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Abstract: Control valve is a kind of essential terminal control component which is hard to 
model by traditional methodologies because of its complexity and nonlinearity. This paper 
proposes a new modeling method for the upstream pressure of control valve using the  
least squares support vector machine (LS-SVM), which has been successfully used to 
identify nonlinear system. In order to improve the modeling performance, the fruit fly 
optimization algorithm (FOA) is used to optimize two critical parameters of LS-SVM. As 
an example, a set of actual production data from a controlling system of chlorine in a salt 
chemistry industry is applied. The validity of LS-SVM modeling method using FOA is 
verified by comparing the predicted results with the actual data with a value of MSE  
2.474 × 10−3. Moreover, it is demonstrated that the initial position of FOA does not affect 
its optimal ability. By comparison, simulation experiments based on PSO algorithm and the 
grid search method are also carried out. The results show that LS-SVM based on FOA has 
equal performance in prediction accuracy. However, from the respect of calculation time, 
FOA has a significant advantage and is more suitable for the online prediction. 
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1. Introduction 

The control valve is a common element in modem process control, which is used to control the flow  
of a fluid. Its mathematical model is usually necessary in designing the automatic control or fault 
diagnosis systems. Song K. et al. [1,2] described the system of control valve based on fluid mechanics. 
However, there are a lot of limitations for the theory analysis method because of the complexity of the 
structure, nonlinearity and time-lag of the control valve. This makes it is quite difficult to accurately 
forecast the physical variable of control valve. To overcome this problem, some simulation calculation 
methods are used, such as bondgraph approach [3] and system identification. Especially the latter is 
wildly used. J.W. Ma [4] predicted the characteristics of hydraulic valve using support vector machine. 
A. Helling [5] deduced the dynamic mathematic model of the control valve using neural network. 

The least squares support vector machine (LS-SVM) is a reformulation of the support vector 
machine (SVM) which solves linear programming problem rather than quadratic programming 
problem [6,7]. LS-SVM can approach the nonlinear system with high precision, making it an excellent 
method for modeling nonlinear systems [8,9]. The LS-SVM model has been successfully used to  
solve forecasting problems in many fields, such as CO concentration [10], gas [11,12], short term  
electric load [13–15], revenue [16], precipitation [17], wind speed [18], hydropower consumption  
forecasting [19], and so on. However, we regret that few literatures study the modeling of control valve 
using LS-SVM. This paper explores the feasibility of using the LS-SVM model to forecast the 
upstream pressure of control valve. The forecasting performance of the LS-SVM model largely 
depends on the values of its two parameters. Currently, several meta-heuristic algorithms have been 
used to determine the optimal values of these two parameters, including particle swarm  
optimization [11], genetic algorithm [12], chaotic differential evolution approach [20], artificial bee 
colony algorithm [21], and simulated annealing algorithm [22]. However, these algorithms have some 
drawbacks such as being hard to understand and reaching the global optimal solution slowly.  

The fruit fly optimization algorithm (FOA) is a novel evolutionary optimization technique, which 
was proposed by Pan in 2011 [23]. This new optimization algorithm has the advantages of being easy 
to understand and of reaching the global optimal solution fast. Recently, the FOA has been applied  
for different problems, for example PID controller tuning [24], power load forecasting [25,26], web 
auction logistics service [27] and financial distress [23]. Therefore, this paper attempts to use the FOA 
to optimize the two necessary parameters in order to improve the performance of the LSSVM model in 
upstream pressure forecasting of the control valve. 

The outline of the paper is as follows. Section 2 introduces the physical model and LS-SVM model 
of upstream pressure. Section 3 studies the influence of the LS-SVM parameters on identification 
performance. Then, in Section 4, the process of optimizing the parameters of LS-SVM based on FOA 
is introduced in detail. Section 5 introduces the method of sampling the test data, the predicting results 
and comparison between FOA, the particle swarm optimization (PSO) and the grid search method. 
Finally, the proposed modeling method is concluded in Section 6. 
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2. LS-SVM Upstream Pressure Model of Control Valve 

2.1. Physical Model of the Upstream Pressure of Control Valve 

The upstream pressure adjusting equation of the control valve can be deduced from the physical 
properties of the fluid and the restriction characteristics [28], that is: 

2 4

1 2 2 2 2

ρ(1 β )
2ε r

qp p
A E
−

= +  (1)

where p1 is the upstream pressure, p2 is the downstream pressure, q is the flow rate, ρ is the mean 
density of fluid, β is ratio of contractive section diameter to the pipe diameter, ε is the expansion factor 
which is influenced by the temperature T, Ar is the area of contractive section which is the function of 
the opening of the control valve (%) and E is velocity coefficient. 

From Equation (1), the upstream pressure can be written as a function f of the physical properties of 
the fluid and control valve in Equation (2): 

1 2( , , ,%)p f p q T=  (2)

Now, if the non-linear relation in Equation (2) is known, the upstream pressure of control valve can 
be obtained by simply measuring the downstream pressure, the flow rate, temperature and the percentage 
of opening of the control valve. However, the computational calculations of the upstream pressure from 
Equation (2) may not be practical for the real-time control of the upstream-pressure-control valve due to 
the strong non-linearity and complexity. To overcome this problem, the LS-SVM is used to capture the 
relationship between the upstream pressure and the properties of the fluid and the control valve. 

2.2. Introduction to LS-SVM 

LS-SVM is a kind of learning machine which can estimate the relationships between input and 
output of a system. The algorithm is as follows: 

Given a training sample set (xi, yi), i = 1, 2,L , l, where xi ∈Rn is the input values, yi ∈R is the 
output values and l is the number of the samples. First, the sample set is mapped to a high-dimensional 
feature space Rnh from the original space Rn through a nonlinear mapping. Then, an optimal linear 
regression function f(x) = ωφ(x) + b is constructed in the high-dimensional space. According to 
structure risk minimization, ω and b can be obtained from minimizing J = ||ω||2 + CE. Where φ(x) is 
the feature map mentioned above, J is the regularized cost function, ω is the weight vector of the high 
dimensional feature space, ||ω||2 = ωTω  is the complexity of algorithm model, b is the deviation, C is 
the regularization constant and E is the loss function using the quadratic term of the slack variable ξ. 
The regression problem of function can be represented as the optimization problem of the regularized 
cost function J: 
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To solve the optimization problem of Equation (3), a Lagrange function is constructed: 
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where αi are Lagrange multipliers. The conditions for optimality are: 
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Equation (5) can be rewritten as: 
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After contracting ω and ξi, we get: 
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According to the Mercer’s condition, there is the kernel function as: 

, ) φ( )φ( )i iK x x x x=（  (8)

Then we can obtain the estimate LS-SVM function of the upstream pressure in Equation (2) as: 

1
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where x ∈  R4 is the input variables including p2, q, T, %. Lagrange multipliers αi and the deviation b 
are obtained from the set of linear Equation (7). The kernel function can be any symmetric function 
satisfying the mercer condition. Typical examples are linear kernel, polynomial kernel and radical 
basis function (RBF). In this study, the RBF kernel function K(x,xi) = exp[−||x − xi||2/(2σ2)] is used. 
Consequently, there are two sensitive parameters in the estimation of LS-SVM including the 
regularization constant C and kernel bandwidth σ. 

3. Influence of the LS-SVM Parameters on Identification Performance 

The performance of LS-SVM with RBF kernel function is influenced by the regularization constant 
C and kernel bandwidth σ. C is introduced to measure the trade-off between complexity and losses.  
It adjusts empirical risk and confidence interval to lead to a good generalization performance. If the 
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value is too small, the punishment of error is small, which makes big training error and poor 
generalization ability. If the value is too big, then only the risk of experience is minimized but the 
complexity of the model is not considered, which will also bring poor generalization ability. Smaller σ 
might yield the SVM over trained and make the kernel matrix trend toward unit matrix. On the 
contrary, bigger σ will make the kernel function tend to be constant. 

In order to contrast the influences of different C and σ, simulated tests are carried out four times 
respectively. The sampling set is from an actual pressure control system of chlorine in a salt industry 
plant which will be introduced in Section 5. Six hundred sample data are randomly divided into five 
groups. Among them, four groups are the training data and the other group is the test data. The mean 
squared error (MSE) is used to estimate the forecast accuracy. 

In the first set of experiments σ is fixed at 0.04 while the value of C is varied. Then in the second 
set of experiments C is set to 200 while the different σ values are tested. The relationships of MSE 
versus C and σ are displayed in Figure 1a,b respectively. The values of C and σ that minimize MSE are 
listed in Table 1. It can be observed from Figure 1 and Table 1: Firstly, for the fixed sampling data set, 
different parameter values (e.g., C of the first test in Figure 1a) make the performance of LS-SVM 
different. There is an optimal parameter value minimizing the MSE. Secondly, the test data is different 
among the four times experiments because of they are fetched randomly from the sample set. 
Moreover, the optimal parameter values of four times are also different. Thereby, we can draw the 
conclusion that the optimal parameter value varies with the sample data, even for the same predicting 
object. In brief, to get the best modeling performance, it is necessary to optimize the parameters C and 
σ before every regression for any data set. 

Figure 1. Prediction accuracy versus parameters. (a) versus C (σ = 0.04); (b) versus σ  
(C = 200). 
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Table 1. The optimal parameters for different training and test sampling. 

Test Number 1 2 3 4 
Optimal C (σ = 0.04) 110 430 550 110 
Optimal σ (C = 200) 0.04 0.10 0.8 0.04 
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4. Optimize Parameters of LS-SVM Employing Fruit Fly Optimization Algorithm 

Fruit Fly Optimization Algorithm (FOA) is a new approach for finding global optimization based 
on the food finding behavior of the fruit fly [23]. 

The process of optimizing the parameters C and σ using FOA is divided as follows and the flow 
diagram is illustrated in Figure 2 [25,29,30]. 

Figure 2. The flow diagram of fruit fly optimization algorithm (FOA). 
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Step 1. Data preprocessing, mainly including normalization processing and dividing the sample data 
into training data and test data. 

Step 2. Initialize the parameters and the initial position of FOA: first, set the maximum number of 
generations (gen), the initial value of Smellbest (bigger enough than the actual max MSE) and 
population size (NP); and second, randomly initial fruit fly group location (XG, YG) = (X0, Y0). 

Step 3. Give the random direction η and swarm radius R. The coordinates of the nth fruit fly  
(Xn,Yn ) is: 

η 0.5 η 0.5n G n GX X R Y Y R= + − = + −（ ） （ ） (10)

where n = 1, 2, …, NP and η ∈  [0,1] is a random number. 
Step 4. Because the food location cannot be known, the distance to the origin is estimated first (Dn), 

then the smell concentration judgment value (S) is calculated whose value is the reciprocal of distance 
and Cn, σn can be calculated. 

2 2 , 1/ , 20 , σ 0.1n n n n n n n n nD X Y S D C S S= + = = =  (11)
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Step 5. Train LS-SVM model using σn, Cn and then conduct the 4-fold cross-validation tests. The 
smell concentration judgment function (or called fitness function) is defined as: 

4
2

1 1

1 1 ˆ[ ( ) ]
4

m

n ij ij
i j

Smell y y
m= =

= −∑ ∑
 

(12)

where m is the number of the data in every sample subset, ŷij is the predicted value and yij is the  
actual value. 

Step 6. Find out the fruit fly with the minimum Smell value in the whole fly swarm and its index 
among the fruit fly swarm. 

[ ] min( )bestSmell bestIndex Smell=  (13)

Step 7. Judge if the bestSmell is superior to the previous Smellbest, if so, the fruit fly swarm will  
use vision to fly towards that location. The Smellbest and the coordinate of the fly group (XG, YG)  
are updated: 

, ( ) , ( )G GSmellbest bestSmell X X bestIndex Y Y bestIndex= = =  (14)

Otherwise, go to step 8. 
Step 8. Judge if the iteration is end, if not, go to step 3 and continue to cycle. Otherwise, obtain the 

optimal values of C and σ, and begin to predict using LS-SVM. 
According to the iteration steps above, there are only three parameters to be set including the 

population size, the initial position of population and the maximum iteration times. 

5. Modeling Design of LS-SVM Based on FOA and Simulation Test 

5.1. Sampling Data 

As an example, a sample set from an actual pressure control system of chlorine in a salt industry 
plant (shown in Figure 3) is used to model the upstream pressure of the control valve. In order to 
maintain a normal production, the pressure of the chlorine pipeline should be maintained between  
29–30 KPa. This is accomplished by a control valve. Its opening is adjusted according to the actual 
production situation to guarantee the needed upstream pressure. In the process of production, the 
temperature of chlorine changes little and the downstream pressure is influenced by the upstream 
pressure, opening and the flow rate. Consequently, in order to improve the computing speed, the 
simulation test uses the opening and the flow rate as the input data to predict the upstream pressure. 
The test results shown in Section 5.2 indicate that using the two independent variables can reach  
a satisfactory accuracy.  

A set of 600 data is sampled in the process of commissioning by the DCS every 20 s. Table 2 shows 
the descriptive statistical values of the indexes. The data set is divided averagely into five groups. 
Among them, four groups are used as training data and the other group is used to test the model. 
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Figure 3. Diagram of chlorine pressure control system. 

 

Table2. The descriptive statistical values of the test data. 

Factor Max Min Avg Std 
flow rate (Nm3/h) 3666.3 1068.9 2256.3 920.6342 

Opening (%) 61.9 36.2 48.2 8.6493 
upstream pressure(kPa) 22.81 16.64 19.75 1.9464 

5.2. Simulation Result and Analysis 

The upstream pressure of control valve shown in Figure 3 is modeled using LS-SVM. The 
parameters σ and C are optimized using the proposed FOA. The population size is 10 and the iteration 
number is 50. The mean square error (MSE) is calculated as the smell concentration judgment function 
(or called fitness function). The optimal values of parameters are: σ = 102.6146, C = 0.0410. The 
simulation results are shown in Figures 4 and 5. Figure 4 is comparison of the predicted value and the 
actual output and Figure 5 is the estimated errors curve. The MSE value is 2.474 × 10−3 and the mean 
absolute error (MAE) is 0.808 × 10−3 kPa. These indicate that the presented approach shows a quite 
satisfactory accuracy. 

Figure 4. Comparison between the actual values and predict output. 
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Figure 5. Output errors of upstream pressure. 
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The convergence histories of three different fruit fly swarm initial positions (X0 and Y0 which are 
obtained randomly in the interval [0, 10]) are compared in Figure 6. Table 3 gives their corresponding 
optimal performances. In Figure 6, the three smell concentrations (minimum mean square error, MSE) 
of the first iteration are different because of their various initial positions. Nevertheless, all the three 
lines decline sharply at the early stage of iterations and eventually converged to a steady. In Table 3, it 
can be found that three optimal results (values of C and σ) and computing time are almost the same, 
and the three MSE values of predicting the upstream pressure using the optimal C and σ are basically 
the same too. This indicates that the initial position of the fruit fly swarm does not affect the optimal 
speed, the optimal results, the computing time and the accuracy of prediction basically. 

Figure 6. Convergence histories of different initial positions. 
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Table 3. Influence of different fruit fly initial position. 

No. X0 Y0 C σ t/s MSE/×10 
1 [4.0827,1.7092] [2.1143,2.2204] 91.6280 0.0367 37.6 2.8696 
2 [8.1323,7.1531] [3.2878,2.0229] 92.0664 0.0368 32.5 2.8696 
3 [5.3693,3.4270] [1.5230,4.7771] 93.1784 0.0373 33.0 2.8697 
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At present, in the area of parameter optimization, particle swarm optimization (PSO) algorithm is 
the most frequently studied and is widely applied, and the grid search method is the simplest 
algorithm. In this article, parameters of C and σ are also optimized by PSO and the grid search 
algorithm respectively. The scope of C is [2−10, 210] and that of σ is [0, 0.2]. Without loss of generality, 
the iteration times of the two algorithms are set to be 50 and number of particle is 10, which are  
the same with FOA. Comparison of the convergence histories is shown in Figure 7 and the predicting 
performance indicators are listed in Table 4 in which MSE are the mean square error, MAE are the 
mean absolute error.  

Figure 7 shows that FOA has faster convergence speed and equal optimal result compared with the 
other two algorithms. The test indicators in Table 4 further improve the above conclusion. All the three 
methods could give good LSSVM parameters with offering small MSE and MAE as shown in Table 4. 
They are equal in forecasting performance. However, from the time consuming point of view, FOA 
has a significant advantage. Therefore, FOA is more suitable for the online prediction of the pressure 
of control valve. 

Figure 7. Convergence histories of least squares support vector machine (LS-SVM) 
parameters using different optimization algorithms. 
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Table 4. Prediction performances using FOA, PSO and grid search. 

Optimization Method MSE/×10−3 MAPE/% MSE/×10−3kPa Error Range/kPa t/s 
FOA 2.474 0.1896 0.808 [−0.69, 0.77] 27.253 
PSO 2.462 0.1888 1.043 [−0.71, 0.76] 43.649 

Grid Search 2.497 0.1906 1.024 [−0.71, 0.77] 50.451 

6. Conclusions 

A new modeling method of control valve based on LS-SVM with the parameters optimized by the 
fruit fly optimization algorithm is presented. Firstly, the influence of regularization constant C and 
kernel bandwidth σ on the LS-SVM modeling performance is studied. Results indicate the optimal 
parameter value will be different for different sampling data set. Secondly, the article introduces the 
detailed steps of optimizing parameters of LS-SVM employing FOA. Finally, as an example,  
the method is used to forecast the upstream pressure of a control valve in a salt industry plant.  
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The test data is sampled by the DCS of the plant. The validity of FOA is verified by comparing the 
predicted results with the actual data. The values of MSE and MAE respectively are 2.474 × 10−3 and 
0.808 × 10−3 kPa. In addition, in order to further observe the optimization ability, simulation 
experiments based on PSO algorithm and the grid search method are carried out. With the prediction 
results comparison, the LS-SVM model based on FOA has equal performance in prediction accuracy. 
However, FOA has a significant advantage because it is less time consuming and is more suitable for 
the online prediction. 
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