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Abstract: Production processes in Cellular Manufacturing Systems (CMS) often involve 
groups of parts sharing the same technological requirements in terms of tooling and setup. 
The issue of scheduling such parts through a flow-shop production layout is known as the 
Flow-Shop Group Scheduling (FSGS) problem or, whether setup times are sequence-dependent, 
the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS) problem. This paper 
addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating 
features from Genetic Algorithms (GAs) and Biased Random Sampling (BRS) search 
techniques with the aim of minimizing the total flow time, i.e., the sum of completion 
times of all jobs. A well-known benchmark of test cases, entailing problems with two, 
three, and six machines, is employed for both tuning the relevant parameters of the 
developed procedure and assessing its performances against two metaheuristic algorithms 
recently presented by literature. The obtained results and a properly arranged ANOVA 
analysis highlight the superiority of the proposed approach in tackling the scheduling 
problem under investigation. 
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1. Introduction 

During the last few decades, the Cellular Manufacturing (CM) production philosophy has been 
implemented with favorable results in many manufacturing firms. According to CM principles, parts 
requiring similar production processes are grouped in distinct manufacturing cells, made by dedicated 
clusters of machines. The main advantages connected to the use of CM production strategies usually 
include reduction of setup and throughput times, simplified material handling, centralization of 
responsibilities, better quality, and production control [1–3]. Furthermore, the CM approach also 
facilitates the adoption of advanced manufacturing technologies, such as computer integrated 
manufacturing, Just In Time JIT production and flexible manufacturing systems [4]. 

The design of a Cellular Manufacturing System (CMS) usually starts with the cell formation  
phase, in which parts are clustered in families and groups of machines are identified; the second  
step consists in defining the machine layout within each cell and the arrangement of cells with regards 
to each other; then, a proper schedule concerning part families to be processed at each cell has to  
be determined; finally, the issue of allocating tools, materials, and human resources to each cell has to 
be addressed [5]. 

Due to similarities among their process requirements, parts belonging to the same family generally 
visit machines in a cell according to the same sequence. Therefore, manufacturing operations within cells 
often follow a flow-shop scheme [6]. An important benefit of the CM approach actually lies in the fact 
that even traditional batch or job-shop manufacturing operations may be easily converted in simpler 
flow-lines [7]. Furthermore, there often exist minor differences in terms of setup requirements among 
parts belonging to the same family. Notably, each family may be divided into smaller groups made by 
jobs sharing the same setup operations to be performed on the machines composing the cell [8]. The 
problem of scheduling jobs in such a manufacturing system is usually referred to as the Flow-Shop 
Group Scheduling (FSGS) problem. 

In a classical FSGS problem, a measurable setup is required when switching from one group of 
parts to another, whereas the setup time between jobs belonging to the same group either is assumed  
to be negligible or it can be included along with the run time. Therefore, there exists a clear advantage 
in processing together jobs belonging to the same group, arranging the whole production schedule 
through subsequent groups. The decision issue to be addressed when facing a FSGS problem is, thus, 
twofold: the optimal sequence of groups and the optimal sequence of jobs within each group have to be 
determined with reference to a given performance measure. However, since each feasible solution for  
a FSGS problem may be described by a simple sequence of jobs passing through each machine 
belonging to the manufacturing cell, such a problem still remains a permutation scheduling issue, as in 
classical flow-shops. 

A pioneer research on the FSGS problem was carried out by Ham, Hitomi, and Yoshida [9], who 
proposed an optimizing algorithm for minimizing the total completion time in a two-machine group-
scheduling problem. A similar issue was addressed by Logendran and Sriskanadarajah [10] under  
the makespan minimization viewpoint. The authors investigated the NP-hardness of such a problem, 
taking into account blocking effects and anticipatory setups. Two years later, Logendran, Mai and 
Talkington [11] compared the performances reported by several single-pass and multi-pass heuristic 
algorithms for minimizing the makespan in FSGS problems with up to 10 machines. 
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The recent research addressing group scheduling issues in flow-shop manufacturing environments 
has been mainly focused on the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS) problem, 
in which the time required for performing setup operations of each group of jobs depends on the 
technological features of the previously processed group. The interest towards the FSDGS problem has 
been basically motivated by the implications of such a scheduling issue in the real industrial practice. 
Examples of FSDGS problems have been observed in Printed Circuit Boards (PCBs) manufacturing [12], 
in furniture production [13], in paint and press shops of automobile manufacturers [14]. 

The reviews proposed by Allahverdi, Gupta, and Aldowaisan [15], Cheng, Gupta, and Wang [16], 
and Zhu and Whilelm [17], respectively, have discussed the basic aspects of the FSDGS issue, together 
with other cases of flow-shop problems involving setup considerations. Schaller, Gupta, and  
Vakharia [18] provided lower bounds and efficient heuristic algorithms for minimizing makespan in  
a flow-line manufacturing cell with sequence dependent family setup times. One year later, a similar 
topic was addressed by Schaller [6], who developed a heuristic method combining a branch and bound 
approach with an interchange procedure specifically designed to search for better job sequences within 
each group. França, Gupta, Mendes, Moscato, and Veltink [19] evaluated the performances of two 
evolutionary algorithms—a Genetic Algorithm (GA) and a Memetic Algorithm (MA) equipped with  
a local search—in terms of makespan minimization in a flow-shop manufacturing cell with sequence 
dependent family setups. After an extensive comparison conducted against the best metaheuristic 
available in literature and a properly developed multi-start algorithm, the authors demonstrated  
the superiority of both the proposed metaheuristics, with a slight outperformance of the memetic 
procedure. Logendran, Salmasi, and Sriskandarajah [20] proposed three different search algorithms 
based on Tabu Search (TS) for minimizing the total completion time in industry-size two-machine 
group scheduling problems with sequence dependent setups. The authors performed an extensive 
comparison among the developed procedures making use of mathematical programming-based lower 
bounds. A few years later, Hendizadeh, Faramarzi, Mansouri, Gupta, and ElMekkawy [21] presented 
various TS-based metaheuristics integrating features from Simulated Annealing (SA) for minimizing 
makespan in FSDGS problems up to 10 machines. A TS-based approach for the same scheduling issue 
was concurrently investigated by Salmasi and Logendran [22], who assessed the proposed procedure 
by means of the lower bounding technique proposed by Salmasi [23]. Celano, Costa, and Fichera [24] 
analyzed a flow shop sequence-dependent group scheduling problem with limited inter-operational 
buffer capacity truly observed in the inspection department of a company producing electronic devices. 
The authors proposed a matrix-encoding GA, validating its performances against a TS and the heuristic 
proposed by Nawaz, Enscore, and Ham [25] for the classical flow-shop problem. Salmasi, Logendran, 
and Skandari [14] developed a mathematical programming model in order to minimize the total flow 
time on the FSDGS problem, together with a TS and a Hybrid Ant Colony Optimization (HACO) 
algorithm for solving large-size issues. After having defined a wide benchmark of test cases arisen 
from real world manufacturing environments, the authors fulfilled an extensive comparison among the 
proposed metaheuristics, from which the outperforming results of the ant colony approach clearly 
emerged. One year later, Salmasi, Logendran, and Skandari [26] investigated the use of the HACO 
method for minimizing the makespan in a FSDGS problem, confirming the superiority of such 
metaheuristic compared to a memetic algorithm. With reference to the total flow time minimization 
objective, Hajinejad, Salmasi, and Mokthari [27] succeeded in outperforming the ant colony approach 
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by means of a properly developed hybrid Particle Swarm Optimization (PSO) algorithm. As far as the 
total completion time minimization is concerned, Naderi and Salmasi [28] improved the performances 
of the HACO method through a metaheuristic procedure, called GSA, hybridizing genetic and 
simulated annealing algorithms. 

Recently, Costa, Fichera, and Cappadonna [29] investigated the use of genetic algorithms for 
effectively addressing the makespan minimization issue in a FSDGS problem entailing skill differences 
among workers assigned to machines for executing setup tasks between groups. With reference to  
the same topic, Costa, Cappadonna, and Fichera [30] also demonstrated how a genetic algorithm-based 
approach outperforms the latest metaheuristic procedures available in literature. 

The aim of the present paper is to propose a GA-based algorithm for minimizing the total flow  
time in the classical FSDGS problem, able to improve the alternative optimization procedures  
recently presented in such field of research, namely the PSO by Hajinejad, Salmasi, and Mokthari [27] 
and the GSA by Naderi and Salmasi [28]. To this end, a hybrid genetic algorithm, hereinafter called 
GARS (Genetic Algorithm with Random Sampling), integrating features from the Random Sampling 
(RS) search technique, was specifically developed and assessed on the basis of a well-established 
problem benchmark. The proposed GARS is powered by two distinct crossover operators and two 
mutation methods. A specific diversity operator embedded in the algorithm allows to avoid premature 
convergence towards local optima, enhancing solution space exploration. On the other hand, the main 
contribution to the exploitation phase arises from the RS algorithm that cyclically investigates  
the space of solutions around the current best solutions. 

The remainder of the paper is organized as follows: Section 2 provides a description of the FSDGS 
problem. Section 3 illustrates the structure and the operators of the proposed metaheuristic procedure. 
Section 4 describes test problem specifications and reports results of the calibration campaign 
performed. In Section 5 an extensive comparison between the proposed algorithm and two alternative 
metaheuristic procedures arising from the latest literature is reported. Finally, Section 6 concludes  
the paper. 

2. Problem Description 

The proposed flow-shop group-scheduling problem can be stated as follows. A set of G groups  
of jobs has to be processed in a manufacturing cell with M machines arranged in a flow-shop layout. 
Each group g = 1, 2, ..., G holds ng jobs; the total amount of jobs to be processed along the system is 

equal to 
1

G

g
g

n N
=

=∑ . The setup time of each j-th job pertaining to group g (j = 1, 2, ..., ng) on machine  

i (i = 1, 2, ..., M) is included in its runtime tigj and does not depend on the preceding job. On the other 
hand, a sequence-dependent setup time Sihg is necessary when switching from a group h to group g  
on a given machine i. All jobs and groups are processed in the same sequence through each 
workstation. Group setup operations are assumed to be anticipatory, as they can be performed even if 
the first job belonging to the group is still unavailable. Pre-emption is not allowed, i.e., when a job 
starts to be processed, it must be completed before leaving the machine. All jobs are ready to be 
worked at the beginning of the scheduling period, being their release time equal to zero. Machines are 
continuously available during the whole production session. No precedence relationship exists either 
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among groups or among jobs belonging to the same group. The objective function to be minimized is 
the total flow time, i.e., the sum of completion times of all jobs. 

For sake of clarity, Tables 1–2 reports setup and processing times for an example problem in which  
M = 2, G = 2, n1 = 3, n2 = 2. It is worth noting that symbol Si0g denotes the time required to setup  
a group of jobs g whether it is the first group to be processed in machine i. An illustrative example is 
reported in the following paragraph to clarify what stated before. It refers to Table 1 where two groups 
with two and three jobs have been recognized, respectively. Let suppose to process a sequence of 
groups 2-1, while the corresponding job schedules for each group are: 1-2 for group two and 2-3-1 for 
group one. The related Gantt is shown in Figure 1, the total flow time value associated to such  
a schedule is F11 + F12 + F13 + F21 + F22 = 25 + 17 + 20 + 9 + 11 = 82. 

Table 1. Setup times for a Flow-Shop Sequence-Dependent Group Scheduling (FSDGS) 
example with M = 2, G = 2, n1 = 3, n2 = 2. 

Machine (i) Preceding Group (h) Group (g) Setup time (Sihg) 
1 0 1 1 
1 0 2 3 
1 1 2 1 
1 2 1 2 
1 0 1 2 
1 0 2 3 
1 1 2 5 
1 2 1 3 

Table 2. Processing times for a Flow-Shop Sequence-Dependent Group Scheduling 
(FSDGS) example with M = 2, G = 2, n1 = 3, n2 = 2. 

Machine (i) Group (g) Job (j) Processing time (Sihg) 
1 1 1 7 
1 1 2 2 
1 1 3 4 
1 2 1 1 
1 2 2 2 
2 1 1 4 
2 1 2 3 
2 1 3 3 
2 2 1 2 
2 2 2 2 
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Figure 1. Gantt chart for a FSDGS example with M = 2, G = 2, n1 = 3, n2 = 2. 

 

3. The Proposed Optimization Procedure 

According to Salmasi, Logendran, and Skandari [14], the total flow time minimization in a FSDGS 
problem is NP-hard. Therefore, a metaheuristic procedure is required to obtain valid solutions within a 
polynomial time. Since Costa, Cappadonna, and Fichera [30] recently proved both the efficacy and the 
efficiency of the genetic algorithm approach for solving the FSDGS problem, a GA-based optimization 
procedure embedding a random sampling search technique has been proposed for tackling the problem 
under investigation. 

Generally, a GA works with a set of problem solutions called population. At every iteration, a new 
population is generated from the previous one by means of two operators, crossover and mutation, 
applied to solutions (chromosomes) selected on the basis of their fitness, i.e., the objective function 
value; thus, best solutions have greater chances of being selected. Crossover operator generates new 
solutions (offspring) by coalescing the structures of a couple of existing ones (parents), while mutation 
operator brings a change into the scheme of selected chromosomes, with the aim to avoid the procedure 
to remain trapped into local optima. The algorithm proceeds by evolving the population through 
successive generations, until a given stopping criterion is reached. 

Whenever a real problem should be addressed through an evolutionary algorithm, the choice of  
a proper encoding scheme (i.e., the way a solution is represented by a string of genes) plays a key role 
under both the quality of solutions and the computational burden viewpoints [31]. In addition, a valid 
decoding procedure able to transform a given string into a feasible solution should be provided. 

The following subsections hold a detailed description of the proposed GA-based optimization 
procedure, along with the encoding/decoding strategies and the adopted genetic operators. A proper 
random sampling local search technique to be embedded in the proposed algorithm for enhancing its 
search performance will be dealt with in the next paragraphs. 

3.1. Problem Encoding 

For the proposed GARS procedure, a matrix-encoding scheme has been selected in order to 
simultaneously describe the sequence of groups and the sequence of jobs to be processed within each 
group. Making use of the notation introduced in the nomenclature Section, each chromosome is coded 
by an array of G + 1 row vectors. The first G vectors are the permutations  indicating the sequence gπ
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of jobs pertaining to each group g. The last vector is the permutation Ω representing the sequence  
of groups: 

 (1)

It is worth pointing out that the number of elements in each vector is generally unequal. Therefore, 
indicating with nmax the maximum length of all vectors, i.e., , all rows having  

a number of elements lower than nmax are completed with a string of zero digits. In such a way,  
a (G + 1) × nmax matrix is created, and the chromosome may be easily handled for executing all genetic 
operators. However, all the digits equal to zero do not take part either to the solution decoding or to  
the genetic evolutionary process. 

Each row of the partitioned matrix adopted in the proposed encoding scheme will be denoted as  
a sub-chromosome. Figure 2 depicts a feasible chromosome solution, named C, for a problem in which 
G = 3, n1 = 2, n2 = 5, n3 = 4. Sub-chromosomes from 1 to 3 hold the schedules of jobs within each 
group (i.e., schedule 2-1 for group 1, schedule 1-4-3-5-2 for group 2, schedule 2-1-4-3 for group 3. 
Sub-chromosome 4 fixes the sequence of groups Ω  = 3-2-1. Once the problem encoding is defined, 
the fitness function of each chromosome pertaining to the genetic population may be computed as the 

reciprocal of the total flow time, i.e., 
1 1

1/
gnG

gj
g j

F
= =

∑ ∑ . 

Figure 2. GARS matrix-encoding scheme. 

 

3.2. Crossover Operator 

The genetic material of two properly selected parent chromosomes is recombined through the 
crossover operator in order to generate offspring. The selection mechanism employed by the proposed 
GARS procedure is the well-known roulette wheel scheme [32], according to which individuals with  

1

1 1
1

1

1

1

,....,

...

,....,

...

,....,
,....,

g

G

n

g g
n

G G
n

G

π π

π π

π π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω Ω⎣ ⎦

{ }max 1
max( ,  max )

G

gg
n G n

=
=



Algorithms 2014, 7 383 
 

 

a better fitness have a higher chance to be selected. Once two parent chromosomes have been chosen 
from the current population, each couple of homogenous sub-chromosomes belonging to the parent 
solutions may be subject to crossover according to a certain probability pcr. Two methods of crossover 
operators have been adopted to recombine alleles within each couple of sub-chromosomes: they are 
denoted as Position Based Crossover (PBC) and Two Point Crossover (TPC), respectively. 

PBC method [33] works by randomly selecting two or more positions in a couple of parent  
sub-chromosomes (P1) and (P2). The genes of (P1) located in such positions are re-arranged in the 
same order as they appear in (P2), thus, keeping unchanged the other genes. The same procedure is 
then executed for parent (P2). Figure 3 provides an example of the PBC method for a couple of parents 
where positions {2}, {3}, and {5} have been selected. TPC crossover is a variant of the classical order 
crossover [34], specifically developed for the problem at hand. According to such method, two 
positions are randomly selected for each parent sub-chromosome, and the block of adjacent jobs 
located within such positions is re-arranged conforming to the order in which jobs appear in the other 
parent (see Figure 4). Whether a couple of sub-chromosomes is selected for crossover, the choice 
between PBC and TPC methods is performed according to a “fair coin toss” probability equal to 0.5. 

Figure 3. Position Based Crossover (PBC). 

 

Figure 4. Two Point Crossover (TPC). 
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3.3. Mutation Operator 

After a new population has been generated from the previous one by means of crossover, mutation 
operator is applied according to an a-priori fixed probability pm. Whether mutation occurs, a chromosome 
is randomly chosen from the population and then, a single sub-chromosome is randomly selected  
for mutation. The proposed GARS procedure makes use of two different operators, selected on  
the basis of a “fair coin toss” probability equal to 0.5: an Allele Swapping Operator (ASO), which 
performs an exchange of two randomly selected alleles; and a Block Swapping Operator (BSO) which 
exchanges two blocks of adjacent genes (see Figure 5). 

Figure 5. (a) Allele Swapping (ASO); and (b) Block Swapping (BSO) mutation Operators. 

 

3.4. Random Sampling Local Search 

Once a new population has been generated through crossover and mutation operators, a Biased 
Random Sampling (BRS) search procedure [35] is applied in order to search for better solutions in  
the neighbourhood of the best-performing chromosomes created so far. To this end, a sub-population 
having size Nbest  Npop made by the best individuals obtained after each generation, is selected.  
For each chromosome Cr (r = 1, 2, ..., Nbest) belonging to the sub-population, a sample of NBRS neighbour 
solutions is generated by modifying the sequence Ω of groups, i.e., the last sub-chromosome. In the 
present research NBRS has been set equal to 4. For each neighbour chromosome NCk

r (k = 1, 2, ..., NBRS) 

of Cr, the sequence of groups k
Ω  is obtained as follows. 

The first group 1
k

Ω of k
Ω  is drawn from the elements of Ω according to the following distribution  

of probabilities: 

,
1g

q g g

g

p α
α

= ×
∑

  (2)

where  is the probability to select Ωg, i.e., the g-th group of Ω, as first element of k
Ω . Such 

probability is “biased” in the sense that it favours the first group of Ω to the second, the second to  
the third, and so on. The parameter α is used to control how the probability decreases when moving 
from a group of Ω to the next. Conforming to Baker and Trietsch [35], a value of α = 0.8 has been 

selected. Thus, supposing to have G = 3, the first element of the new sub-chromosome k
Ω  will be 

drawn from Ω according to probabilities 0.410, 0.328, and 0.262 for the first, the second, and the third 
group of  Ω, respectively. 

≤

1, 2,...,g G=

1,gp
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Once 1
k

Ω  has been drawn, the second group of k
Ω , i.e., 2

k
Ω , will be extracted from the remaining 

ones. More in general, the q-th group of k
Ω will be drawn from the remaining elements of Ω according 

to the following distribution of probabilities: 

,
1g

q g g

g

p α
α

= ×
∑

 
1, 2,..., 1g G q= + −  (3)

After a total amount of NBRS neighbor solutions are originated from chromosome Cr, the best one is 
used for replacing Cr in the current population, just in case it leads to a lower total flow time value. 
Then, the same procedure is executed for the next chromosome of the selected sub-population. 

3.5. Diversity Operator 

In order to avoid any premature convergence towards the final solution, the proposed algorithm 
makes full use of a population diversity control technique, which identifies the number of duplicate 
solutions in the population generated after crossover, mutation and BRS search procedure. Then,  
a mutation operator is applied to those identical chromosomes exceeding a pre-selected value Dmax.  
As a consequence, each newly-generated population cannot hold more than Dmax copies of the  
same solution. 

It is worth noting that the lower is Dmax, the higher is the pressure towards population heterogeneity. 
Nevertheless, the computational burden of the whole metaheuristic algorithm tends to increase as Dmax 
decreases, since a higher number of mutation operations have to be performed after each generation.  
In the present research, a Dmax = 2 value has been selected, thus avoiding to have more than  
two identical solutions within the population created at each generation. 

3.6. Elitist Strategy and Stopping Criterion 

In order to avoid any loss of the current best genetic information, an elitist strategy has been 
adopted at each generation to avoid any loss of the two best individuals. The termination rule of  
the proposed procedure consists in seconds of CPU time, similarly being done by Naderi and 
Salmasi [28]. The convergence of the algorithm within such time limit has been verified through  
a preliminary experimental campaign. 

3.7. Procedure of GARS Algorithm 

To sum up, the whole optimization strategy followed by the proposed GARS can be illustrated 

through the following steps: 

Step 1: Initialization of parameters Npop, pcr, pm, Dmax, Nbest, NBRS, α; 
Step 2: Generation of initial random population of chromosomes; 
Step 3: Application of crossover operator, chosen between Position Based and Two Point 

Crossover, to a couple of chromosomes chosen through roulette-wheel selection; 

N M⋅
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Step 4: Generation of the new population after crossover operator through the insertion of the two 
best chromosomes individuated between parents and offspring: the two individuals with 
best values of fitness are introduced in the population; 

Step 5: Evaluation of pm. If it is verified go to Step 6, else go to Step 7; 
Step 6: Application of mutation operator, chosen among two different operators: Allele Swapping 

and Block Swapping. The operator is applied randomly to a chromosome of the population; 
Step 7: Application of BRS procedure to the Nbest best individuals of the population; 
Step 8: Population control: a mutation operator is applied on duplicates exceeding Dmax.; 
Step 9: Updating of the current population, then return to Step 3. 

4. Experimental Calibration and Test Cases 

Before comparing the proposed GARS against alternative optimization procedures emerging from 
the recent literature in the field of the FSDGS problems, a comprehensive calibration phase has been 
fulfilled in order to properly set all the relevant parameters of the developed metaheuristic. To this end, 
the experimental benchmark proposed by Salmasi, Logendran, and Skandari [26] has been employed. 
Therefore, three-distinct sub-benchmarks, entailing problems with 2, 3, and 6 machines, respectively, 
have been considered. Within each sub-benchmark, test cases have been generated combining  
three factors, namely number of groups, number of jobs within groups and setup times of groups on 
each machine, in a full-factorial experimental design, as shown in Tables 3–5. On the whole, a total of 
27 + 81 + 27 = 135 separate instances, describing a consistent dataset for the presented problem have 
been generated. All instances have been created by extracting job processing times according to  
a uniform distribution in the range [1,20]. 

Table 3. Sub-benchmark of instances for the 2-machine FDSGS problem. 

Factor Level Value 

Number of groups 
1 U [1,5] 
2 U [6,10] 
3 U [11,16] 

Number of jobs in a group 
1 U [2,4] 
2 U [5,7] 
3 U [8,10] 

Setup times of machine Mi 

1 M1 → U [1,50] M2 → U [17,67] 
2 M1 → U [1,50] M2 → U [1,50] 
3 M1 → U [17,67] M2 → U [1,50] 
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Table 4. Sub-benchmark of instances for the 3-machine FDSGS problem. 

Factor Level Value 

Number of groups 
1 U [1,5] 
2 U [6,10] 
3 U [11,16] 

Number of jobs in a group 
1 U [2,4] 
2 U [5,7] 
3 U [8,10] 

Setup times of machine Mi 

1 M1 → U [1,50] M2 → U [17,67] M3 → U [45,95] 
2 M1 → U [17,67] M2 → U [17,67] M3 → U [17,67] 
3 M1 → U [45,95] M2 → U [17,67] M3 → U [1,50] 
4 M1 → U [1,50] M2 → U [17,67] M3 → U [17,67] 
5 M1 → U [1,50] M2 → U [17,67] M3 → U [1,50] 
6 M1 → U [17,67] M2 → U [17,67] M3 → U [45,95] 
7 M1 → U [17,67] M2 → U [17,67] M3 → U [1,50] 
8 M1 → U [45,95] M2 → U [17,67] M3 → U [45,95] 
9 M1 → U [45,95] M2 → U [17,67] M3 → U [17,67] 

Table 5. Sub-benchmark of instances for the 6-machine FDSGS problem. 

Factor Level Value 

Number of groups 
1 U [1,5] 
2 U [6,10] 
3 U [11,16] 

Number of jobs in a group 
1 U [2,4] 
2 U [5,7] 
3 U [8,10] 

Setup times of machine Mi 

1 
M1 → U 

[1,50] 
M2 → U 
[17,67] 

M3 → U 
[45,95] 

M4 → U 
[92,142] 

M5 → U 
[170,220] 

M6 → U 
[300,350]

2 
M1 → U 

[1,50] 
M2 → U 

[1,50] 
M3 → U 

[1,50] 
M4 → U 

[1,50] 
M5 → U 

[1,50] 
M6 → U 

[1,50] 

3 
M1 → U 
[300,350]

M2 → U 
[170,220]

M3 → U 
[92,142]

M4 → U 
[45,95] 

M5 → U 
[17,67] 

M6 → U 
[1,50] 

Table 6 illustrates the tested parameters, and denotes in bold the best combination of values,  
chosen after an ANOVA analysis [36] performed by means of Stat-Ease® Design-Expert® 7.0.0 
commercial tool. As it can be noticed, four experimental factors have been tested at three different 
levels. Therefore, 34 = 81 distinct configurations of GARS procedure have been considered, gaining  
a total of 135 × 81 = 10,935 experimental runs. GARS procedure has been coded in MATLAB® 
language and executed on a 2 GB RAM virtual machine embedded on a workstation powered by  
two quad-core 2.39 GHz processors. 

The response variable chosen for the calibration phase was the Relative Percentage Deviation (RPD) 
from the best heuristic solution available, calculated according to the following formula: 
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100 sol sol

sol

GARS BestRPD
Best

−
= ×    (4)

where GARSsol is the solution provided by the heuristic procedure running with a certain combination of 
parameters, and Bestsol is the best solution among those provided by all configurations of GARS 
launched with reference to a given test problem. 

Table 6. Genetic Algorithm with Random Sampling GARS experimental calibration. 

Parameter Notation Values 
Population size Npop (30, 50, 70) 

Crossover probability pcr (0.5, 0.7, 0.9) 
Mutation probability pm (0.05, 0.1, 0.2) 

Size of the sub-population to be modified through BRS procedure Nbest ( 0.3 popN⋅ , 0.5 ⋅ popN , popN )

5. Numerical Results 

Once the calibration phase has been completed, an extensive comparison campaign has been 
performed in order to assess the performances of the proposed GARS against the latest alternative 
metaheuristic procedures proposed by the relevant literature in the field of FSDGS. To this end,  
the hybrid Particle Swarm Optimization (PSO) algorithm developed by Hajinejad, Salmasi and 
Mokhtari [27] and the hybridizing metaheuristic procedure combining genetic algorithm and simulated 
annealing (GSA) devised by Naderi and Salmasi [28] have been considered. The same experimental 
benchmark employed for the calibration phase has been adopted. This time, two distinct replicates 
have been randomly generated for each combination of experimental factors. Therefore, a total amount 
of 54 + 162 + 54 = 270 separate test cases have been created. Each instance has been solved by  
the three optimization procedures, running with a stopping criterion of N × M seconds of CPU  
time. On the whole, a number of 270 × 3= 810 experimental runs have been executed. In order to 
perform a fair comparison among the procedures considered, the Relative Percentage Deviation from 
the best heuristic solution has been computed for each algorithm and for each experimental instance  
as follows: 

100 sol sol

sol

ALG BestRPD
Best

−
= ×  (5)

where ALGsol is the solution provided by a given algorithm with reference to a certain test problem  
and Bestsol is the best heuristic solution available for the same problem, i.e., the lowest total flow time 
value among those provided by the three aforementioned algorithms. The average random percentage 
deviations RPDs obtained by GARS, PSO, and GSA are reported in Tables 7–9. Each table refers to a 
given sub-benchmark of the proposed experimental design, at varying number of machines. Boldfaced 
values put in evidence the best average RPD the combination experimental factors changes. 
  

1, 2,...,g G=

1, 2,...,g G=
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Table 7. Average Random Percentage Deviation RPD values for two-machine problems. 

Level of Factors Average RPD 
Number of groups Number of jobs in a group Setup times of machine Mi GARS PSO GSA 

1 1 1 0.000 0.000 0.000 
1 1 2 0.000 1.033 0.061 
1 1 3 0.000 2.337 11.527
1 2 1 0.000 0.599 0.158 
1 2 2 0.245 1.044 1.430 
1 2 3 0.000 1.644 9.532 
1 3 1 0.000 0.976 0.406 
1 3 2 0.000 0.653 2.378 
1 3 3 0.053 0.956 2.774 
2 1 1 0.000 0.049 0.000 
2 1 2 0.000 0.051 0.013 
2 1 3 0.000 2.265 13.402
2 2 1 0.000 0.016 0.064 
2 2 2 0.000 0.505 0.460 
2 2 3 0.000 3.979 10.625
2 3 1 0.000 0.246 0.294 
2 3 2 0.000 0.576 0.497 
2 3 3 0.000 1.243 5.488 
3 1 1 0.000 0.021 0.000 
3 1 2 0.034 0.153 3.093 
3 1 3 1.624 0.000 6.121 
3 2 1 0.000 0.000 0.000 
3 2 2 0.000 1.027 2.141 
3 2 3 0.816 0.210 1.678 
3 3 1 0.000 0.156 0.254 
3 3 2 0.000 1.156 1.444 
3 3 3 0.000 1.948 5.737 

average - - 0.103 0.846 2.947 
  



Algorithms 2014, 7 390 
 

 

Table 8. Average RPD values for three-machine problems. 

Level of Factors Average RPD 
Number of groups Number of jobs in a group Setup times of machine Mi GARS PSO GSA 

1 1 1 0.000 0.000 0.000
1 1 2 0.000 0.388 1.841
1 1 3 1.297 0.000 6.550
1 1 4 0.000 0.215 0.051
1 1 5 0.000 0.392 1.745
1 1 6 0.317 1.495 4.575
1 1 7 0.000 0.389 0.288
1 1 8 0.662 0.282 0.167
1 1 9 0.199 0.000 2.637
1 2 1 0.000 0.946 0.000
1 2 2 0.000 0.000 0.092
1 2 3 0.438 1.575 7.851
1 2 4 0.000 0.000 0.000
1 2 5 0.000 1.065 0.138
1 2 6 0.000 1.287 6.672
1 2 7 0.000 1.025 0.210
1 2 8 0.000 1.153 1.147
1 2 9 0.000 2.348 2.968
1 3 1 0.000 0.000 0.000
1 3 2 0.000 0.621 1.084
1 3 3 0.000 1.112 6.562
1 3 4 0.000 0.282 0.165
1 3 5 0.000 0.518 1.233
1 3 6 0.000 1.096 2.454
1 3 7 0.000 0.597 0.147
1 3 8 0.000 1.091 0.445
1 3 9 0.000 2.039 5.476
2 1 1 0.000 0.415 0.000
2 1 2 0.326 0.000 1.145
2 1 3 0.000 0.408 6.590
2 1 4 0.000 0.260 0.032
2 1 5 0.017 0.349 1.089
2 1 6 0.318 0.578 4.110
2 1 7 0.442 1.356 0.064
2 1 8 0.000 0.984 1.734
2 1 9 0.000 1.732 3.991
2 2 1 0.000 0.091 0.000
2 2 2 0.000 0.294 0.624
2 2 3 0.000 0.723 10.149
2 2 4 0.000 0.030 0.114
2 2 5 0.000 0.599 1.343
2 2 6 0.550 0.376 3.401
2 2 7 0.000 0.535 0.336
2 2 8 0.132 0.409 0.415
2 2 9 0.000 1.768 2.571
2 3 1 0.000 0.000 0.000
2 3 2 0.000 0.436 0.527
2 3 3 0.212 0.189 2.433
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Table 8. Cont. 

Level of Factors Average RPD 
Number of groups Number of jobs in a group Setup times of machine Mi GARS PSO GSA 

2 3 4 0.000 0.007 0.136
2 3 5 0.000 0.334 0.696
2 3 6 0.000 0.987 5.687
2 3 7 0.052 1.019 0.061
2 3 8 0.000 1.412 0.998
2 3 9 0.000 1.023 3.635
3 1 1 0.000 0.000 0.000
3 1 2 0.000 0.231 0.035
3 1 3 1.955 0.005 5.798
3 1 4 0.000 1.477 0.289
3 1 5 0.000 0.604 0.361
3 1 6 0.000 1.599 6.493
3 1 7 0.000 1.001 0.221
3 1 8 0.000 1.263 0.596
3 1 9 0.000 1.622 3.721
3 2 1 0.000 0.000 0.000
3 2 2 0.000 0.164 2.327
3 2 3 1.146 1.220 5.157
3 2 4 0.000 0.155 0.000
3 2 5 0.000 0.681 0.918
3 2 6 0.000 2.853 7.268
3 2 7 0.000 0.424 0.226
3 2 8 0.006 1.103 0.188
3 2 9 0.225 0.190 3.545
3 3 1 0.000 0.000 0.000
3 3 2 0.000 0.276 0.023
3 3 3 0.000 0.484 5.681
3 3 4 0.000 0.000 0.054
3 3 5 0.035 0.194 0.431
3 3 6 0.000 1.781 5.212
3 3 7 0.000 0.774 0.106
3 3 8 0.000 0.312 0.328
3 3 9 0.000 1.325 3.354

average - - 0.103 0.691 1.959
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Table 9. Average RPD values for six-machine problems. 

Level of Factors Average RPD 
Number of groups Number of jobs in a group Setup times of machine Mi GARS PSO GSA 

1 1 1 0.000 0.000 0.000 
1 1 2 0.000 0.024 0.015 
1 1 3 0.000 0.120 3.982 
1 2 1 0.000 0.031 0.015 
1 2 2 0.000 0.160 0.418 
1 2 3 0.314 0.075 2.316 
1 3 1 0.000 0.126 0.108 
1 3 2 0.000 0.146 0.944 
1 3 3 0.132 0.171 1.769 
2 1 1 0.012 0.145 0.000 
2 1 2 0.000 0.677 0.000 
2 1 3 1.092 0.057 5.610 
2 2 1 0.000 0.630 0.083 
2 2 2 0.526 1.359 0.802 
2 2 3 0.000 3.110 3.778 
2 3 1 0.027 0.682 0.184 
2 3 2 0.000 2.838 0.722 
2 3 3 0.000 2.050 4.169 
3 1 1 0.000 0.000 0.000 
3 1 2 0.000 0.048 0.018 
3 1 3 0.000 0.154 0.818 
3 2 1 0.000 0.000 0.000 
3 2 2 0.000 0.169 0.309 
3 2 3 0.000 0.265 0.608 
3 3 1 0.000 0.349 0.071 
3 3 2 0.000 0.506 0.418 
3 3 3 0.000 0.395 1.748 

average - - 0.078 0.529 1.071 

The obtained results confirm the effectiveness of GARS in solving the FSDGS problem at hand. 
With reference to two-machine problems (See Table 7), the proposed algorithm achieves the best 
average RPD 25 times out of 27. Its performance is strengthen by the lowest grand average RPD value 
equal to 0.103, against PSO and GSA that gain 0.846 and 2.947, respectively. The same trend in terms 
of grand average RPD values may be observed for problems with three-machines (See Table 8), 
according to which GARS assures the best average RPD 72 times out of 81, while PSO and GSA 
gather with 16 and 13 wins, respectively. As far as six-machine problems are concerned, GARS still 
reports the best performances, providing the lowest average RPD 24 times out of 27 and a grand 
average RPD significantly lower than PSO and GSA. 

In order to infer some statistical conclusion over the difference observed among the tested 
algorithms, an ANOVA analysis has been performed by means of Stat-Ease® Design-Expert® 7.0.0 
version commercial tool, calculating Least Significant Difference (LSD) intervals at 95% confidence 
level for the RPDs connected to each optimization procedure. The corresponding chart (see Figure 6) 
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clearly shows how GARS outperforms PSO and GSA in a statistically significant manner, as no any 
overlap among the LSD bars connected to the tested algorithms exists. 

Figure 6. LSD bar chart at 95% confidence level. 

 

6. Conclusions 

In this paper, a hybrid metaheuristic procedure integrating features from genetic algorithms and 
biased random sampling local search has been proposed with the aim of minimizing the total flow time 
in a classical scheduling issue emerging from cellular manufacturing environments, i.e., the flow-shop 
sequence-dependent group-scheduling problem. Thanks to the matrix-encoding scheme employed,  
the proposed metaheuristic procedure can simultaneously manage a twofold combinatorial problem: 
sequencing of groups and sequencing of jobs within each group to be processed. Stochastic selection 
mechanisms among two distinct crossover operators and two mutation techniques have been considered. 
Furthermore, a random sampling local search scheme has been embedded for enhancing the exploitation 
phase of the genetic framework. 

The proposed procedure has been validated against two recent metaheuristic techniques emerging 
from the relevant literature in the field of FSDGS problem. To this end, a well-known benchmark of 
test cases has been employed. An extensive comparison campaign, supported by a properly developed 
ANOVA analysis, demonstrated the superiority of the proposed approach. 

Future research could include the application of the proposed GARS algorithm to other scheduling 
problems in the field of group scheduling issues, e.g., single machine or flow shop with multi-processors. 
Considering pre-emptions, i.e., interruptions of job processing operations due to the arrival of  
higher-priority jobs or groups at the system, could be an interesting direction for further analysis, as 
well. In alternative, other metaheuristic techniques like ant-colony and immune systems algorithm may 
be compared with the proposed GARS as to further validate its effectiveness in solving FSDGS problems. 
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Nomenclature 

I = 1,2,…,M index of machines 
h, g = 1,2,…,G indexes of groups 
j = 1,2,…,ng index of jobs in group g 

1

G

g
g

N n
=

= ∑  total number of jobs 

tigj processing time of job j of group g on machine i 
Sihg setup time of group g preceded by group h on machine i 
Fgj completion time of job j of group g 

{ }1 ,...,
g

g gg
nπ π π=  a generic sequence of jobs to be scheduled in group g 

{ }1,..., GΩ = Ω Ω  a generic sequence of groups to be scheduled 
Npop population size 
pcr crossover probability 
pm mutation probability 
Nbest number of individuals subject to BRS search procedure 

Cr 
r-th chromosome subject to BRS search procedure in the current population 
(r = 1, 2, …, Nbest)  

NBRS 
number of neighbor solutions generated for each individual subject to BRS 
procedure 

NCk
r 

k-th neighbor solution of chromosome Cr generated through BRS procedure 
(k = 1, 2, …, NBRS) 

{ }1 ,...,
k k k

GΩ = Ω Ω  sequence of groups to be scheduled according to solution NCk
r 

pq,g probability of selecting group gΩ of chromosome Cr as q-th group of k
Ω  

control parameter of 
BRS search procedure 
Dmax maximum number of duplicates allowed at each generation 
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