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Abstract: The imperialist competitive algorithm (ICA) is a new heuristic algorithm 

proposed for continuous optimization problems. The research about its application on 

solving the traveling salesman problem (TSP) is still very limited. Aiming to explore its 

ability on solving TSP, we present a discrete imperialist competitive algorithm in this 

paper. The proposed algorithm modifies the original rules of the assimilation and 

introduces the 2-opt algorithm into the revolution process. To examine its performance, we 

tested the proposed algorithm on 10 small-scale and 2 large-scale standard benchmark 

instances from the TSPLIB and compared the experimental results with that obtained by 

two other ICA-based algorithms and six other existing algorithms. The proposed algorithm 

shows excellent performance in the experiments and comparisons. 

Keywords: discrete imperialist competitive algorithm; traveling salesman problem;  

2-opt algorithm; numerical experiments 

 

1. Introduction 

Because of its widespread application and significant research value, the traveling salesman 

problem (TSP) has probably become the most classical, famous and extensively studied problem in  

the field of combinatorial optimization [1–3]. It can be simply described as to find out the shortest tour 

OPEN ACCESS



Algorithms 2014, 7 230 

 

 

that starts from one city from the set of given cities, visits every given city once, and returns to  

the original finally. As a typical NP-hard combinatorial optimization problem, it is extremely difficult 

to solve [4]. Compared with the exact algorithms for solving TSP, the approximate algorithms are 

simpler. Although they cannot guarantee to find the optimal solution, often they can obtain a satisfactory 

solution. They are more suitable to be used to solve larger-scale TSP [5]. Many approximate 

algorithms have been applied to solve the TSP [6–26]. 

Imperialist competitive algorithm (ICA) is a new socio-politically motivated meta-heuristic 

algorithm proposed by Atashpaz-Gargari and Lucas in 2007, inspired by the colonial phenomenon in 

human society and history [27]. Although it has been successfully applied to many different 

optimization tasks and has shown great performance in both the convergence rate and the global 

optimal achievement [28–33], its application on solving TSP is still very limited. The literature [34] 

gives some results obtained by ICA, but the description about how to use ICA to solve TSP is 

ambiguous. The literature [35] submits a new approach, but in our test experiments, the approach 

cannot produce the results given in the literature. Mohammad Ahmadvand et al. [36] proposed a 

hybrid algorithm based on ICA and tabu search, using ICA to solve TSP at first and using a tabu 

search to improve the solution, however, the results obtained by the hybrid algorithm are not yet  

good enough. 

Seeking to explore the potential of ICA and to find a novel and efficient way for solving TSP, we 

present a novel discrete ICA in this paper. 

The rest of this paper is organized as follows. In Section 2, a brief introduction about the basic ICA 

is given. In Section 3, the proposed algorithm is set out in detail. In Section 4, the numerical 

experiments, results and related discussion are given. In Section 5, we conclude the paper and put 

forward the future works. 

2. Basic Imperialist Competitive Algorithm 

The ICA simulates the process of competition between empires in human society. It starts with a 

randomly generated initial population of size N, which are called countries, just like the chromosomes 

in the genetic algorithm. The cost of each country is calculated by the equation specific for the 

problem to be optimized. Then, countries are divided into imperialists and colonies. Imperialists are 

the best countries in the population, and colonies are the others left. Then the colonies are randomly 

distributed to the imperialists. The number of colonies that an imperialist obtains is proportional to its 

power. Here the power of each imperialist is calculated and normalized depended on its cost. The 

imperialist with bigger power value is better. One imperialist and its colonies consist of an empire 

together, thus several empires are initialized. 

After, within each empire group, the colonies are moved to the position of the imperialist according 

to a certain rule. This process is called “assimilation”, simulates the assimilation process the 

imperialist implements on its colonies in a realistic society. Meanwhile, some colonies are randomly 

selected out and replaced with new randomly generated countries. This process is called “revolution”, 

just like the mutation in the genetic algorithm, simulates the sudden change in the socio-political 

characteristics of a colony in a realistic society. In the process of assimilation and revolution, if a 

colony becomes better than the imperialist, the colony and the imperialist will exchange their roles. 



Algorithms 2014, 7 231 

 

 

The competitive behavior between the empires is the core of the ICA. In this stage, all empires try 

to occupy colonies from others. Firstly, the total cost of every empire is calculated and normalized 

according to the formulas (1) and (2) [27], in where the T.C.n and the N.T.C.n stand for the total cost 

and the normalized total cost of the nth empire, respectively, and the ξ is a little positive number, 

whose value determines the role of the colonies in determining the total cost of the empire. 

( ) { ( )}n n nT.C. = Cost imperialist + ξ mean Cost colonies of empire  (1) 

. . . . . max{ . . }n n i
i

N T C T C T C= -
 (2) 

Then, the weakest colony of the weakest empire is picked out. Other empires try to obtain it through 

competition. The success probability of each empire is given by the formula (3) [27] and form the 

vector P as the formula (4) [27]. A vector R with the same size as P whose elements are uniformly 

distributed random numbers is created as the formula (5) [27]. Then vector D is created by subtracting 

R from P, as the formula (6) [27]. The empire whose relevant index in D is maximized will obtain the 

mentioned colony at the end. 
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P = [ ]
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imp1 2 3 N i impr ,r ,r , ,r , r i N£ £   (5) 

D = P R [ ] [ ]
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1 2 3 N P 1 P 2 P 3 P N= D ,D ,D , ,D = p r , p r , p r , , p r- - - - -   (6) 

There is just one empire left or a preset maximum number of iterations is reached is usually utilized 

as the termination condition of the algorithm. The competition proceeds until the termination condition 

is met. The weak empire gradually loses its colonies and the mighty empire occupies more and more 

colonies. The empire loses all its colonies will be collapsed. The final residual imperialist stands for 

the solution. 

The pseudo code of the basic ICA is shown in Figure 1. 

Figure 1. The pseudo code of the basic imperialist competitive algorithm (ICA). 

 

3. Approach to Discretize the ICA for TSP 

Since the basic ICA is proposed for numerical function optimization, when it is utilized to solve 

TSP, some detail rules in the algorithm should be modified.  
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3.1. Generate Initial Population and Initiate Empires 

The discrete ICA we propose starts with a randomly generated initial population of size N also.  

The only difference is that here a country represents a tour. We use a randomly arranged integer sequence 

to represent a country. There are n integers from 1 to n in the sequence, each integer represents a city, 

appears only once and the order of them represents the order of the visited cities. For example, in a  

4-cities-TSP, the sequence (1, 4, 3, 2) implies that the tour starts from the city 1 to city 4, then goes 

from city 4 to city 3, then goes to city 2, finally returning from city 2 to city 1. The cost of a country is 

the total length of the tour it represents. Because of the aim is to find out the shortest tour, a country 

which represents a shorter tour is better, so the power of a country can be directly defined as  

the reciprocal of its cost. 

At the process of forming initial empires, we are required to assign the colonies to the imperialists. 

here we define that this assignment is according to the formula (7), in where the N denotes the size of 

the initial population, the m denotes the number of imperialists, N and m can be set freely according to 

the size of the TSP to be solved, the kj denotes the number of colonies assigned to the jth imperialist 

and the fj denotes the cost of the jth imperialist. 
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3.2. The Modified Assimilation Process 

In the assimilation process, colonies obtain information from and adjust themselves to keep consistent 

with the relevant imperialist. This process can be viewed as a learning process of the colonies from the 

imperialist. Basing on the country encoding method, we redefine the detail rule of the assimilation 

process as follows: A subsequence is randomly chosen from the relevant imperialist, and a position is 

randomly chosen from the colony. Then, the mentioned subsequence is inserted to the mentioned 

position. Finally, the cities which are included in the subsequence are deleted from the part coming  

from the previous colony. This process is shown by Figure 2, in where the tour (3, 1, 5, 2, 4, 6) is  

a hypothetical tour just used as an example. The subsequence (1 5 2) is chosen from the imperialist and 

the position between city 5 and city 3 is chosen from the colony. The subsequence (1 5 2) which may 

include effective information, is transferred from the imperialist to its colony after the assimilation process. 

Figure 2. An example of the redefined assimilation. 

25 4 613

63 2 154

25 3 614

The imperialist:

The colony before:

The colony after:
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3.3. The Modified Revolution Process 

Obviously, we can achieve the revolution process by replacing the randomly selected colonies with 

an equal number of new randomly generated countries, like the method in the basic ICA. However, 

here, in order to enhance the ability of the proposed algorithm further, we introduce the 2-opt 

algorithm [37] into the revolution process. 

Due to its simplicity and effectiveness, the 2-opt algorithm is probably the most widely used local 

search approach for solving TSP. It can be applied to an arbitrary initial tour, and searches the shortest 

tour by changing the visiting order of cities, but the 2-opt algorithm often takes a very long time, 

especially when it is applied in a larger number of candidate tours. 

Figure 3 shows an illustration of the 2-opt algorithm. Here, the tour (A-B-F-E-C-D-H-I-G-A) 

presents an example tour before using 2-opt algorithm. Firstly, the length of this tour is calculated. 

Then a link A-B and another link C-D are selected out. A new tour is generated by linking A and C, B 

and D, respectively. If the new tour (A-C-E-F-B-D-H-I-G-A) is shorter than the old tour, then,  

the new tour is accepted. The above procedure is replicated for all links between each two cities until 

there is no more decrease of the total tour length. 

Figure 3. An illustration of the 2-opt algorithm. 

 

Our way goes as follows: for every empire, take out a part of colonies randomly from its colonies, 

apply the 2-opt algorithm to them, and replace them with the improved. Because the revolution process 

is applied to a few countries, introducing the 2-opt algorithm into it will not take a very long time. 

The pseudo code of the proposed algorithm is shown in Figure 4. It is similar to the pseudo code of 

the basic ICA, but is different on the specific operations of the step 1, step 2 and step 3. 

Figure 4. The pseudo code of the proposed algorithm. 

 



Algorithms 2014, 7 234 

 

 

4. Numerical Experiments, Results and Discussions 

4.1. Experiments Settings 

In order to verify its effectiveness, we test the proposed algorithm on 12 standard benchmark 

instances (listed in the Table 1) from the TSPLIB [38]. The first 10 instances are small-scale problems, 

with sizes ranging from 51 to 150 cities, and the last two are large-scale problems, whose size is 1323 and 

1400 respectively. To avoid the effects caused by the randomness of the algorithm, the experiments for 

the former eight instances are repeated 20 times independently, the experiments for KroA150 and 

KroB150 are repeated 10 times independently, and the experiments for the last two instances are 

repeated 5 times independently, considering the consumption of time. As the calculation method of the 

TSPLIB, the distance between two cities is computed using Euclidean distance equation and rounded 

to an integer. 

Table 1. The parameters set for every instance. 

Instance Num.C Num.E Num.Ite Instance Num.C Num.E Num.Ite 

eil51 100 6 200 berlin52 100 6 200 
st70 100 6 200 eil76 100 6 200 
pr76 100 6 200 kroA100 100 6 200 

kroB100 100 6 200 eil101 100 6 300 
kroA150 150 6 300 kroB150 150 8 350 
rl1323 200 10 400 fl1400 200 10 400 

The proposed algorithm is coded in MATLAB R2010b. All the experiments are finished on a PC 

with Core 2 Duo at 2.2 GHZ, 2 GB RAM and Windows Vista Home Basic Operating system. In our 

tests, the revolution rate is set to 0.3 and the ξ is set to 0.1. We specify a maximum number of 

iterations for each test. The algorithm stopped after getting to the iterations number. The number of 

initial countries, initial empires and iterations set for every instance are shown in Table 1, represented 

by “Num.C”, “Num.E” and “Num.Ite” respectively. Larger scale TSP means higher solving difficulty, 

so we set more population size, more empire numbers and more iterations numbers for the larger  

scale TSP. Note that the parameters we listed here may be not the best. Actually, in our previous 

experiments, we found that the proposed algorithm is not very sensitive to the initial parameters. 

In order to examine the role of 2-opt algorithm in the proposed algorithm (abbreviated as DICA1 in 

the following), another discrete ICA (abbreviated as DICA2 in the following) is also tested on  

the mentioned instances for making a comparison. In the DICA2, the assimilation process is the same 

as that in the DICA1, but the revolution process is achieved by replacing the randomly selected 

colonies with an equal number of new randomly generated countries. For fairness, the parameters set 

in the DICA2 are same as those in the DICA1. 

Table 2 shows the experimental results. The column “opt” represents the length of the known 

optimal solution of every instance. The columns “Best”, “Worst”, “Ave” and “StD” represent the best, 

the worst found result, the average and the stand deviation of the results for every instance, 

respectively. The column “N1%” denotes the number of the found results that are within 1% deviation 
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of the optimality over the experiments for every instance. The last column “Ave.time” represents the 

average running time for every instance. The bold data in the table are better. 

Table 2. The results of the experiments. 

Instance Opt Algorithm Best Worst Average StD N1% Ave.time (s) 

eil51 426 
DICA1 426 432 427.25 1.3717 19 15.49 

DICA2 590 770 700.6 43.9167 0 14.77 

berlin52 7542 
DICA1 7542 7542 7542 0.00 20 19.69 
DICA2 11,034 14,074 12,229.55 736.6680 0 16.87 

st70 675 
DICA1 675 683 676.7 2.5976 19 15.05 
DICA2 1300 1702 1518.2 93.2386 0 14.54 

eil76 538 
DICA1 538 546 540.75 2.5521 18 16.65 
DICA2 972 1298 1180 70.0669 0 15.86 

pr76 10,8159 
DICA1 108,159 109,085 108,350.65 316.9696 20 15.36 
DICA2 228,851 280,746 258,438.5 1333.2 0 15.12 

kroA100 21,282 
DICA1 21,282 21,433 21,306. 5 43.0893 20 18.31 
DICA2 66,573 84,480 73,032.3 4561.7 0 18.28 

kroB100 22,141 
DICA1 22,141 22,376 22,194.45 67.5539 19 18.16 
DICA2 65,905 88,172 73,587.9 5113.6 0 17.98 

eil101 629 
DICA1 629 643 635.35 4.8153 10 29.46 
DICA2 1426 1751 1574.3 82.1956 0 25.49 

kroA150 26,524 
DICA1 26,524 26,857 26,657.5 110.5805 8 54.28 
DICA2 102,953 118,004 109,867.7 4397.2 0 44.67 

kroB150 26,130 
DICA1 26,141 26,290 26,230.1 47.8944 10 64.20 
DICA2 97,697 109,665 105,396.8 4432.1 0 53.17 

rl1323 270,199 
DICA1 272,985 283,357 277,965.4 3895.7 0 6151.8 
DICA2 7,311,486 7,491,391 7,398,724.4 74,062 0 179.71 

fl1400 20,127 
DICA1 20,621 20,707 20,669.4 38.24 0 5607.6 
DICA2 1,196,412 1,226,156 1,208,172.6 13,065 0 184.39 

Figure 5. Trend lines of the two algorithms on rl1323. 

 

Figures 5 and 6 show the trend lines of the DICA1 and the DICA2 on rl1323 and fl1400. They are 

utilized to compare the convergence process of the two algorithms. Limited by the length of the article, 
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the trend lines of the two algorithms on other instances are not given here. Figures 5 and 6 are utilized 

as a representative. 

Figure 6. Trend lines of the two algorithms on fl1400. 

 

4.2. Discussions of the Results Obtained by the Proposed Algorithm 

It can be seen from Table 2, for the former nine instances, the proposed algorithm (DICA1) found 

the known optimal solution, and for last three instances, though the known optimal solutions are not 

found, the best result found by the proposed algorithm are very close to the known optimal solutions. 

Their deviations with the corresponding known optimal solution are only 0.0421%, 1.0311% and 

2.4544%, respectively. The average of the results for every instance is also quite close to the known 

optimal solution. Only for eil101, pr1323 and fl1400, the deviation with the known optimal solution 

exceeds 1%. For all the former ten instances except eil101, the probability of finding a solution which 

is within 1% deviation with the known optimal solution can reach more than 80%, especially, for 

berlin52, pr76, kroA100 and kroB150, it reaches 100%. In addition, for berlin52, the proposed 

algorithm found the known optimal solution in every test. 

4.3. Discussions of the Role of 2-opt Algorithm 

From Table 2, Figures 5 and 6, it can be seen that, compared with the DICA1, the convergence  

rate of the DICA2 is slower, and the results it obtained are also worse. In the earlier stage of iterations, 

the convergence rate of the DICA2 is acceptable, but in the later stage of iterations, it stagnated at  

a solution which is very poor. The cause of this phenomenon is that in the earlier stage of the iterations, 

the individuals in the population are diverse and generally bad, it is very easy to find a solution which 

is better than the current best solution in the assimilation process, in the revolution process and in  

the competition process; but with the increase of the number of iterations, all the individuals in  

the population become more and more similar with the imperialist, the diversity of population decline, 

relying on the revolution process which using randomly generated countries to obtain a solution which 

is better than the current best solution is very difficult, so the DICA2 very easily stagnates at a very 

poor solution. 
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In DICA1, the revolution process is achieved by improved some randomly selected colonies by  

the 2-opt algorithm. Due to its strong local search ability, the 2-opt algorithm can greatly improve  

the quality of a colony, using this mechanism can easily find a solution which is greatly better than  

the current best solution. Meanwhile, the mechanism of the DICA1 can quickly replace the new find 

best solution to the position of the imperialist, and then to guide the further evolution of the entire 

population. So its convergence rate is very fast and the solutions it obtained are very good. 

The revised assimilation makes it possible that utilizing the original ICA to solve TSP, and  

the revised revolution combined with 2-opt algorithm ensures the algorithm to find a superior  

solution quickly. 

Furthermore, it can be seen from the last column “Ave.time”, when the scale of TSP is small, using 

2-opt algorithm would not significantly increase the time consumption. When the scale of TSP is large, 

the time consumption increases obviously. The main reason is that the 2-opt algorithm costs more time 

when applied to solve large-scale TSP.  

4.4. Compared with Other Two ICA-Based Algorithms 

The results obtained by the DICA1 are compared with that obtained by other two ICA-based 

algorithms for solving TSP. One is proposed in literature [34] (abbreviated as OICA in the following) 

and another is proposed in literature [36], combined with tabu search (abbreviated as ICATS in the 

following). The comparison is arranged in Table 3, in where the column “Best.Err” and “Ave.Err” 

represent the percentage deviation of the best result and the average of the results over the known 

optimal solution, respectively, calculated as the formula 8, the “NA” represents that the data is not 

given in the corresponding literature. The bold data in the table are best. 

 100%Err =(the result opt) / opt   (8)

Table 3. Compared with two other ICA-based algorithms. 

Instance 
DICA1 ICATS OICA 

Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%)

eil51 0 0.2934 0 2.5822 1.39 NA 
berlin52 0 0 NA NA 0.09 NA 

st70 0 0.2519 NA NA 0.44 NA 
eil76 0 0.5112 NA NA 0.99 NA 
pr76 0 0.1771 0 0.1072 NA NA 

kroA100 0 0.1151 0 0.5451 0.10 NA 
kroB100 0 0.2414 0 0.8356 0.38 NA 

eil101 0 1.01 0 7.9491 NA NA 
kroA150 0 0.5033 0 0.7917 NA NA 

From Table 3, it can be seen that the performance of the OICA is the worst in the three algorithms. 

On every instance, it cannot obtain the known optimal solution. The performance of the ICATS is 

centered in the three algorithms, though it can obtain the known optimal solution for every instance, 

but the average of the results obtained by it for every instance except pr76 is worse than that obtained 

by the DICA1. The performance of the DICA1 is the best in the three algorithms. 



Algorithms 2014, 7 238 

 

 

4.5. Compared with Other Six Heuristic Algorithms 

Meanwhile, the results are compared with that obtained by the particle swarm optimization (PSO) [19], 

the bee colony optimization (BCO) [6], the self-organizing Neural Network (NN) [20], the improved 

ACO with Pheromone Correction Strategy (ACO+SEE) [14], the generalized chromosome genetic 

algorithm (GCGA) [25] and the genetic simulated annealing ant colony system with particle swarm 

optimization techniques (GSAP) [22], shown in Tables 4 and 5. The meanings of the fields in Tables 4 

and 5 are same as those in Table 3. More intuitive comparisons are shown in Figures 7 and 8. 

Table 4. Compared with the particle swarm optimization (PSO), the bee colony 

optimization (BCO) and the Neural Network (NN). 

Instance 

DICA1 PSO BCO NN 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

eil51 0 0.2934 0.2347 2.5751 0.4695 0.85 0.2347 2.6925 
berlin52 0 0 0 3.8458 NA NA 0 5.1777 

st70 0 0.2519 0 3.3422 NA NA NA NA 
eil76 0 0.5112 1.487 4.1673 0.1859 2.01 0.5576 3.4071 
pr76 0 0.1771 0.1119 3.8176 NA NA NA NA 

kroA100 0 0.1151 NA NA 2.2601 3.43 0.2396 1.1311 
kroB100 0 0.2414 NA NA 2.2402 3.1 0.9123 2.3507 

eil101 0 1.01 NA NA 0.9539 2.29 1.4308 3.1208 
kroA150 0 0.5033 NA NA 5.0294 6.39 0.5806 3.1367 
kroB150 0.0421 0.7658 NA NA 1.55 3.68 0.5128 1.9207 
rl1323 1.0311 2.8743 NA NA NA NA 11.3143 12.9961 
fl1400 2.4544 2.8817 NA NA NA NA 3.5972 4.8840 

Table 5. Compared with the improved ACO with Pheromone Correction Strategy (ACO + 

SEE), the generalized chromosome genetic algorithm (GCGA) and the genetic simulated 

annealing ant colony system with particle swarm optimization techniques (GSAP). 

Instance 

DICA1 ACO + SEE GCGA GSAP 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

eil51 0 0.2934 0.2347 0.23 0.2347 0.94 0.23 0.3 
berlin52 0 0 0 0.13 NA NA 0 0 

st70 0 0.2519 0 1.36 0 0.44 NA NA 
eil76 0 0.5112 1.487 1.19 2.2305 2.42 0 0.41 
pr76 0 0.1771 0.1119 2.62 0.1378 0.72 NA NA 

kroA100 0 0.1151 0 0.72 0.047 1.23 0 0.42 
kroB100 0 0.2414 NA NA 0.2439 1.81 0 0.64 

eil101 0 1.01 NA NA 1.5898 2.7 0.16 0.99 
kroA150 0 0.5033 NA NA 1.3987 2.92 0 1.41 
kroB150 0.0421 0.7658 NA NA 1.6303 2.11 0 1.22 
rl1323 1.0311 2.8743 NA NA NA NA 2.7546 3.6945 
fl1400 2.4544 2.8817 NA NA NA NA 2.3153 6.0746 
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From Table 4, Table 5, Figure 7 and Figure 8, it can be seen that, when compared with the PSO, the 

BCO, the ACO+SEE, the NN and the GCGA, the proposed algorithm not only found the known optimal 

solution that others succeeded, but also found that the others failed. In addition, for kroB150, though 

all the four algorithms (the PSO and the ACO + SEE have not been tested on kroB150 in the literatures) 

failed to find the known optimal solution, the proposed algorithm obtained a best result. For rl1323 and 

fl1400, the proposed algorithm shows greater performance than the NN (other four algorithms have not 

been tested on rl1323 and fl1400 in the literatures). Furthermore, for every instance, the deviation 

between the average of the results obtained by the proposed algorithm and the known optimal solution 

is much lower. When compared with the GSAP, for eil76, all the two algorithms found the known 

optimal solution while the average of the results obtained by the GSAP is slightly better. For eil101, 

the proposed algorithm found the known optimal solution while the GSAP failed, but the average of 

the results obtained by the GSAP is slightly better. For kroB150, the proposed algorithm failed to find 

the known optimal solution while the GSAP succeeded, but the average of the results obtained by the 

proposed algorithm is better. For fl1400, the best solution obtained by the GSAP is slightly better, but 

the average of the results obtained by the GSAP is worse. For the remaining instances, the proposed 

algorithm shows better performance on the best result and the average of the results than the GSAP. 

Comprehensively speaking, the performance of the proposed algorithm is much better than the PSO, 

the BCO, the NN and the GCGA, and slightly better than the GSAP. The proposed algorithm  

is excellent. 

Figure 7. Comparison between the best results obtained by several algorithms. 

 

Figure 8. Comparison between the average results obtained by several algorithms. 
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5. Conclusions and Further Works 

A discrete imperialist competitive algorithm for TSP is proposed. It retains the basic flow of  

the original, redefines the assimilation and the revolution and introduces the 2-opt algorithm into  

the revolution process. The proposed algorithm is excellent, proved by the experiments on some 

benchmark problems and the comparisons with other six algorithms. Future research should be focused 

on enhancing its performance and applying it on larger-scale TSP and other combinational 

optimization problems. 
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