larger size. We denote the size of a maximum clique in a
graph by ω.

A colouring of a graph is an assignment of colours to vertices, such that adjacent vertices are given
different colours. Computing a minimal colouring is NP-hard, but a greedy colouring may be obtained
in polynomial time.

2. Algorithms for the Maximum Clique Problem

The starting point for our work is a series of algorithms of Tomita [7–9]. These are sequential branch
and bound algorithms using a greedy graph colouring as a bound and as an ordering heuristic. San
Segundo observed that bit parallelism may be used to improve the performance of these algorithms
without altering the steps taken [10,11]. A recent computational study analyses these algorithms [12].
We begin by outlining one variant.

Let G = (V,E) be a graph and v ∈ V . We observe that any clique, C, in G either does not contain
v or contains only v and possibly vertices adjacent to v. This provides the basis for the branching part
of a branch and bound algorithm: incrementally construct the set, C (initially empty), by choosing a
candidate vertex, v, from the candidate set, P (initially, all of the vertices in V ) and, then, adding v to
C. Having chosen a vertex, the candidate set is updated, removing vertices that cannot participate in the
evolving clique. If the candidate set is empty, then C cannot grow further, so we backtrack; otherwise,
the search continues, selecting from P and adding to C.

We keep track of the largest clique found so far, which we call the incumbent, and denote Cmax. For
a bound, we make use of a greedy graph colouring: if we can colour the vertices in P using k colours,
we know we cannot extend the size of C by more than k. If this is not enough to unseat the incumbent,
we may abandon the search and backtrack.

Producing a new graph colouring at every step is relatively costly. Tomita’s key observation is that if
we are given a colouring of a graph, we know not only that we may colour the entire graph using a certain
number of colours, but also how to colour certain subgraphs. We demonstrate this in Figure 1 on the
following page. Colour classes have been filled greedily: we colour vertex 1 with the first colour, blue,
which prevents us from giving vertices 2, 3 or 4 the same colour. We then colour vertex 5 blue, which
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prevents us from colouring vertex 6 blue. We now start a second colour class (green), and reconsidering
uncoloured vertices, we colour vertex 2, then vertex 3. Finally, we colour vertex 4 and, then, vertex 6 in
the third colour, yellow. Thus the entire graph can be three-coloured, and we may colour the subgraph
induced by {1, 5, 2} or {1, 5, 2, 3} using only two colours, the subgraph induced by {1, 5} using only
one colour, and so on. Consequently, as well as a bound, this process gives us an ordering heuristic for
selecting a vertex from P : select vertices in non-increasing colour order.

Figure 1. A small graph, together with a constructive colouring.
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We describe this colouring method formally in Algorithm 1. This algorithm produces the same
ordering and bounds as the NUMBER-SORT procedure from Tomita’s MCQ [7], but in the manner of
San Segundo’s BBColour procedure in the bitset encoded BBMC [10]. The algorithm iteratively builds
colour classes (lines 9 to 15), where a colour class is an independent set (non-adjacent vertices) of
similarly coloured vertices. Line 15 updates the current set of uncoloured vertices, Q, to be the set of
vertices not adjacent to the most recently coloured vertex, v. The algorithm delivers as a result a pair
(colour, order), where the vertex, order[i], has been coloured colour[i] and colour[i− 1] ≤ colour[i].

Algorithm 1: Sequentially colour vertices and sort into non-decreasing colour order.

1 colourOrder :: (graph G, set P )→ (array of integer, array of integer)
2 begin
3 colour ← an array of integer
4 order ← an array of integer
5 P ′ ← P // set of uncoloured vertices

6 k ← 1 // current colour

7 while P ′ 6= ∅ do
8 Q← P ′ // vertices to consider for the current colour

9 while Q 6= ∅ do
10 v ← the first element of Q // get next vertex to colour

11 P ′ ← P ′ \ {v}
12 Q← Q \ {v}
13 append k to colour

14 append v to order

15 Q← Q ∩N(G, v) // remove adjacent vertices

16 k ← k + 1 // start a new colour

17 return (colour, order)
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We may now discuss Algorithm 2, our baseline sequential algorithm. Following Prosser [12], we
opt to order vertices in a non-increasing degree order at the top of the search, use a static ordering
throughout, use a bitset encoding and do not include a colour repair mechanism—thus, our algorithm is
a bitset encoded version of MCSa1 (although the techniques presented are not sensitive to this choice).

Algorithm 2: An exact algorithm to deliver a maximum clique.

1 maxClique :: (graph G)→ set of integer
2 begin
3 Cmax ← ∅
4 permute G, so that the vertices are in non-increasing degree order
5 expand(G, ∅,V(G), Cmax)

6 return Cmax (unpermuted)

7 expand :: (graph G, set C, set P , set Cmax)
8 begin
9 (colour, order)← colourOrder(G,P )

10 for i← |P | downto 1 do
11 if |C|+ colour[i] > |Cmax| then
12 v ← order[i]

13 C ← C ∪ {v}
14 P ′ ← P ∩ N(G, v)

15 if P ′ = ∅ then
16 if |C| > |Cmax| then Cmax ← C

17 else expand(G,C, P ′, Cmax)

18 C ← C \ {v}
19 P ← P \ {v}

Procedure maxClique permutes the graph, such that the vertices are in non-increasing degree order
(and this order is exploited by the sequential colouring), then calls the recursive search procedure,
expand, on the graph, G, with an initially empty growing clique and a full candidate set. Procedure
expand (lines 7 to 19) searches for cliques. First, the vertices in the candidate set, P , are coloured and
sorted (line 9). The procedure then iterates from highest to lowest coloured vertex (line 10). If the size
of the growing clique plus the colour number of the current vertex is sufficient to potentially unseat the
incumbent, the search progresses (line 11). The ith vertex v, ordered by colour, is selected and added to
the growing clique (lines 12 and 13). A new candidate set, P ′, is created, where P ′ is the set of vertices
in P adjacent to v. If C cannot grow any further (line 15) and is larger than the incumbent, it is saved
(line 16). Otherwise, the search proceeds via a recursive call, with the enlarged clique, C, and reduced
candidate set P ′ (line 17). Regardless, having explored the option of taking vertex v (lines 12 to 17), the
search then explores the option of not taking vertex v (lines 18 and 19, then iterating back to line 10).

Note that sets are encoded as bit strings, i.e., a bitset encoding similar to San Segundo’s BBMC [10]
is used. This allows the implementation to exploit bit parallelism. The graph should be encoded as an
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array of n bitsets (this encoding may be done when the graph is permuted). Thus, the call, N(G, v), in
line 14 of Algorithm 2 delivers the vth adjacency bitset, and similarly, line 15 of Algorithm 1 delivers
the complement of the vth adjacency bitset. To add or remove a vertex from a set, a bit is flipped, and to
take the intersection of two sets, a logical-and operation is performed.

Other maximum clique algorithms exist. Recent work by Pattabiraman, Patwary, Rossi et al. [13,14]
presents a maximum clique algorithm for sparse graphs and discusses parallelism. Our approach differs
in that we primarily consider dense, computationally challenging graphs—on several of the benchmarks
where Pattabiraman et al. aborted their run after 10,000 s, our sequential runtime is under one second.
Although large sparse graphs have real world applications, we do not wish to neglect the really hard
problems [2].

Pattabiraman et al. claim that Tomita’s algorithms are “inherently sequential or otherwise difficult to
parallelize”. We agree with the first half of this statement.

3. Parallel Algorithm Design

We may view the branch and bound as being like a depth first search over a tree, where nodes in the
tree represent recursive calls. There is a left-to-right dependency between nodes, since we do not know
until after we have explored the leftmost subtree whether subtrees further to the right may be eliminated
by the bound. However, we may speculatively ignore this dependency and explore subtrees in parallel,
sharing the (size of the) incumbent between threads. This technique for branch and bound is generally
well known [15,16], and previous experiments by the authors [17], and earlier work by Pardalos [18]
suggested that the approach is feasible for a maximum clique.

Our parallel version of Algorithm 2 is presented as Algorithm 3 on the next page. We use threads for
parallelism; adapting this approach to use message passing is unlikely to be trivial. For work distribution,
we use a global queue of work items. Each queue item corresponds to a deferred recursive call to
expand. The queue is initially populated by splitting the search tree immediately below the root, in the
same order as the sequential algorithm would do. The queue may be treated as bounded when doing so,
to avoid excessive memory usage. Worker threads take items from this queue and process them as if they
were a sequential subproblem. There is a single variable for the incumbent that must be shared between
worker threads—operations involving the incumbent require appropriate synchronisation.

The size of these subtrees can vary dramatically, and we cannot know in advance where the large trees
are. Thus, without an additional work splitting mechanism, it is possible that the runtime of a single work
item could dominate the overall runtime. We opt for a variation upon work stealing, which we call work
donation: if the initial populating has completed, if the queue is empty and if there are idle workers, we
set a globally visible flag advising workers that they may choose to place some of their subtrees onto the
global queue. We provide a general illustration of this queueing mechanism in Figure 2 on page 624.

The advantage of this method is that it does not require workers to advertise what they are doing and
does not require locking, except for rare queue accesses. The success of the sequential algorithm is in
part due to its high throughput (we expect to be handling over 100,000 recursive calls per second on
modern hardware), and we do not wish to introduce unnecessary overheads. We caution that care must
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be taken to ensure that worker threads do not exit until no more work can be enqueued (not simply when
the queue is empty).

Algorithm 3: A threaded algorithm to deliver a maximum clique

1 threadedMaxClique :: (Graph G)→ Set of Integer
2 begin
3 shared Cmax ← ∅
4 shared q ← an empty Queue of (Set, Set)
5 permute G so that the vertices are in non-increasing degree order
6 launch the populating thread do
7 expand(G, q, ∅,V(G), Cmax)

8 launch multiple worker threads do
9 while there is work left do

10 (C,P )← dequeue(q)

11 expand(G, q, C, P, Cmax)

12 join all threads
13 return Cmax (unpermuted)

14 expand :: (Graph G, Queue of (Set, Set) q, Set C, Set P , Set Cmax)
15 begin
16 populate← true if we are the populating thread, and |C| = 1, otherwise false
17 (colour, order)← colourOrder(G,P )

18 for i← |P | downto 1 do
19 if |C|+ colour[i] > |Cmax| then
20 v ← order[i]

21 C ← C ∪ {v}
22 P ′ ← P ∩ N(G, v)

23 if P ′ = ∅ then
24 if |C| > |Cmax| then Cmax ← C

25 else
26 if the populating thread is done, and q is empty, and there are idle workers then
27 populate← true

28 if populate then enqueue(q, (C,P ′))
29 else expand(G, q, C, P ′, Cmax)

30 C ← C \ {v}
31 P ← P \ {v}
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Figure 2. Work splitting and queueing mechanism for our parallel algorithm. Nodes
correspond to a call to expand. Work donation occurs once when the donating worker’s
position is at the node marked ?.

. . .The initial populating thread splits off work
items immediately below the root. . .

. . .. . . which are enqueued, treating the queue as
being bounded. . .

. . . and processed by worker threads.

?

If the initial populating thread is done, and the
queue is empty, and workers are idle, then busy
worker threads may donate their current node and
every node to its right onto the queue.

3.1. Goals of Parallelism

We define the speedup obtained from a parallel algorithm to be the runtime for a good sequential
implementation divided by parallel runtime. We call a speedup of n from n cores linear and a speedup
of greater than n superlinear.

Intuitively, we may expect that doubling the number of cores available could at best halve the runtime
of the algorithm—that is, the speedup we obtain could at best be linear. However, for branch and bound
algorithms, this is not the case, and superlinear speedup is possible [19–22]. This is because we are not
simply dividing up a fixed amount of work: if an additional thread finds a better incumbent quickly, we
will have less overall work to do. On the flip side, we cannot guarantee that we will produce a speedup
at all: it may be that some threads spend all their time exploring parts of the tree, which would have been
eliminated in a sequential run, and, so, contribute nothing to the solution.

A parallel algorithm is work efficient if it does “the same amount of work” as a sequential algorithm.
We ignore implementation overheads and focus upon a “representative operation”, as is done when
considering complexity; here, we count the number of recursive calls to expand. If an algorithm is
not work efficient, we define its efficiency to be the ratio of work done by the sequential algorithm to
work done by the parallel algorithm, expressed as a percentage. If the time taken to execute each “unit
of work” is roughly equivalent, we would expect an efficiency of greater than 100% to be a necessary,
but not sufficient, condition for obtaining a superlinear speedup (This is not entirely true, due to cache
effects: it could be that the working memory will fit entirely in cache when using multiple cores, but not
when using a single core. However, for our purposes, this effect is negligible.).

The goal of parallelisation is not necessarily to produce a speedup. We are also interested in being
able to tackle larger problems within a reasonable amount of time [6]. For this work, we consider it more
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important to be able to reduce a runtime from, say, days to hours, rather than from one second to one
tenth of a second.

We must also be careful not to introduce the possibility of a slowdown. Ignoring overheads, this
may be done by ensuring that one worker follows “the same path” (or a subset thereof) as the sequential
version of the algorithm [23], which our queueing mechanism provides. We must also ensure that newly
discovered incumbents are immediately visible to every worker.

3.2. Complications from Hyper-Threading

Hyper-threading “makes a single physical processor appear as two logical processors; the
physical execution resources are shared, and the architecture state is duplicated for the two logical
processors” [24]. The system we will be using for experimental evaluations is hyper-threaded; this
causes complications.

Firstly, this means that when going from using one thread per physical processor to one thread per
logical processor, we should not expect to be able to double our speedup. The cited Intel literature
suggests a performance increase of “up to 30%”—this figure is derived from benchmarks (which show
performance increases of “21%” and “16 to 28%”), not theory. Taken at face value, this means that
a speedup of around 15.6 on the 12-core, hyper-threaded system that we describe later should be
considered “linear”.

Secondly, and more problematically, this means that if two (software) threads are running on the same
physical processing core, each will run more slowly than if it had the core to itself [25]. Because we are
not executing a fixed amount of work on each thread, this can lead to a slowdown anomaly—this is a
variation of what Bruin et. al. describe as the “[danger of increasing] the processing power of a system
by adding a less powerful processing element” [23]. We will assume that so long as the number of threads
we use is no greater than the number of physical processing cores, the operating system scheduler will
be smart enough to allow us to ignore this issue. For larger numbers of threads, we proceed with the
understanding that this could possibly make matters worse, not better (The same problem arises if we use
more worker threads than can be executed simultaneously. This, however, is directly under our control.).

4. Experimental Evaluation

4.1. Implementation

We implemented the sequential and threaded algorithms in C++, using C++11 threads [26]. Since we
are using shared memory parallelism and since the graph data structure is not modified during execution,
we may share the graph between threads to save memory (and improve cache performance). C++
provides us with strong enough guarantees to do this without locking. Sharing the incumbent requires
more attention. To avoid the possibility of a slowdown, improved incumbents must be made visible to
every worker. To simplify this problem, we note that we only need to share the size of the incumbent, not
what its members are. Thus, we need only share a single integer and can retrieve the actual maximum
clique when joining threads. We make use of an atomic to do this.
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The number of worker threads to use is left as a configuration parameter—this allows experiments
to be performed evaluating scalability. We do not count the initial populating thread towards the thread
count, as it is expected that the amount of work performed for the population will be a very small part
of the overall work. We also do not count the main program thread, which just spawns, then joins, child
threads. No attempt was made to parallelise the initial preprocessing and sorting of the graph.

4.2. Experimental Data and Methodology

We work with three sets of experimental data. The first set, from the DIMACS Implementation
Challenges [27], contains a smörgåsbord of random and real-world problems of varying difficulty—some
can be solved in a few milliseconds, whilst others have not been solved at all. The second set consists
of “Benchmarks with Hidden Optimum Solutions for Graph Problems” [28]. Each of these contains a
maximum clique of a known size that has been hidden in a way intended to make it exceptionally hard
to find. Finally, we consider random graphs.

For timing results, following standard practice, we exclude the time taken to read the graph from
the file. We include the time to do preprocessing on the graph (this is not entirely standard, but
we consider it the more realistic approach). We measure the wall-clock time until completion of the
algorithm. In the case of threaded algorithms, we include the time taken to launch and join threads and
to accumulate results as part of the runtime. When giving speedups, we compare threaded runtimes
against the sequential algorithm, not against the threaded algorithm running with a single thread, and
all experiments have actually been performed on real hardware and are not simulations. We also spend
the following section verifying that our implementation of the sequential algorithm is competitive with
published results. In other words, our speedup figures measure what we can genuinely gain over a
state-of-the-art implementation.

Except where otherwise noted, experiments are performed on a computer with two 2.4 GHz Intel
Xeon E5645 processors. Each of these processors has six cores, and hyper-threading is enabled, giving a
total of twelve “real” cores or twenty-four hardware threads. To get a better view of scalability, we report
results using four, eight, twelve and twenty-four worker threads. Due to the nature of hyper-threading,
we should not expect speedup to double when going from twelve to twenty-four threads.

4.3. Comparison of Sequential Algorithm to Published Results

The source code for the implementation by San Segundo [11] is not publicly available. However,
we obtained access to a machine with the same CPU model as was used to produce the published
results and compared performance for the “brock400” family of graphs from DIMACS. Although our
algorithm is not identical, due to differences in initial vertex ordering, we see from Table 1 that runtimes
are comparable. The final column presents runtimes using Prosser’s BMCS1 (which is identical to our
sequential algorithm, but coded in Java) on the same machine; we are always faster by a factor of greater
than 2.5.
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Table 1. Comparison of runtimes (in seconds) for our sequential implementation with San
Segundo’s published results for BBMCI [11] (which differs slightly from our algorithm)
and with runtimes using Prosser’s BBMC1 [12] (which is the same as our algorithm, but
in Java). The system used to produce these results has the same model CPU as was used by
San Segundo.

Problem Our runtime (s) BBMCI (s) BBMC1 (s)

brock400 1 198 341 507
brock400 2 144 144 371
brock400 3 114 229 294
brock400 4 56 133 146

4.4. Threaded Experimental Results on Standard Benchmarks

Experimental results on graphs from DIMACS are presented in Table 2 and from BHOSLIB in
Table 3. The DIMACS benchmarks include a wide variety of problem sizes and difficulties. Problems
that took under one second to solve sequentially are omitted. We attempted every DIMACS instance
at least with 24 threads. Some problems took over a day to solve with 24 threads, and for these, we
indicate the largest clique we found in that time. Blank entries in the table indicate problems that were
not attempted with that number of threads.

For four of the problems, we present results that took much longer to calculate. We did not have
exclusive access to the machines in question when producing these results, and other CPU-intensive
tasks were sometimes being run at the same time. Thus, these runtimes should be considered as an upper
bound, rather than an indication of performance. We believe the proofs of optimality for “p hat1500-3”
and “MANN a81” are new, although in both cases, the maximum clique had already been found (but
was not known to be maximum) by heuristic methods. These proofs may be useful to those wishing
to evaluate the strength of non-exact algorithms and demonstrate that the tried and tested approach of
“throwing more CPU power at a problem” need not be abandoned now that we have more cores rather
than more MHz.

Our worst speedups are 3.3 from 4 threads, 6.7 from 8 threads and 7.7 from 12 threads, all from
problems where the parallel runtime is under one second. We nearly always produce a near-linear
speedup, and we get superlinear speedups for half of the problems. Some of these superlinear speedups
are substantial: our best speedups are 19.5 from 4 threads, 75.3 from 8 threads and 102.2 from 12 threads.
For the BHOSLIB benchmarks, which are designed to be exceptionally hard to solve, our results are
particularly consistent: our speedups are nearly always superlinear, with a speedup of between 11.8 and
15.0 from 12 threads. For the omitted trivial problems, we sometimes got a speedup and sometimes got a
slowdown, due to overheads. For larger problems, we do not see any signs of scalability problems when
using all of the cores available to us.



Algorithms 2013, 6 628

Table 2. Experimental results for DIMACS instances. Shown are the size of a maximum clique, then sequential runtimes and the number
of search nodes (calls to expand). Next is parallel runtimes, speedups and efficiency using 4 to 24 threads on a 12-core hyper-threaded
system. Superlinear speedups and efficiencies greater than 100% are shown in bold; blanks indicate unattempted problems. Problems
where the sequential run took under one second are omitted.

Problem ω Sequential Runtimes Threaded Runtimes, Speedups and Efficiency
and Search Nodes 4 8 12 24

brock400 1 27 274.9s 2.0× 108 69.3 s 4.0 99% 36.0 s 7.6 95% 25.3 s 10.9 90% 11.7 s 23.4 159%
brock400 2 29 200.8 s 1.5× 108 50.7 s 4.0 99% 22.2 s 9.0 117% 16.6 s 12.1 105% 8.9 s 22.5 149%
brock400 3 31 159.4 s 1.2× 108 38.6 s 4.1 106% 17.4 s 9.1 118% 10.6 s 15.1 135% 5.7 s 28.0 193%
brock400 4 33 77.5 s 5.4× 107 17.9 s 4.3 111% 8.5 s 9.1 118% 1.9 s 40.4 477% 1.7 s 45.5 358%
brock800 1 23 4,969.8 s 2.2× 109 1,216.5 s 4.1 104% 587.1 s 8.5 108% 405.6 s 12.3 105% 269.9 s 18.4 122%
brock800 2 24 4,958.2 s 2.2× 109 1,237.8 s 4.0 101% 584.8 s 8.5 109% 386.0 s 12.8 111% 266.7 s 18.6 123%
brock800 3 25 4,590.7 s 2.1× 109 1,125.2 s 4.1 103% 533.2 s 8.6 110% 347.8 s 13.2 114% 222.2 s 20.7 138%
brock800 4 26 1,733.0 s 6.4× 108 408.7 s 4.2 110% 220.3 s 7.9 97% 152.3 s 11.4 96% 131.5 s 13.2 77%
C250.9 44 1,606.8 s 1.1× 109 411.2 s 3.9 98% 228.1 s 7.0 88% 147.8 s 10.9 96% 149.0 s 10.8 97%
C500.9 ≥54 >1 day
C1000.9 ≥58 >1 day
C2000.5 16 67,058.8 s 1.8× 1010 17,023.9 s 3.9 100% 8,334.3 s 8.0 100% 5,633.0 s 11.9 100% 4,347.9 s 15.4 100%
C2000.9 ≥65 >1 day
C4000.5 18 19 days using 32 threads on a 16-core hyper-threaded dual Xeon E5-2660 shared with other users.
DSJC500 5 13 1.0 s 1.2× 106 266 ms 3.9 101% 152 ms 6.7 101% 130 ms 7.9 99% 89 ms 11.5 99%
DSJC1000 5 15 135.7 s 7.7× 107 34.7 s 3.9 99% 17.4 s 7.8 98% 11.7 s 11.6 99% 9.1 s 15.0 98%
gen200 p0.9 44 44 2.5 s 1.8× 106 654 ms 3.9 100% 109 ms 23.2 471% 100 ms 25.3 316% 95 ms 26.6 540%
gen400 p0.9 55 55 36 h using 32 threads on a 16-core hyper-threaded dual Xeon E5-2660 shared with other users.
gen400 p0.9 65 65 431,310.7 s 1.8× 1011 96,329.7 s 4.5 114% 38,514.8 s 11.2 140% 16,921.6 s 25.5 216% 17,755.0 s 24.3 162%
gen400 p0.9 75 75 247,538.3 s 1.0× 1011 22,715.4 s 10.9 309% 17,211.1 s 14.4 214% 11,594.2 s 21.4 200% 3,799.6 s 65.1 445%
hamming10-4 ≥40 >1 day
johnson32-2-4 ≥16 >1 day
keller5 27 153,970.1 s 5.1× 1010 38,817.9 s 4.0 100% 19,288.2 s 8.0 100% 12,793.6 s 12.0 100% 10,241.3 s 15.0 100%
keller6 ≥55 >1 day
MANN a45 345 224.8 s 2.9× 106 56.3 s 4.0 100% 27.1 s 8.3 108% 18.2 s 12.3 122% 12.5 s 17.9 161%
MANN a81 1,100 31 days using 24 threads on a 12-core hyper-threaded dual Xeon E5645 shared with other users.
p hat300-3 36 1.1 s 6.2× 105 291 ms 3.7 94% 156 ms 7.0 93% 129 ms 8.4 91% 103 ms 10.5 89%
p hat500-3 50 108.7 s 3.9× 107 29.5 s 3.7 95% 15.1 s 7.2 90% 10.8 s 10.1 86% 8.1 s 13.4 88%
p hat700-2 44 3.1 s 7.5× 105 946 ms 3.3 102% 402 ms 7.7 103% 403 ms 7.7 100% 270 ms 11.5 93%
p hat700-3 62 1,627.6 s 2.8× 108 419.9 s 3.9 98% 223.9 s 7.3 91% 156.8 s 10.4 87% 120.4 s 13.5 90%
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Table 2. Cont.

Problem ω Sequential Runtimes Threaded Runtimes, Speedups and Efficiency
and Search Nodes 4 8 12 24

p hat1000-2 46 159.2 s 3.4× 107 40.5 s 3.9 98% 20.4 s 7.8 97% 14.3 s 11.1 96% 11.7 s 13.7 92%
p hat1000-3 68 804,428.9 s 1.3× 1011 200,853.7 s 4.0 101% 101,303.7 s 7.9 100% 67,659.5 s 11.9 100% 53,424.6 s 15.1 98%
p hat1500-1 12 3.2 s 1.2× 106 821 ms 3.9 100% 433 ms 7.4 100% 341 ms 9.4 100% 259 ms 12.4 100%
p hat1500-2 65 24,338.5 s 2.0× 109 6,117.3 s 4.0 99% 3,089.0 s 7.9 98% 2,094.6 s 11.6 96% 1,789.1 s 13.6 91%
p hat1500-3 94 128 days using 32 threads on a 16-core hyper-threaded dual Xeon E5-2660 shared with other users.
san200 0.9 3 44 8.5 s 6.8× 106 439 ms 19.5 595% 319 ms 26.8 417% 177 ms 48.3 734% 271 ms 31.5 567%
san400 0.7 2 30 2.0 s 8.9× 105 590 ms 3.4 105% 298 ms 6.7 90% 176 ms 11.4 116% 76 ms 26.3 216%
san400 0.7 3 22 1.3 s 5.2× 105 84 ms 15.0 529% 62 ms 20.3 475% 54 ms 23.4 396% 58 ms 21.7 253%
san400 0.9 1 100 23.5 s 4.5× 106 5.3 s 4.4 133% 312 ms 75.3 1,357% 230 ms 102.2 1,353% 191 ms 123.0 1,217%
san1000 15 1.9 s 1.5× 105 488 ms 3.9 101% 281 ms 6.8 107% 173 ms 11.1 108% 108 ms 17.7 139%
sanr200 0.9 42 19.4 s 1.5× 107 5.3 s 3.7 92% 2.8 s 6.8 89% 2.2 s 9.0 85% 3.0 s 6.4 66%
sanr400 0.7 21 72.1 s 6.4× 107 18.1 s 4.0 100% 9.1 s 7.9 100% 6.2 s 11.7 100% 4.6 s 15.7 100%

Table 3. Experimental results for BHOSLIB instances. Shown are the size of a maximum clique, then sequential runtimes and the number
of search nodes (calls to expand). Next is parallel runtimes, speedups and efficiency using 4 to 24 threads on a 12-core hyper-threaded
system. Superlinear speedups and efficiencies greater than 100% are shown in bold.

Problem ω Sequential Runtimes Threaded Runtimes, Speedups and Efficiency
and Search Nodes 4 8 12 24

frb30-15-1 30 657.1 s 2.9× 108 160.2 s 4.1 102% 76.6 s 8.6 107% 43.9 s 15.0 130% 35.5 s 18.5 127%
frb30-15-2 30 1,183.1 s 5.6× 108 287.7 s 4.1 102% 141.7 s 8.3 105% 93.6 s 12.6 109% 65.8 s 18.0 131%
frb30-15-3 30 356.7 s 1.7× 108 80.8 s 4.4 113% 38.8 s 9.2 118% 25.3 s 14.1 125% 19.5 s 18.3 133%
frb30-15-4 30 1,963.2 s 9.9× 108 496.0 s 4.0 100% 246.1 s 8.0 100% 166.0 s 11.8 100% 124.4 s 15.8 104%
frb30-15-5 30 577.1 s 2.8× 108 129.2 s 4.5 115% 68.4 s 8.4 109% 44.4 s 13.0 118% 42.1 s 13.7 100%
frb35-17-1 35 51,481.7 s 1.3× 1010 12,072.8 s 4.3 108% 5,949.7 s 8.7 110% 3,800.8 s 13.5 116% 2,532.0 s 20.3 144%
frb35-17-2 35 91,275.0 s 2.3× 1010 21,867.3 s 4.2 105% 10,959.2 s 8.3 105% 7,175.1 s 12.7 107% 5,677.3 s 16.1 108%
frb35-17-3 35 33,852.1 s 8.2× 109 8,278.8 s 4.1 103% 4,063.2 s 8.3 105% 2,813.6 s 12.0 101% 2,349.3 s 14.4 96%
frb35-17-4 35 37,629.2 s 8.9× 109 9,319.5 s 4.0 101% 4,522.7 s 8.3 105% 2,638.6 s 14.3 122% 2,196.1 s 17.1 111%
frb35-17-5 35 205,356.0 s 5.8× 1010 49,901.9 s 4.1 103% 25,130.3 s 8.2 102% 16,365.4 s 12.5 105% 10,363.4 s 19.8 137%
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When using 24 threads, we must worry about hyper-threading; nonetheless, our speedups typically
(but not always) improve over those for 12 threads, and even when they do not, a speedup is still obtained.
The “gen400 p0.9 75” graph benefits strongly from hyper-threading: with 24 threads, a maximum clique
is found (but not proven) after 3,757 s by taking the 17th, 8th, 3rd and 4th choices given by the heuristic,
followed by the first choice thereafter. With 12 threads, it takes 11,536 s to find this same maximum,
resulting in a lower speedup. On the other hand, “gen400 p0.9 65” is worse with 24 threads: here, it
takes 16,288 s rather than 14,868 s to find a maximum, in both cases by taking the 11th, 7th, 3rd and
2nd heuristic choices. This is because hyper-threading provides increased parallelism, at the expense of
making each individual thread run more slowly [25], and our additional threads do not reduce the amount
of work needed to find a maximum. In the worst case, this property of hyper-threading could even cause
a slowdown, although we have never observed this.

As well as speedups, we present efficiencies. We see that, as expected, superlinear speedups are due
to efficiencies of greater than 100%. The converse does not always hold, due to overheads.

The “C2000.5” instance from DIMACS provides an indication of how effective our work splitting
mechanism is. Here, we see that the efficiency is in each case 100% (at least up to rounding). A speedup
of 11.9 from 12 processors would be considered good even for an “embarrassingly parallel” algorithm
with a regular work item size, which we do not have. The speedup of 15.4 from 24 threads shows that
hyper-threading provides some increase in throughput—in this case, we almost exactly obtain Intel’s
claimed benefits of “up to 30%” [24].

4.5. Threaded Experimental Results on Larger Sparse Random Graphs

Experimental results on larger, sparser random graphs are presented in Table 4 on the next page. Here,
G(n, p) refers to an Erdős-Réyni random graph with n vertices and edges between each pair of vertices
chosen independently with probability p. We see that for G(1000, 0.1), where the average sequential
runtime is 18 ms, we fail to produce any speedup with 4 threads, and we introduce an increasingly large
slowdown as the number of threads rises. With G(1000, 0.2), where the average sequential runtime is
65 ms, we do manage to produce a speedup of 2.2 with 4 threads, but this falls to 1.8 with 24 threads.
For G(1000, 0.3) and G(3000, 0.1), where sequential runtimes are under a second, our speedups are
modest. This is due to the overheads involved in creating and joining threads and the initial sequential
portion of the algorithm whose effects cannot be ignored at this scale. For the remaining problems,
where sequential runtimes are longer, our results are better: we achieve average speedups between 3.9
to 4.0 from 4 threads, between 7.1 and 7.9 from 8 threads, between 9.9 and 11.3 from 12 threads and
between 11.6 and 15.6 from 24 threads.

We caution that the sequential algorithm we used is not the best choice for sufficiently large and
sparse graphs. The benefits of using a bitset encoding decrease as graphs become increasingly sparse,
and eventually, it becomes a penalty rather than an improvement [12]. The bitset encoding also forces an
adjacency matrix representation of the graph, which requires quadratic memory, even for sparse graphs.
For dealing with huge, but very sparse, “real world” graphs, where the difficulty is primarily due to
the size of the graphs rather than the computational complexity, we would recommend considering a
different algorithm, which can use an adjacent list representation.
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Table 4. Experimental results for larger, sparser random graph instances, sample size of 10.
Shown are average sequential runtimes and, then, average parallel runtimes and speedups
using 4 to 24 threads on a 12-core hyper-threaded system.

Problem Sequential Average Threaded Runtimes and Speedups
Runtimes 4 8 12 24

G(1, 000, 0.1) 18 ms 18 ms 1.0 23 ms 0.8 26 ms 0.7 33 ms 0.5
G(1, 000, 0.2) 65 ms 30 ms 2.2 30 ms 2.2 32 ms 2.0 36 ms 1.8
G(1, 000, 0.3) 532 ms 151 ms 3.5 100 ms 5.3 83 ms 6.4 76 ms 7.0
G(1, 000, 0.4) 6.1 s 1.6 s 3.9 860 ms 7.1 585 ms 10.5 439 ms 13.9
G(1, 000, 0.5) 138.6 s 34.9 s 4.0 17.6 s 7.9 12.2 s 11.3 8.9 s 15.6
G(3, 000, 0.1) 640 ms 220 ms 2.9 171 ms 3.7 156 ms 4.1 168 ms 3.8
G(3, 000, 0.2) 11.9 s 3.1 s 3.9 1.7 s 7.0 1.2 s 10.1 900 ms 13.3
G(3, 000, 0.3) 358.5 s 90.3 s 4.0 45.6 s 7.9 30.7 s 11.7 23.2 s 15.4
G(10, 000, 0.1) 84.6 s 21.8 s 3.9 11.5 s 7.3 8.5 s 9.9 7.3 s 11.6
G(15, 000, 0.1) 403.5 s 102.8 s 3.9 53.8 s 7.5 38.1 s 10.6 33.2 s 12.2

4.6. A Detailed Look at a Super-Linear Speedup

The behaviour seen with the DIMACS instance “san400 0.9 1” is interesting and deserves more
attention. We plot runtimes for this instance with varying numbers of threads in Figure 3 on the following
page. For the y-axis, we do not plot parallel runtimes; rather, we plot the parallel runtime multiplied by
the number of threads—one may think of this as being “total work done”. With such a y-axis, a linear
speedup would give a horizontal line. We see a sharp drop as we go to eight threads, after which the line
is horizontal.

We can explain this behaviour. Also plotted is the total runtime taken to find a maximum clique, but
not proven is its optimality (we rerun the algorithm, telling it to exit as soon as it finds a clique of a size
equal to what we now know the maximum to be). We see that with eight threads, a maximum clique is
found almost instantly. This is because a maximum clique is located in the part of the search tree given
by taking the eighth heuristic choice at the top of search, followed by the first choice at every subsequent
depth. The work remaining once such a clique has been found is fixed and consists of exploring every
node that cannot be eliminated by the bound regardless of the current incumbent—this explains the
linear-like behaviour at over eight threads.

The same behaviour is observed with other “san” graphs and members of the “brock” and “gen”
families. The plot of “brock400 4” is similar to that of “san400 0.9 1”, with a drop in work when going
to nine threads and, then, a level graph afterwards. Here, a maximum clique is found by taking the ninth
heuristic choice, then the third, fourth and third.

For “brock400 1”, we do not see a drop in work done, but we do see an unusually high improvement
when going from 12 to 24 threads, despite hyper-threading. Further experiments show that with 20 or
more threads, a maximum clique would be found very quickly, and we would get strongly superlinear
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speedups here, too (One may ask why we do not then use more threads than we have cores, to make this
more likely to happen. Such an approach would sometimes be of benefit, but only if we are prepared to
accept the possibility of a considerable slowdown in other cases.).

Figure 3. Total CPU time spent (i.e., runtimes multiplied by the number of threads) for
“san400 0.9 1” from DIMACS with varying numbers of threads. Also shown is the total
CPU time taken to find a maximum clique, but not to prove its optimality. A linear speedup
would give a horizontal line, and downwards sloping lines are superlinear.

0

5

10

15

20

25

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

san400 0.9 1

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

brock400 4

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

brock400 1

Runtime
Runtime to find but not prove optimality

5. Conclusion and Future Work

Despite some of the more pessimistic claims that have been made in the literature regarding the
suitability of sequential maximum clique algorithms for parallelisation, we have shown that making
use of multi-core parallelism for hard clique problems is possible and worthwhile. This is important
for two reasons. Firstly, existing work on local parallelism using bitset encodings has produced a
speedup of between two and twenty over the basic algorithm [10,12]. We have shown that a further
speedup of around the same magnitude is possible by making use of the resources offered by today’s
multi-core processors.

Secondly, we have shown that superlinearity can happen in practice and not just as a rare event.
Furthermore, when it does happen, the effects can be extremely significant—we are able to make some
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“hard” instances “easy”. We conjecture that this is due to the method used to split the work, where we use
parallelism to avoid an overly strong commitment to an early heuristic. Had we not used this approach,
we expect we would be repeating Lai and Sahni’s claim that “our experimental results indicate that such
anomalous behaviour will be rarely witnessed in practice” [19].

We expect that this work can be extended in the future. Recently, Batsyn et al. have proposed a number
of improvements to Tomita’s algorithms [29]. These changes are all compatible with our approach and
also appear to be amenable to bit-parallelisation. We expect that by combining this improved algorithm
with bit parallelism and extending our global parallelism approach to be usable with multiple many-core
Intel Xeon Phi processors, we may be able to solve yet more of the remaining open DIMACS problems.
Additionally, of course, we will be interested to find out whether other hard problems may be tackled
using a similar approach.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of
NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1990.

2. Cheeseman, P.; Kanefsky, B.; Taylor, W.M. Where the Really Hard Problems Are; Morgan
Kaufmann: San Francisco, CA, 1991; pp. 331–337.

3. Bomze, I.M.; Budinich, M.; Pardalos, P.M.; Pelillo, M. The Maximum Clique Problem. In
Handbook of Combinatorial Optimization (Supplement Volume A); Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1999; Volume 4, pp. 1–74.

4. Butenko, S.; Wilhelm, W.E. Clique-detection models in computational biochemistry and genomics.
Eur. J. Oper. Res. 2006, 173, 1–17.

5. Sutter, H. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s
J. 2005, 30, 202–210.

6. Gustafson, J.L. Reevaluating Amdahl’s law. Commun. ACM 1988, 31, 532–533.
7. Tomita, E.; Seki, T. An Efficient Branch-and-bound Algorithm for Finding a Maximum

Clique. In Proceedings of the 4th International Conference on Discrete Mathematics and
Theoretical Computer Science, DMTCS’03,, Dijon, France, 7-12 July 2003; Springer-Verlag:
Berlin/Heidelberg, Germany, 2003; pp. 278–289.

8. Tomita, E.; Kameda, T. An efficient branch-and-bound algorithm for finding a maximum clique
with computational experiments. J. Glob. Optim. 2007, 37, 95–111.

9. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. A Simple and Faster Branch-and-
Bound Algorithm for Finding a Maximum Clique. In Proceedings of the WALCOM 2010, LNCS
5942, Dhaka, Bangladesh, 10–12 February 2010; pp. 191–203.

10. San Segundo, P.; Rodrı́guez-Losada, D.; Jiménez, A. An exact bit-parallel algorithm for the
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